• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      認知-運動雙任務訓練在腦卒中患者康復中的研究進展

      2024-08-18 00:00:00向麗莎張一
      醫(yī)學研究與教育 2024年3期
      關鍵詞:認知腦卒中運動

      摘要:腦卒中后幸存者通常面臨肢體運動障礙、平衡障礙和認知障礙,傳統(tǒng)的康復訓練不能支持其更好地回歸家庭和社會生活。認知和運動訓練的有效結合在腦卒中患者中的優(yōu)勢已在大量研究中證實,但其對認知功能和運動功能的恢復不全是積極作用,總結認知-運動雙任務訓練模式對腦卒中患者認知功能與運動功能的影響,探討其在腦卒中患者康復進程中的應用進展。

      關鍵詞:認知;運動;腦卒中;雙任務

      DOI:10.3969/j.issn.1674490X.2024.03.002

      中圖分類號:R49"""" 文獻標志碼:A"""" 文章編號:1674490X(2024)03000810

      Advance on cognitive-motor dual task training on the rehabilitation of stroke patients

      XIANG Lisha1,2,ZHANG Yi2

      (1.College of Clinical Medicine, Soochow University, Suzhou 215000, China; 2.Department of Rehabilitation Medicine, The Third Affiliated Hospital of Soochow University/The First Peoples Hospital of Changzhou, Changzhou 213000, China)

      Abstract: Post-stroke survivors usually face limb movement disorders, balance disorders and cognitive impairment, and traditional rehabilitation training cannot support their better return to family and social life. The advantages of the effective combination of cognitive and motor training in stroke patients have been confirmed in a large number of studies, but its recovery of cognitive function and motor function is not always a positive effect. Therefore, this article summarizes the effects of cognitive motor dual task training mode on cognitive function and motor function in stroke patients, and discusses its application progress in the rehabilitation process of stroke patients.

      Key words: cognition; motor; stroke; dual task

      腦卒中是全球第二大死亡原因,也是導致殘疾的主要原因,隨著人口老齡化問題日益突出,腦卒中在發(fā)展中國家的發(fā)病率越來越高[1]。腦卒中的潛在危險因素與全球90%的腦卒中歸因風險相關,包括高血壓、吸煙、肥胖、飲食、缺乏運動、糖尿病、酒精攝入、心理社會因素、心臟病和載脂蛋白比率[2]。隨著中國居民不健康生活方式流行,腦血管危險因素普遍暴露。最新全球疾病負擔研究顯示,中國

      總體腦卒中終生發(fā)病風險為39.3%,位居全球首位,每年190余萬人因腦卒中死亡[3],給社會和家庭帶來沉重的負擔。由于只有極少數(shù)人能夠在腦卒中急性期得到溶栓或更進一步的介入治療,有很多人會遺留各種功能障礙[4]。其中認知障礙和運動障礙可以嚴重阻礙日?;顒雍蜕鐓^(qū)參與,并具有協(xié)同效應[5]。在街道上安全地行走需要足夠的認知能力處理分心的事情,如廣告、噪音和不平整的道路等[6]。傳統(tǒng)的康復訓練模式僅針對單一肢體運動功能的恢復甚至部分恢復,不能滿足患者出院后在社區(qū)步行的同時執(zhí)行多項并行任務的需要。最新的綜述著眼于認知-運動雙任務訓練(cognitive-motor dual task training, CMDT)對腦卒中患者的平衡能力、步態(tài)和上肢功能的改善[7],及針對老年人群體CMDT對認知功能、執(zhí)行功能及腦血流動力學的影響[8-9]。CMDT可作為腦卒中患者回歸社區(qū)的有效康復手段。有研究[10-11]表示,CMDT干預能夠使患者身體運動功能康復及認知康復的有效性最大化。因此,本文旨在通過對CMDT干預的相關文獻進行梳理,探討這種訓練干預模式轉(zhuǎn)化為臨床康復實踐的研究進展。

      1 雙任務相關理論

      雙任務指一個人同時執(zhí)行兩項不同的任務,可分為兩大類:運動雙任務和認知雙任務[12]。前者指需要同時執(zhí)行運動任務和姿勢控制任務,后者指同時執(zhí)行認知任務和運動任務或認知任務和姿勢控制任務[13]。

      與單任務訓練相比,兩項任務的同時執(zhí)行可引發(fā)感覺運動和認知系統(tǒng)的相互作用,可能導致其中一項或兩項任務表現(xiàn)的惡化,這通常被稱為認知-運動干擾[14],反映兩項任務對訪問中樞神經(jīng)系統(tǒng)內(nèi)有限注意力資源的競爭需求。以往的研究提出的一些認知-運動干擾機制:(1)有限容量理論[15-16],該理論假設大腦是一個注意力容量有限的處理器,該處理器會將注意力資源分配到需執(zhí)行的任務,當由于任務難度增加或大腦病理性改變,共享相似資源的兩項任務的注意力需求超過可用資源時,一項或兩項任務的性能都會受到損害;(2)瓶頸理論[17-18],該理論認為當使用相同信息途徑的兩個任務同時競爭處理資源時,資源限制導致他們被一個接一個地串行處理,而不是并行處理,此時將會出現(xiàn)“瓶頸”現(xiàn)象,即一個任務將被延遲或以其他方式受損。Plummer等[14]曾在研究中將認知-運動雙重任務模式可能存在的潛在干擾表現(xiàn)分為沒有干擾、認知相關的運動干擾、與運動有關的認知干擾、認知促進、認知優(yōu)先原則、運動促進、運動優(yōu)先原則、相互干擾、相互促進九類。

      以往研究為將這種雙任務運動干擾模式以可計量的方式呈現(xiàn),提出了雙任務效應(dual-task effect, DTE)的概念,其表示與對應單任務比較,雙任務性能所發(fā)生的相對變化。負DTE表示雙任務性能相對于單任務性能下降(雙任務成本),正DTE表示雙任務性能相對于單任務性能提高(雙任務收益)。

      在兩項任務均具有一定難度且注意力資源有限時,雙任務的執(zhí)行可出現(xiàn)一項任務的執(zhí)行優(yōu)先另一項任務的情況,這種情況被定義為任務優(yōu)先級。機體為更安全地行走避免跌倒,通常采取兩種任務優(yōu)先級策略:(1)姿勢優(yōu)先策略[19],機體為更安全地行走避免跌倒,保持穩(wěn)定的步態(tài)或平衡將優(yōu)先于次要任務;(2)凍結策略[20-21],在注意力資源分配低于保持平衡所需注意力閾值時,機體除犧牲次要任務以保持姿勢穩(wěn)定,還將凍結注意力分配的自由度,以防止更多的平衡惡化。

      2 雙任務干預的策略

      2.1 干預模式

      雙任務訓練干預即針對不同的治療目標制定不同的雙任務訓練方案,并在干預前后評估患者的雙任務表現(xiàn)[22-23]。這種雙任務訓練模式基于卒中運動再學習程序理論[24],這種程序提倡四個步驟:基礎任務練習(在未受干擾的安靜區(qū)域進行運動或認知活動)、部分任務練習(動態(tài)姿勢控制和單步訓練等活動)、全任務練習(連續(xù)行走的活動)、日常生活訓練(障礙協(xié)調(diào)和戶外步行)。在雙任務的設計中,Plummer等[25]提出,CMDT范式的良好訓練效果在未經(jīng)訓練的雙任務組合中可能呈現(xiàn)較差表現(xiàn),他們認為雙任務訓練期間應包括更廣泛的認知任務訓練,將良好的訓練效果最大限度地轉(zhuǎn)移到不同的CMDT組合中。而一部分研究觀察到未經(jīng)訓練的認知-運動雙重任務的積極轉(zhuǎn)移效應,這種效應表現(xiàn)為在應用與訓練干預相同類型(即基于同一大腦認知或運動領域)的任務時可出現(xiàn)的正遷移效應。而對于應用與訓練干預不同類型的任務,可能無法觀察到明顯的干預效果[26-28]。同時,有研究[29-30]表明,CMDT干預可以減少步態(tài)中的雙任務干擾,這種雙任務干擾的減少可能通過兩種機制實現(xiàn):(1)重復練習提高運動的自動化程度,運動自動化降低步行對注意力的需求,從而提高同時執(zhí)行認知任務的能力;(2)通過特定任務訓練改變患者的注意力分配策略,或提高患者在雙任務間注意力轉(zhuǎn)移的效率,進而提高雙任務協(xié)調(diào)性。一些研究[31-33]表明,其運動功能、認知功能表現(xiàn)雖有所改善,但認知DTE和運動DTE無明顯變化,即應對雙任務的策略未發(fā)生改變。以上結果表明,雙任務訓練方案應針對不同患者的雙任務表現(xiàn)進行個性化的定制,并且在雙任務期間增加注意力需求有積極影響。

      2.2 干預劑量

      一項薈萃分析顯示,CMDT干預的時程、頻率或持續(xù)時間對認知功能和運動功能的改善沒有影響[34],即使是4周的短劑量也能對認知功能和運動功能改善的有效性提供正向的提升作用[35]。本次納入的文獻中多采取在傳統(tǒng)康復計劃上進行額外的單任務訓練和雙任務訓練,額外訓練為期4~6周,每周3次,每次30 min,包括漸進難度的認知訓練、上肢訓練、步行訓練和平衡訓練干預。這樣的干預劑量呈現(xiàn)較為均一的結論,即在提升雙任務性能方面,CMDT比單一的認知訓練或運動訓練更有效。但有研究[31]提出,這種訓練前后雙任務效應的相對變化是由于雙任務模式的短期固有可變性。此外,部分研究通過對干預前、干預中、干預完成時以及干預后2周~12個月的隨訪進行認知與運動表現(xiàn)評估,證實雙任務干預訓練的積極影響是可持續(xù)性的,具有較為突出的臨床治療作用[25,28,36]。也有研究[37]提出,在輕度認知障礙患者中,干預時間與對認知能力的影響呈負相關。但在兩項研究中,為期8周的雙任務訓練干預對腦卒中患者認知與運動功能改善仍是有效的[12,27]。那么在腦卒中患者中過長的訓練干預時程是否會使患者產(chǎn)生認知疲勞以及體力過度消耗,并且導致雙任務表現(xiàn)的負面影響在未來的研究中值得進一步探索。

      2.3 干預順序

      由于注意力資源有限,腦卒中患者在具有挑戰(zhàn)性的環(huán)境中處理多個任務時,對任務進行優(yōu)先級排序是不可避免的[38]?;颊邔θ蝿諆?yōu)先級的策略制定基于兩方面,包括最小化周圍環(huán)境和任務執(zhí)行中的潛在危險因素帶來的影響和最大化自我選擇的偏好和多任務表現(xiàn)[39]。本次納入的文獻中較多未對患者雙任務的執(zhí)行進行額外的干預,即未設置雙任務優(yōu)先級,而是實行可變優(yōu)先級訓練策略,根據(jù)患者的自我選擇在認知和運動任務之間交替集中注意力。雙任務的可變優(yōu)先級指雙任務執(zhí)行時在任務間轉(zhuǎn)移注意力,雙任務的固定優(yōu)先級指對不同的任務給予相等量的注意力。多項研究[40-41]表明,可變優(yōu)先級的雙任務訓練策略相比固定優(yōu)先級策略在改善患者的認知與運動能力方面更有效,前者更能促進患者注意力的靈活分配和自我引導,提高患者在專注多任務時協(xié)調(diào)并發(fā)任務的能力。這些都再次說明注意力資源和注意力分配的重要性,雙任務條件下有效的任務整合將提高任務間執(zhí)行的協(xié)調(diào)能力。

      3 雙任務干預的影響

      3.1 上肢運動、步行與認知

      由于腦卒中后可用的注意力資源有限,與單任務步行相比,同時執(zhí)行認知任務時步行性能受損,包括步速、步幅、步長、步幅持續(xù)時間和步頻等步態(tài)參數(shù)的惡化[42-43]。隨著認知負荷的增加,導致注意力需求的增加可在不同程度上干擾步行[44],但這種認知-運動干擾的差異是由于所屬認知領域的不同或是認知任務難度水平的差異,也是當下探討的熱點[45-46]。執(zhí)行功能被認為在腦卒中后存在顯著損害并與步態(tài)損傷高度相關,專注執(zhí)行功能(如工作記憶)的認知任務表現(xiàn)出更高的運動成本和認知成本[42,47],Baek等[48]也提到認知-運動的相互干擾可能表明執(zhí)行功能受損程度更大。同時,步態(tài)本身的缺陷也會導致注意力增加[49-50],運動恢復能力的差異對步速可有影響[51],下肢運動損傷較大和步速較慢的個體更易受到與步態(tài)相關的認知-運動干擾[52-53]。在次要認知任務難度較低時,腦卒中個體可采取在任務間來回轉(zhuǎn)移注意力資源的方式保持良好的任務性能[54]。為更接近社區(qū)生活行走的真實狀態(tài),更多的研究著眼于加入避障等步行任務或更復雜的步行環(huán)境[55]。以往研究[45-56]表明,康復良好的腦卒中患者在克服障礙時需要額外的注意力成本,增加高認知成本的認知任務后步態(tài)表現(xiàn)可受到雙任務干擾。但腦卒中個體在避障任務中常采取“姿勢優(yōu)先”策略,優(yōu)先考慮避障任務從而使認知任務表現(xiàn)出更大的損失[56-57]。最后,相比步行等粗大運動活動,上肢運動需要更精細的運動控制[33],即使是臨床功能恢復良好的腦卒中患者在完成更復雜的運動任務或執(zhí)行雙任務時也可出現(xiàn)持續(xù)性的缺陷[58]。上肢運動作為更依賴于認知驅(qū)動的自動執(zhí)行動作,雙任務范式能夠有效檢出其運動控制的自動化程度[59-60]。Denneman等[61]提到,意識控制傾向較強的腦卒中患者克服雙任務干擾的穩(wěn)定性更低。所以在臨床康復訓練中減少對肢體學習技能的過度關注,結合雙任務訓練對運動控制自動化程度的量化,對促進其運動自動性的恢復值得在未來進一步研究。

      3.2 認知、步行與平衡

      平衡指在不同情況和環(huán)境下保持身體直立的能力,平衡功能可分為靜態(tài)姿勢控制、動態(tài)意向平衡和反應性平衡。研究[62-63]顯示,由于腦卒中患者注意力資源有限,在平衡控制中,患者同樣采用“姿勢優(yōu)先策略”,即犧牲認知反應將更多的注意力資源分配給平衡任務,減少跌倒風險[64]。而對意向性平衡控制則表現(xiàn)出相互認知-運動干擾的模式,在進一步對動態(tài)意向平衡控制中不同認知領域及不同人群(健康老年人、腦卒中老年人、年輕人)對其影響的研究中表示,腦卒中個體優(yōu)先考慮平衡而非認知,其認知-運動干擾模式為與認知相關的運動干擾模式[65]。腦卒中患者在直立時常表現(xiàn)出不對稱的姿勢和體質(zhì)量負荷不平衡,其在維持直立姿勢期間出現(xiàn)的異常姿勢搖擺也是腦卒中常出現(xiàn)的后果之一[66]。傳統(tǒng)的康復訓練也著重于改善肢體間的姿勢穩(wěn)定性和減少體質(zhì)量分布的不對稱,但Bourlon等[67]認為,這種增加健側肢體的負重可被看作是維持姿勢穩(wěn)定性的一種補償策略,在雙任務中的認知負荷很高時,這種逆向過程更為明顯。姿勢控制是由無意識或反射過程引起的機體自動反應,有研究提出保持直立姿勢的同時執(zhí)行認知任務有助于轉(zhuǎn)移注意力焦點到外部刺激,從而改善姿勢控制的自動過程[68-69]。

      3.3 雙任務神經(jīng)機制研究

      關于雙任務訓練的研究認為,其相比單一任務對認知功能的改善具有更大優(yōu)勢,這種優(yōu)勢源于運動訓練可增強神經(jīng)可塑性[70-71],神經(jīng)可塑性是中樞神經(jīng)損傷后大腦通過未受損的神經(jīng)細胞間有效的側支循環(huán)形成,補償重建受損區(qū)域的神經(jīng)元功能及神經(jīng)通路傳導,從而改善大腦損傷程度[72-73]。如海馬神經(jīng)元的可塑性增強與運動過程中腦源性神經(jīng)營養(yǎng)因子(brain-derived neurotrophic factor, BDNF)的高表達相關[74-75],且大量重復的運動訓練可促進神經(jīng)細胞間通過形成新突觸建立新的神經(jīng)環(huán)路突觸鏈[76-77],這些都能有效促進神經(jīng)功能的恢復。

      步行過程中下肢肌肉活動與額葉區(qū)及運動區(qū)皮質(zhì)激活可存在顯著相關性,在受到運動能力受損和/或認知能力下降因素影響時,可出現(xiàn)皮質(zhì)過度激活甚至其他皮質(zhì)區(qū)域的補償性激活,這種神經(jīng)補償機制有利于步態(tài)模式調(diào)控以及平衡維持[78-81]。Al-Yahya等[82]通過近紅外光譜儀和核磁共振成像的監(jiān)測,表明腦卒中患者在步行期間前額葉活動的需求增加,在執(zhí)行認知任務時進一步增加,這種自上而下的運動控制與傳統(tǒng)康復使患者將注意力資源集中在安全移動上的觀點不同。腦卒中患者的運動自動性受到損害,就會將更多的注意力資源分配到熟悉但功能受損的任務驅(qū)動中。因此,腦卒中幸存者成功的認知-運動康復的核心理念應該通過激活儲備注意力資源來補償受損的皮質(zhì)區(qū)域。Liu等[83]進一步證實這樣的觀點,他們的結果表明,腦卒中患者在雙任務行走時進一步招募雙側前額葉皮質(zhì)和未受損傷的輔助運動區(qū)執(zhí)行認知或運動雙任務。但有研究提出,在復雜的步行任務中,前額葉資源利用水平可接近步行障礙患者可用資源水平的上限,這種有效的前額葉資源與過度激活前額葉相結合反而會導致雙任務性能下降[84-86]。

      目前對腦卒中患者經(jīng)雙任務訓練后功能改善的神經(jīng)康復機制尚無明確定論,雙任務神經(jīng)機制的研究仍受到國內(nèi)外科研工作者的廣泛關注。眾多假說和理論主要集中在兩方面,一方面是神經(jīng)功能的再生和功能障礙的恢復可歸因于大腦強大的重組重建能力,即神經(jīng)可塑性;另一方面是受損大腦區(qū)域的特異性激活或與其他補償激活腦區(qū)聯(lián)合形成新的腦功能神經(jīng)網(wǎng)絡。

      4 結論

      總體而言,CMDT能有效地提高患者的上肢運動功能、步行能力、執(zhí)行功能、平衡能力等,最大限度地幫助患者回歸家庭,但認知-運動干擾也可導致認知表現(xiàn)和/或運動表現(xiàn)惡化,未來的研究應更多關注CMDT減少認知-運動干擾方面的臨床實踐,并從腦卒中患者之間的差異性作為基本出發(fā)點,從可行性、最適訓練強度、最佳任務組合等方面制定個性化的康復訓練計劃。

      參考文獻:

      [1]

      CAMPBELL B C V, DE SILVA D A, MACLEOD M R, et al. Ischaemic stroke[J]. Nat Rev Dis Primers, 2019, 5(1): 70. DOI: 10.1038/s41572-019-0118-8.

      [2]ODONNELL M J, CHIN S L, RANGARAJAN S, et al. Global and regional effects of potentially modifiable risk factors associated with acute stroke in 32 countries (INTERSTROKE): a case-control study[J]. Lancet, 2016, 388(10046): 761-775. DOI: 10.1016/S0140-6736(16)30506-2.

      [3]《中國腦卒中防治報告》編寫組. 《中國腦卒中防治報告2019》概要[J]. 中國腦血管病雜志, 2020, 17(5): 272-281. DOI: 10.3969/j.issn.1672-5921.2020.05.008.

      [4]惠艷娉, 席悅, 張巧俊. 腦卒中康復治療進展[J]. 華西醫(yī)學, 2018, 33(10): 1295-1302. DOI: 10.7507/1002-0179.201805118.

      [5]VERMEIJ A, VAN BEEK A H E A, REIJS B L R, et al. An exploratory study of the effects of spatial working-memory load on prefrontal activation in low- and high-performing elderly[J]. Front Aging Neurosci, 2014, 6: 303. DOI: 10.3389/fnagi.2014.00303.

      [6]DONOVAN K, LORD S E, MCNAUGHTON H K, et al. Mobility beyond the clinic: the effect of environment on gait and its measurement in community-ambulant stroke survivors[J]. Clin Rehabil, 2008, 22(6): 556-563. DOI: 10.1177/0269215507085378.

      [7]ZHOU Q, YANG H C, ZHOU Q F, et al. Effects of cognitive motor dual-task training on stroke patients: a RCT-based meta-analysis[J]. J Clin Neurosci, 2021, 92: 175-182. DOI: 10.1016/j.jocn.2021.08.009.

      [8]WOLLESEN B, WILDBREDT A, VAN SCHOOTEN K S, et al. The effects of cognitive-motor training interventions on executive functions in older people: a systematic review and meta-analysis[J]. Eur Rev Aging Phys Act, 2020, 17: 9. DOI: 10.1186/s11556-020-00240-y.

      [9]UDINA C, AVTZI S, DURDURAN T, et al. Functional near-infrared spectroscopy to study cerebral hemodynamics in older adults during cognitive and motor tasks: a review[J]. Front Aging Neurosci, 2020, 11: 367. DOI: 10.3389/fnagi.2019.00367.

      [10]PICHIERRI G, WOLF P, MURER K, et al. Cognitive and cognitive-motor interventions affecting physical functioning: a systematic review[J]. BMC Geriatr, 2011, 11: 29. DOI: 10.1186/1471-2318-11-29.

      [11]HUBER S K, KNOLS R H, ARNET P, et al. Motor-cognitive intervention concepts can improve gait in chronic stroke, but their effect on cognitive functions is unclear: a systematic review with meta-analyses[J]. Neurosci Biobehav Rev, 2022, 132: 818-837. DOI: 10.1016/j.neubiorev.2021.11.013.

      [12]AN H J, KIM J I, KIM Y R, et al. The effect of various dual task training methods with gait on the balance and gait of patients with chronic stroke[J]. J Phys Ther Sci, 2014, 26(8): 1287-1291. DOI: 10.1589/jpts.26.1287.

      [13]MCISAAC T L, LAMBERG E M, MURATORI L M. Building a framework for a dual task taxonomy[J]. Biomed Res Int, 2015, 2015: 591475. DOI: 10.1155/2015/591475.

      [14]PLUMMER P, ESKES G, WALLACE S, et al. Cognitive-motor interference during functional mobility after stroke: state of the science and implications for future research[J]. Arch Phys Med Rehabil, 2013, 94(12): 2565-2574.e6.DOI: 10.1016/j.apmr.2013.08.002.

      [15]PASHLER H. Dual-task interference in simple tasks: data and theory[J]. Psychol Bull, 1994, 116(2): 220-244. DOI: 10.1037/0033-2909.116.2.220.

      [16]MEYER D E, KIERAS D E. A computational theory of executive cognitive processes and multiple-task performance: part 1. Basic mechanisms[J]. Psychol Rev, 1997, 104(1): 3-65. DOI: 10.1037//0033-295x.104.1.3.

      [17]FUJITA H, KASUBUCHI K, WAKATA S, et al. Role of the frontal cortex in standing postural sway tasks while dual-tasking: a functional near-infrared spectroscopy study examining working memory capacity[J]. Biomed Res Int, 2016, 2016: 7053867. DOI: 10.1155/2016/7053867.

      [18]MASLOVAT D, CHUA R, SPENCER H C, et al. Evidence for a response preparation bottleneck during dual-task performance: effect of a startling acoustic stimulus on the psychological refractory period[J]. Acta Psychol, 2013, 144(3): 481-487. DOI: 10.1016/j.actpsy.2013.08.005.

      [19]WOOLLACOTT M, SHUMWAY-COOK A. Attention and the control of posture and gait: a review of an emerging area of research[J]. Gait Posture, 2002, 16(1): 1-14. DOI: 10.1016/s0966-6362(01)00156-4.

      [20]MANAF H, JUSTINE M, GOH H T. Axial segmental coordination during turning: effects of stroke and attentional loadings[J]. Motor Control, 2017, 21(1): 42-57. DOI: 10.1123/mc.2015-0040.

      [21]NEGAHBAN H, EBRAHIMZADEH M, MEHRAVAR M. The effects of cognitive versus motor demands on postural performance and weight bearing asymmetry in patients with stroke[J]. Neurosci Lett, 2017, 659: 75-79. DOI: 10.1016/j.neulet.2017.08.070.

      [22]YUAN Z W, PENG Y, WANG L S, et al. Effect of BCI-controlled pedaling training system with multiple modalities of feedback on motor and cognitive function rehabilitation of early subacute stroke patients[J]. IEEE Trans Neural Syst Rehabil Eng, 2021, 29: 2569-2577. DOI: 10.1109/TNSRE.2021.3132944.

      [23]PARK M O, LEE S H. Effect of a dual-task program with different cognitive tasks applied to stroke patients: a pilot randomized controlled trial[J]. Neuro Rehabilitation, 2019, 44(2): 239-249. DOI: 10.3233/NRE-182563.

      [24]PLUMMER-DAMATO P, KYVELIDOU A, STERNAD D, et al. Training dual-task walking in community-dwelling adults within 1 year of stroke: a protocol for a single-blind randomized controlled trial[J]. BMC Neurol, 2012, 12: 129. DOI: 10.1186/1471-2377-12-129.

      [25]PLUMMER P, VILLALOBOS R M, VAYDA M S, et al. Feasibility of dual-task gait training for community-dwelling adults after stroke: a case series[J]. Stroke Res Treat, 2014, 2014: 538602. DOI: 10.1155/2014/538602.

      [26]LIU Y C, YANG Y R, TSAI Y A, et al. Cognitive and motor dual task gait training improve dual task gait performance after stroke: a randomized controlled pilot trial[J]. Sci Rep, 2017, 7(1): 4070. DOI: 10.1038/s41598-017-04165-y.

      [27]PANG M Y C, YANG L, OUYANG H X, et al. Dual-task exercise reduces cognitive-motor interference in walking and falls after stroke[J]. Stroke, 2018, 49(12): 2990-2998. DOI: 10.1161/STROKEAHA.118.022157.

      [28]KIM G Y, HAN M R, LEE H G. Effect of dual-task rehabilitative training on cognitive and motor function of stroke patients[J]. J Phys Ther Sci, 2014, 26(1): 1-6. DOI: 10.1589/jpts.26.1.

      [29]YANG Y R, WANG R Y, CHEN Y C, et al. Dual-task exercise improves walking ability in chronic stroke: a randomized controlled trial[J]. Arch Phys Med Rehabil, 2007, 88(10): 1236-1240. DOI: 10.1016/j.apmr.2007.06.762.

      [30]SUBRAMANIAM S, WAN-YING HUI-CHAN C, BHATT T. A cognitive-balance control training paradigm using wii fit to reduce fall risk in chronic stroke survivors[J]. J Neurol Phys Ther, 2014, 38(4): 216-225. DOI: 10.1097/NPT.0000000000000056.

      [31]PLUMMER P, ZUKOWSKI L A, FELD J A, et al. Cognitive-motor dual-task gait training within 3 years after stroke: a randomized controlled trial[J]. Physiother Theory Pract, 2022, 38(10): 1329-1344. DOI: 10.1080/09593985.2021.1872129.

      [32]LEE K J, PARK G, SHIN J H. Differences in dual task performance after robotic upper extremity rehabilitation in hemiplegic stroke patients[J]. Front Neurol, 2021, 12: 771185. DOI: 10.3389/fneur.2021.771185.

      [33]SHIN J H, PARK G, CHO D Y. Cognitive-motor interference on upper extremity motor performance in a robot-assisted planar reaching task among patients with stroke[J]. Arch Phys Med Rehabil, 2017, 98(4): 730-737. DOI: 10.1016/j.apmr.2016.12.004.

      [34]GHEYSEN F, POPPE L, DESMET A, et al. Physical activity to improve cognition in older adults: can physical activity programs enriched with cognitive challenges enhance the effects? A systematic review and meta-analysis[J]. Int J Behav Nutr Phys Act, 2018, 15(1): 63. DOI: 10.1186/s12966-018-0697-x.

      [35]BRUDERER-HOFSTETTER M, RAUSCH-OSTHOFF A K, MEICHTRY A, et al. Effective multicomponent interventions in comparison to active control and no interventions on physical capacity, cognitive function and instrumental activities of daily living in elderly people with and without mild impaired cognition: a systematic review and network meta-analysis[J]. Ageing Res Rev, 2018, 45: 1-14. DOI: 10.1016/j.arr.2018.04.002.

      [36]CHOI J H, KIM B R, HAN E Y, et al. The effect of dual-task training on balance and cognition in patients with subacute post-stroke[J]. Ann Rehabil Med, 2015, 39(1): 81-90. DOI: 10.5535/arm.2015.39.1.81.

      [37]LI H J, LI J, LI N X, et al. Cognitive intervention for persons with mild cognitive impairment: a meta-analysis[J]. Ageing Res Rev, 2011, 10(2): 285-296. DOI: 10.1016/j.arr.2010.11.003.

      [38]趙依雙. 雙重任務訓練改善腦卒中后步行能力的應用進展[J]. 中華物理醫(yī)學與康復雜志, 2020, 42(8): 752-754. DOI: 10.3760/cma.j.issn.0254-1424.2020.08.021.

      [39]PLUMMER P, ESKES G. Measuring treatment effects on dual-task performance: a framework for research and clinical practice[J]. Front Hum Neurosci, 2015, 9: 225. DOI: 10.3389/fnhum.2015.00225.

      [40]LUSSIER M, BUGAISKA A, BHERER L. Specific transfer effects following variable priority dual-task training in older adults[J]. Restor Neurol Neurosci, 2017, 35(2): 237-250. DOI: 10.3233/RNN-150581.

      [41]SENGAR S, RAGHAV D, VERMA M, et al. Efficacy of dual-task training with two different priorities instructional sets on gait parameters in patients with chronic stroke[J]. Neuropsychiatr Dis Treat, 2019, 15: 2959-2969. DOI: 10.2147/NDT.S197632.

      [42]PATEL P, BHATT T. Task matters: influence of different cognitive tasks on cognitive-motor interference during dual-task walking in chronic stroke survivors[J]. Top Stroke Rehabil, 2014, 21(4): 347-357. DOI: 10.1310/tsr2104-347.

      [43]CHEN H I, FU S Y, LIU T W, et al. Changes in cognitive-motor interference during rehabilitation of cane walking in patients with subacute stroke: a pilot study[J]. PLoS One, 2022, 17(10): e0274425. DOI: 10.1371/journal.pone.0274425.

      [44]PLUMMER-DAMATO P, ALTMANN L J, SARACINO D, et al. Interactions between cognitive tasks and gait after stroke: a dual task study[J]. Gait Posture, 2008, 27(4): 683-688. DOI: 10.1016/j.gaitpost.2007.09.001.

      [45]YANG L, LAM F M, HUANG M Z, et al. Dual-task mobility among individuals with chronic stroke: changes in cognitive-motor interference patterns and relationship to difficulty level of mobility and cognitive tasks[J]. Eur J Phys Rehabil Med, 2018, 54(4): 526-535. DOI: 10.23736/S1973-9087.17.04773-6.

      [46]RICE J, CORP D T, SWAROWSKY A, et al. Greater cognitive-motor interference in individuals post-stroke during more complex motor tasks[J]. J Neurol Phys Ther, 2022, 46(1): 26-33. DOI: 10.1097/NPT.0000000000000379.

      [47]ESCHWEILER M, BOHR L, KESSLER J, et al. Combined cognitive and motor training improves the outcome in the early phase after stroke and prevents a decline of executive functions: a pilot study[J]. Neuro Rehabilitation, 2021, 48(1): 97-108. DOI: 10.3233/NRE-201583.

      [48]BAEK C Y, YOON H S, KIM H D, et al. The effect of the degree of dual-task interference on gait, dual-task cost, cognitive ability, balance, and fall efficacy in people with stroke: a cross-sectional study[J]. Medicine, 2021, 100(24): e26275. DOI: 10.1097/MD.0000000000026275.

      [49]BAETENS T, KEGEL A D, PALMANS T, et al. Gait analysis with cognitive-motor dual tasks to distinguish fallers from nonfallers among rehabilitating stroke patients[J]. Arch Phys Med Rehabil, 2013, 94(4): 680-686. DOI: 10.1016/j.apmr.2012.11.023.

      [50]MUCI B, KESER I, MERIC A, et al. What are the factors affecting dual-task gait performance in people after stroke?[J]. Physiother Theory Pract, 2022, 38(5): 621-628. DOI: 10.1080/09593985.2020.1777603.

      [51]LEE K B, KIM J H, LEE K S. The relationship between motor recovery and gait velocity during dual tasks in patients with chronic stroke[J]. J Phys Ther Sci, 2015, 27(4): 1173-1176. DOI: 10.1589/jpts.27.1173.

      [52]PLUMMER-DAMATO P, ALTMANN L J. Relationships between motor function and gait-related dual-task interference after stroke: a pilot study[J]. Gait Posture, 2012, 35(1): 170-172. DOI: 10.1016/j.gaitpost.2011.08.015.

      [53]COLLETT J, FLEMING M K, MEESTER D, et al. Dual-task walking and automaticity after stroke: insights from a secondary analysis and imaging sub-study of a randomised controlled trial[J]. Clin Rehabil, 2021, 35(11): 1599-1610. DOI: 10.1177/02692155211017360.

      [54]TIMMERMANS C, ROERDINK M, JANSSEN T W J, et al. Dual-task walking in challenging environments in people with stroke: cognitive-motor interference and task prioritization[J]. Stroke Res Treat, 2018, 2018: 7928597. DOI: 10.1155/2018/7928597.

      [55]ZUKOWSKI L A, FELD J A, GIULIANI C A, et al. Relationships between gait variability and ambulatory activity post stroke[J]. Top Stroke Rehabil, 2019, 26(4): 255-260. DOI: 10.1080/10749357.2019.1591038.

      [56]SMULDERS K, VAN SWIGCHEM R, DE SWART B J, et al. Community-dwelling people with chronic stroke need disproportionate attention while walking and negotiating obstacles[J]. Gait Posture, 2012, 36(1): 127-132. DOI: 10.1016/j.gaitpost.2012.02.002.

      [57]OHZUNO T, USUDA S. Cognitive-motor interference in post-stroke individuals and healthy adults under different cognitive load and task prioritization conditions[J]. J Phys Ther Sci, 2019, 31(3): 255-260. DOI: 10.1589/jpts.31.255.

      [58]MULLICK A A, BANIA M C, TOMITA Y, et al. Obstacle avoidance and dual-tasking during reaching while standing in patients with mild chronic stroke[J]. Neurorehabil Neural Repair, 2021, 35(10): 915-928. DOI: 10.1177/15459683211023190.

      [59]HOUWINK A, STEENBERGEN B, PRANGE G B, et al. Upper-limb motor control in patients after stroke: attentional demands and the potential beneficial effects of arm support[J]. Hum Mov Sci, 2013, 32(2): 377-387. DOI: 10.1016/j.humov.2012.01.007.

      [60]KIM H, KIM H K, KIM N, et al. Dual task effects on speed and accuracy during cognitive and upper limb motor tasks in adults with stroke hemiparesis[J]. Front Hum Neurosci, 2021, 15: 671541. DOI: 10.3389/fnhum.2021.671541.

      [61]DENNEMAN R P M, KAL E C, HOUDIJK H, et al. Over-focused? The relation between patients' inclination for conscious control and single- and dual-task motor performance after stroke[J]. Gait Posture, 2018, 62: 206-213. DOI: 10.1016/j.gaitpost.2018.03.008.

      [62]SUBRAMANIAM S, HUI-CHAN C W Y, BHATT T. Effect of dual tasking on intentional vs. reactive balance control in people with hemiparetic stroke[J]. J Neurophysiol, 2014, 112(5): 1152-1158. DOI: 10.1152/jn.00628.2013.

      [63]KIZONY R, LEVIN M F, HUGHEY L, et al. Cognitive load and dual-task performance during locomotion poststroke: a feasibility study using a functional virtual environment[J]. Phys Ther, 2010, 90(2): 252-260. DOI: 10.2522/ptj.20090061.

      [64]KANNAN L, VORA J, BHATT T, et al. Cognitive-motor exergaming for reducing fall risk in people with chronic stroke: a randomized controlled trial[J]. Neuro Rehabilitation, 2019, 44(4): 493-510. DOI: 10.3233/NRE-182683.

      [65]BHATT T, SUBRAMANIAM S, VARGHESE R. Examining interference of different cognitive tasks on voluntary balance control in aging and stroke[J]. Exp Brain Res, 2016, 234(9): 2575-2584. DOI: 10.1007/s00221-016-4662-0.

      [66]TISSERAND R, ARMAND S, ALLALI G, et al. Cognitive-motor dual-task interference modulates mediolateral dynamic stability during gait in post-stroke individuals[J]. Hum Mov Sci, 2018, 58: 175-184. DOI: 10.1016/j.humov.2018.01.012.

      [67]BOURLON C, LEHENAFF L, BATIFOULIER C, et al. Dual-tasking postural control in patients with right brain damage[J]. Gait Posture, 2014, 39(1): 188-193. DOI: 10.1016/j.gaitpost.2013.07.002.

      [68]JU S K, YOO W G. The effect of somatosensory and cognitive-motor tasks on the paretic leg of chronic stroke patients in the standing posture[J]. J Phys Ther Sci, 2014, 26(12): 1869-1870. DOI: 10.1589/jpts.26.1869.

      [69]JU S, YOO W G, OH J S, et al. Effects of visual cue and cognitive motor tasks on standing postural control following a chronic stroke[J]. J Phys Ther Sci, 2018, 30(4): 601-604. DOI: 10.1589/jpts.30.601.

      [70]KRAMER A F, ERICKSON K I. Capitalizing on cortical plasticity: influence of physical activity on cognition and brain function[J]. Trends Cogn Sci, 2007, 11(8): 342-348. DOI: 10.1016/j.tics.2007.06.009.

      [71]CABRAL D F, FRIED P, KOCH S, et al. Efficacy of mechanisms of neuroplasticity after a stroke[J]. Restor Neurol Neurosci, 2022, 40(2): 73-84. DOI: 10.3233/RNN-211227.

      [72]CALEO M. Rehabilitation and plasticity following stroke: insights from rodent models[J]. Neuroscience, 2015, 311: 180-194. DOI: 10.1016/j.neuroscience.2015.10.029.

      [73]DIMYAN M A, COHEN L G. Neuroplasticity in the context of motor rehabilitation after stroke[J]. Nat Rev Neurol, 2011, 7: 76-85. DOI: 10.1038/nrneurol.2010.200.

      [74]VON BOHLEN UND HALBACH O, VON BOHLEN UND HALBACH V. BDNF effects on dendritic spine morphology and hippocampal function[J]. Cell Tissue Res, 2018, 373(3): 729-741. DOI: 10.1007/s00441-017-2782-x.

      [75]VAYNMAN S, GOMEZ-PINILLA F. Revenge of the “sit”: how lifestyle impacts neuronal and cognitive health through molecular systems that interface energy metabolism with neuronal plasticity[J]. J Neurosci Res, 2006, 84(4): 699-715. DOI: 10.1002/jnr.20979.

      [76]付曉燕, 李愛麗. 認知-運動控制雙重任務訓練應用于老年腦卒中后認知障礙的臨床價值[J]. 實用臨床醫(yī)學, 2021, 22(1): 43-45, 49. DOI: 10.13764/j.cnki.lcsy.2021.01.015.

      [77]DBROWSKI J, CZAJKA A, ZIELIN""" ′SKA-TUREK J, et al. Brain functional reserve in the context of neuroplasticity after stroke[J]. Neural Plast, 2019, 2019: 9708905. DOI: 10.1155/2019/9708905.

      [78]KIM J, LEE J, LEE G, et al. Relationship between lower limb muscle activity and cortical activation among elderly people during walking: effects of fast speed and cognitive dual task[J]. Front Aging Neurosci, 2022, 14: 1059563. DOI: 10.3389/fnagi.2022.1059563.

      [79]BEURSKENS R, BOCK O. Does the walking task matter? Influence of different walking conditions on dual-task performances in young and older persons[J]. Hum Mov Sci, 2013, 32(6): 1456-1466. DOI: 10.1016/j.humov.2013.07.013.

      [80]WARD N S. Compensatory mechanisms in the aging motor system[J]. Ageing Res Rev, 2006, 5(3): 239-254. DOI: 10.1016/j.arr.2006.04.003.

      [81]TEO W P, RANTALAINEN T, NUZUM N, et al. Altered prefrontal cortex responses in older adults with subjective memory complaints and dementia during dual-task gait: an fNIRS study[J]. Eur J Neurosci, 2021, 53(4): 1324-1333. DOI: 10.1111/ejn.14989.

      [82]AL-YAHYA E, JOHANSEN-BERG H, KISCHKA U, et al. Prefrontal cortex activation while walking under dual-task conditions in stroke: a multimodal imaging study[J]. Neurorehabil Neural Repair, 2016, 30(6): 591-599. DOI: 10.1177/1545968315613864.

      [83]LIU Y C, YANG Y R, TSAI Y A, et al. Brain activation and gait alteration during cognitive and motor dual task walking in stroke-a functional near-infrared spectroscopy study[J]. IEEE Trans Neural Syst Rehabil Eng, 2018, 26(12): 2416-2423. DOI: 10.1109/TNSRE.2018.2878045.

      [84]HAWKINS K A, FOX E J, DALY J J, et al. Prefrontal over-activation during walking in people with mobility deficits: interpretation and functional implications[J]. Hum Mov Sci, 2018, 59: 46-55. DOI: 10.1016/j.humov.2018.03.010.

      [85]HERMAND E, TAPIE B, DUPUY O, et al. Prefrontal cortex activation during dual task with increasing cognitive load in subacute stroke patients: a pilot study[J]. Front Aging Neurosci, 2019, 11: 160. DOI: 10.3389/fnagi.2019.00160.

      [86]LIM S B, PETERS S, YANG C L, et al. Frontal, sensorimotor, and posterior parietal regions are involved in dual-task walking after stroke[J]. Front Neurol, 2022, 13: 904145. DOI: 10.3389/fneur.2022.904145.

      (責任編輯:高艷華)

      本文引用:向麗莎,張一.認知-運動雙任務訓練在腦卒中患者康復中的研究進展[J].醫(yī)學研究與教育,2024,41(3):817.DOI:10.3969/j.issn.1674490X.2024.03.002.

      第一作者:向麗莎(1999—),女,四川德陽人,在讀碩士,主要從事認知康復研究。E-mail: Xiangss@163.com

      通信作者:張一(1975—),男,江蘇常州人,主任醫(yī)師,博士,博士生導師,主要從事神經(jīng)康復與認知研究。E-mail: zhangyizhe1975@163.com

      猜你喜歡
      認知腦卒中運動
      不正經(jīng)運動范
      Coco薇(2017年9期)2017-09-07 20:39:29
      《紅樓夢》隱喻認知研究綜述
      人間(2016年26期)2016-11-03 16:01:13
      從社會認同淺談蕭峰之死
      農(nóng)戶安全農(nóng)產(chǎn)品生產(chǎn)意愿及其影響因素研究
      早期護理介入在腦卒中患者構音障礙訓練中的作用
      早期康復護理在腦卒中偏癱患者護理中的臨床效果
      腦卒中合并腦栓塞癥的預防及護理觀察
      良肢位擺放結合中藥熏敷降低腦卒中患者肌張力的療效觀察
      關注生成,激活學生認知
      古代都做什么運動
      赣州市| 广饶县| 武安市| 齐齐哈尔市| 台南市| 斗六市| 大宁县| 金坛市| 汤阴县| 平阴县| 剑河县| 都江堰市| 昌吉市| 华池县| 顺义区| 专栏| 民丰县| 武山县| 西乡县| 镇雄县| 辉南县| 安徽省| 隆化县| 图木舒克市| 甘孜| 康乐县| 祁连县| 东兴市| 建德市| 平和县| 肃南| 桂林市| 永川市| 大田县| 定西市| 普兰店市| 库尔勒市| 襄樊市| 呼图壁县| 怀安县| 丰都县|