• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      鈷錳共摻雜金屬有機(jī)框架催化過一硫酸鹽降解四環(huán)素的性能

      2024-09-24 00:00:00耿上帥王皓企梁飛王立君魏東閆濤閆良國
      中國粉體技術(shù) 2024年2期

      摘要: 【目的】制備高效固體催化劑,實(shí)現(xiàn)水中污染物四環(huán)素(tetracycline,TC)的高效降解?!痉椒ā坎捎萌軇岱ㄖ苽溻?、 錳共摻雜的金屬有機(jī)框架化合物MIL-88B(Co-Mn),并用于催化過一硫酸鹽去除水中TC,分別考察鈷、 錳不同物質(zhì)的量比對催化劑性能的影響,進(jìn)行實(shí)驗(yàn)條件優(yōu)化?!窘Y(jié)果】在催化劑Co(NO3)2·6H2O和Mn(NO3)2·4H2O的物質(zhì)的量比為3∶2,反應(yīng)體系pH為5,TC質(zhì)量濃度為10 mg/L,催化劑質(zhì)量濃度為20 mg/L,過一硫酸鹽濃度為2 mmol/L,反應(yīng)時(shí)間為60 min時(shí),TC去除率可達(dá)94%以上;所制備的MIL-88B(Co-Mn)催化劑具有良好的循環(huán)利用性,經(jīng)過4次循環(huán),TC去除率仍大于90%?!窘Y(jié)論】制備的MIL-88B(Co-Mn)是一種高效催化劑,在處理抗生素廢水的過程中證明是可行的,能有效催化過一硫酸鹽去除水中TC。

      關(guān)鍵詞: 溶劑熱法; 鈷錳共摻雜; 金屬有機(jī)框架; 過硫酸根; 四環(huán)素

      中圖分類號(hào): TB4; TQ324.8文獻(xiàn)標(biāo)志碼:A

      引用格式:

      耿上帥, 王皓企, 梁飛, 等. 鈷錳共摻雜金屬有機(jī)框架催化過一硫酸鹽降解四環(huán)素的性能[J]. 中國粉體技術(shù), 2024, 30(2): 113-122.

      GENG S S, WANG H Q, LIANG F, et al. Cobalt-manganese co-doped metal-organic framework compound activates peroxymonosulfate for tetracycline degradation[J]. China Powder Science and Technology, 2024, 30(2): 113-122.

      四環(huán)素(tetracycline,TC)廣泛應(yīng)用于畜牧業(yè)、 水產(chǎn)養(yǎng)殖業(yè)和醫(yī)藥行業(yè)[1]。因?yàn)殡y降解,易積累,所以殘留的TC進(jìn)入環(huán)境系統(tǒng)會(huì)嚴(yán)重威脅人類健康和生態(tài)環(huán)境安全[2]。當(dāng)前,國內(nèi)外對抗生素等環(huán)境新污染物高度關(guān)注,常規(guī)污水處理工藝不能有效去除新污染物,迫切需要開發(fā)新型、 高效、 低成本的新污染物深度處理劑及技術(shù)。

      過一硫酸鹽(peroxymonosulfate, PMS)中含有O—O鍵, 有較強(qiáng)的氧化能力, 在被光、 熱、 過渡金屬離子等激活后, O—O鍵發(fā)生斷裂, 生成SO-4·, 能夠氧化分解大部分有機(jī)污染物[3-4]。 與OH·相比, SO-4·壽命期限更長,適用pH范圍更寬,選擇性高,殘余SO-4·對環(huán)境微生物影響較小,基于SO-4·的高級氧化技術(shù)成為污水處理領(lǐng)域研究熱點(diǎn)[5-6]。采用過渡金屬催化PMS是產(chǎn)生SO-4·常見方式,但由于難以控制SO-4·產(chǎn)生速率,因此導(dǎo)致副反應(yīng)較多,從而降低了SO-4·有效利用率。另外過渡金屬離子溶出容易造成二次污染,將過渡金屬固定在催化劑上,可以有效克服上述缺點(diǎn)[7]。

      近年來,利用金屬有機(jī)骨架材料(metal organic framework material,MOFs)催化過一硫酸鹽引起了研究人員廣泛關(guān)注。例如Wang等[8]采用3類含氮豐富的MOFs材料制備了多種氮摻多孔碳材料,實(shí)驗(yàn)結(jié)果表明,摻氮的MOFs衍生碳材料對PMS催化能力優(yōu)于無氮多孔碳材料的,甚至比均相Co2+體系的還要好。Duan等[9]在MIL-101(Fe)材料中引入多金屬位點(diǎn),制備出銅、 鈷金屬離子共摻MIL-101(Fe)材料,用于催化過硫酸鹽,結(jié)果表明,多金屬位點(diǎn)的引入提高了催化劑表面電子轉(zhuǎn)換效率,大幅改善了對偶氮染料酸性橙7的去除效果。Liu等[10]通過溶劑熱法合成了氨基功能化的Fe-MOFs, 在反應(yīng)時(shí)間為40 min時(shí),雙酚F去除率為91%。Wang等[11]制備的MIL-88A具有孔體積大、 孔徑均勻、 熱穩(wěn)定性好等特點(diǎn),當(dāng)作為催化劑催化過硫酸鹽去除染料金橙G(OG)時(shí),對OG去除率高達(dá)96.4%。以上研究表明,通過對MOFs基材料進(jìn)行前修飾或后修飾制備的催化劑,具有多孔結(jié)構(gòu)、 活性位點(diǎn)多、 穩(wěn)定性良好等特點(diǎn),能夠作為一種高效的非均相催化劑用于催化反應(yīng)。

      本研究中以TC為目標(biāo)污染物,以MIL-88B(Co-Mn)為催化劑,以PMS為氧化劑,通過調(diào)控鈷、錳物質(zhì)的量比,催化劑、PMS摻量和反應(yīng)體系pH等條件,實(shí)現(xiàn)對水中TC的高效去除,為水中抗生素類污染物高效去除提供有效的解決方案。

      1 材料與方法

      1.1試劑材料和儀器設(shè)備

      試劑材料:TC(質(zhì)量分?jǐn)?shù)為98%)、 硝酸鈷、 硝酸錳、 對苯二甲酸(DMF)(質(zhì)量分?jǐn)?shù)均為99%)(上海麥克林生化科技有限公司); N,N-二甲基甲酰胺(DMF,質(zhì)量分?jǐn)?shù)為99.5%,國藥集團(tuán)化學(xué)試劑有限公司); 濃硫酸、 氫氧化鈉(質(zhì)量分?jǐn)?shù)均為99%,天津市大茂化學(xué)試劑廠); 甲醇(MeOH,質(zhì)量分?jǐn)?shù)為99%,天津市富宇精細(xì)化工有限公司)。

      儀器設(shè)備: 5415D型高速離心機(jī)(德國Eppendorf公司); Gemini 300型掃描電子顯微鏡(SEM,德國蔡司公司); AXS D8型X射線衍射儀(XRD,德國Bruker公司); Axis Supra型X-ray光電子能譜儀(XPS,日本島津公司); SARTORIUS AG型電子天平(德國賽多利斯公司); UV-9000s型紫外分光光度計(jì)(上海美泰儀器有限公司)。

      1.2 MIL-88B(Cox-Mn1-x)催化劑制備

      將總質(zhì)量為320 mg的Co(NO3)2·6H2O和Mn(NO3)2·4H2O按照物質(zhì)的量比分別為1∶0、 1∶1、 3∶1、 3∶2、 0∶1溶解在體積為20 mL、 質(zhì)量為160 mg的DMF溶液中, 磁力攪拌, 時(shí)間為30 min[12]。得到的淺紅色溶液轉(zhuǎn)移至體積為50 mL的反應(yīng)釜中,在溫度為160 ℃的馬弗爐中反應(yīng),時(shí)間為24 h,后冷卻至室溫,分別用DMF、 MeOH及去離子水清洗,得到磚紅色粉末狀產(chǎn)物,最后在溫度為60 ℃烘箱中,進(jìn)行干燥,時(shí)間為12 h。制備得到的催化劑分別標(biāo)記為MIL-88B(Co)、 MIL-88B(Co0.5-Mn0.5)、 MIL-88B(Co0.75-Mn0.25)、 MIL-88B(Co0.6-Mn0.4)、 MIL-88B(Mn)。

      采用XRD檢測催化材料內(nèi)部晶體結(jié)構(gòu),采用SEM分析表面形貌特征,采用XPS分析元素組成。

      1.3去除TC實(shí)驗(yàn)

      將質(zhì)量為5 mg催化劑添加到體積為100 mL、質(zhì)量濃度為10 mg/L的TC溶液中,置于溫度為25 ℃的水浴振蕩箱; 通過添加一定質(zhì)量PMS啟動(dòng)降解反應(yīng),在反應(yīng)時(shí)間分別為0、 10、 20、 30、 40、 50、 60 min時(shí)用注射器取出5 mL樣品,通過孔徑為0.45 μm的微孔膜過濾,加入一定量MeOH猝滅劑,采用紫外分光光度計(jì)在波長為357 nm時(shí)測量TC吸光度,計(jì)算TC去除率。

      2 結(jié)果與分析

      2.1MIL-88B(Co-Mn)性能表征

      2.1.1 XRD分析

      催化劑的XRD譜圖如圖1所示。 由圖可知, 催化劑的XRD特征峰尖銳且基線平穩(wěn), 在衍射角2θ為14°、 16°、 18°、 27°、 45°處附近都出現(xiàn)了明顯的特征衍射峰,與純相的MIL-88B主要特征峰一致。鈷、錳不同物質(zhì)的量比的MIL-88B(Cox-Mn1-x)衍射圖譜相似, 僅觀察到細(xì)微差異, 表明鈷、 錳不同物質(zhì)的量比對MIL-88B結(jié)構(gòu)的影響可忽略不計(jì)。 相對于模擬值, MIL-88B(Co0.6-Mn0.4)在衍射角2θ為10°~13°處的特征峰強(qiáng)度弱, 主要是因?yàn)镃o或Mn的界面吸附了客體分子, 進(jìn)而影響配體與金屬的構(gòu)效關(guān)系。 MIL-88B(Cox-Mn1-x)特征峰與MIL-88B的XRD譜圖特征峰位置一致, 表明催化劑制備成功。

      2.1.2 SEM分析

      催化劑的SEM圖像如圖2所示。 由圖可知, MIL-88B(Cox-Mn1-x)材料明顯呈現(xiàn)出較為均一、 輪廓分明的三維蜂巢狀結(jié)構(gòu)。 MIL-88B(Co)直徑約為12 μm, 呈分級花狀結(jié)構(gòu)。 MIL-88B(Mn)直徑約為25 μm, 表面較粗糙, 有顆粒感。 MIL-88B(Co0.6-Mn0.4)直徑約為16 μm,表面凹凸有致,呈不規(guī)則形狀。隨著MIL-88B(Cox-Mn1-x)中錳摻量增加,催化劑直徑逐漸增大,催化劑表面邊緣銳度逐漸下降。圖2(d)呈現(xiàn)了Co、 Mn、 C、 O元素在MIL-88B(Co0.6-Mn0.4)材料中的分布,表明金屬與碳氧元素具有均勻分布的特征。

      2.1.3 XPS分析

      為了確定催化劑的元素價(jià)態(tài)和表面元素組成, 采用XPS對催化劑組成進(jìn)行研究, 催化劑的XPS譜圖如圖3所示。由圖可知,該圖分析了MIL-88B(Co0.6-Mn0.4)中的元素形態(tài), 在圖3(a)的全譜圖中檢測到Co、 Mn、 C、 O等元素。 MIL-88B(Co0.6-Mn0.4)材料中觀察到不同價(jià)態(tài)Co、 Mn元素, 進(jìn)一步對Mn 2p、 Co 2p的XPS譜圖進(jìn)行分析, 由圖3(b)可知, Mn 2p譜峰可被分解為2個(gè)Mn2+的自旋軌道峰峰值分別位于結(jié)合能為640.88、 652.38 eV處, Mn3+的自旋軌道峰峰值分別位于結(jié)合能為640.88、 652.38 eV處[13]。從圖3(c)可以看出,Co 2p的譜峰可被分解為2個(gè)Co2+的自旋軌道峰,峰值分別位于結(jié)合能為780.58、 796.78 eV處,Co3+的自旋軌道峰,峰值分別位于結(jié)合能為781.98、 797.58 eV處[14]。同時(shí), 可在結(jié)合能為787.28、 803.58eV處觀測到2個(gè)衛(wèi)星峰, 證實(shí)了Co2+與Co3+的存在[15]。 以上結(jié)果表明, MIL-88B(Co0.6-Mn0.4)催化劑中Co、 Mn元素主要以Co2+、 Co3+、 Mn2+、Mn3+的形式存在, 通過MIL-88B中引入Co、 Mn雙金屬活性位點(diǎn), 可進(jìn)一步提升催化PMS過程的電子轉(zhuǎn)移效率, 從而促進(jìn)SO-4·生成, 提高催化劑對污染物的去除性能。

      2.2MIL-88B(Cox-Mn1-x)催化PMS去除TC性能及條件優(yōu)化

      為了更好地解釋MIL-88B(Co0.6-Mn0.4)催化PMS的降解機(jī)制,在不同條件下對TC去除率進(jìn)行測定,不同體系對TC去除效果的影響如圖4所示。由圖4(a)可知,當(dāng)只有PMS存在時(shí),體系對TC的去除率僅為7.7%,表明PMS對TC去除的氧化作用較弱。在僅有MIL-88B(Co0.6-Mn0.4)存在下,體系中TC去除率僅為5.7%,表明MIL-88B(Co0.6-Mn0.4)對TC吸附作用較弱,可以忽略吸附作用對TC去除的影響。在MIL-88B(Cox-Mn1-x)和PMS共存條件下,TC去除率大幅提高,反應(yīng)60 min后,MIL-88B(Co)-PMS體系中TC去除率為90.5%,MIL-88B(Co0.75-Mn0.25)-PMS體系中TC去除率達(dá)到87.5%,MIL-88B(Co0.6-Mn0.4)-PMS體系中TC去除率達(dá)到91.2%,MIL-88B(Co0.5-Mn0.5)-PMS體系中TC去除率為83.7%,MIL-88B(Mn)-PMS體系中TC去除率為80.5%。上述結(jié)果表明,金屬鈷作為活性中心是催化主體,隨著催化劑中替代金屬錳摻量的增加,強(qiáng)活性點(diǎn)位逐漸減少,導(dǎo)致催化PMS的性能逐漸減弱,但MIL-88B(Co0.6-Mn0.4)-PMS體系表現(xiàn)出了優(yōu)異的催化性能,反應(yīng)時(shí)間60 min后,TC去除率高達(dá)91.2%,表明適當(dāng)?shù)拟挕㈠i物質(zhì)的量比可促進(jìn)金屬有機(jī)框架材料的雙金屬協(xié)同作用[16-17]。

      圖4(b)顯示了不同體系下表觀速率常數(shù)kobs值,MIL-88B(Co)的kobs值為0.039 2 min-1,MIL-88B(Co0.75-Mn0.25)的kobs值為0.034 7 min-1,MIL-88B(Co0.6-Mn0.4)的kobs值為0.040 5 min-1,MIL-88B(Co0.5-Mn0.5)的kobs值為0.030 2 min-1,MIL-88B(Mn)的kobs值為0.027 3min-1。MIL-88B(Co0.6-Mn0.4)的kobs值最大,比MIL-88B(Co)的增大3.3%,比MIL-88B(Co0.75-Mn0.25)的增大16.7%,比MIL-88B(Co0.5-Mn0.5)的增大34.1%,比MIL-88B(Mn)的增大48.4%,充分體現(xiàn)了MIL-88B(Co0.6-Mn0.4)-PMS體系優(yōu)異的催化性能。

      考察MIL-88B(Co0.6-Mn0.4)催化PMS去除TC的性能影響因素, 包括MIL-88B(Co0.6-Mn0.4)質(zhì)量濃度、 PMS濃度及pH, 不同因素對TC去除效果的影響如圖5所示。 由圖5(a)、 (b)可知, MIL-88B(Co0.6-Mn0.4)質(zhì)量濃度從10 mg/L提高至50 mg/L時(shí), TC去除率從79.2%增加到92.1%, 表觀速率常數(shù)kobs從0.026 2 min-1提升到0.042 3 min-1, 表明增加MIL-88B(Co0.6-Mn0.4)催化劑質(zhì)量濃度能顯著提升TC的去除率。 由圖6(a)可知, 當(dāng)MIL-88B(Co0.6-Mn0.4)質(zhì)量濃度從50 mg/L增加到100 mg/L時(shí), TC去除率和kobs值均大幅減少, 這可能是過高質(zhì)量濃度催化劑易發(fā)生自團(tuán)聚所致[18], 同時(shí)使產(chǎn)生的SO-4·被吸附固定在催化劑表面。 基于以上結(jié)果, 催化劑最佳質(zhì)量濃度選取為20 mg/L。

      由圖5(c)、 (d)可知,PMS濃度從0.1 mmol/L逐步增加至2.0 mmol/L時(shí), TC去除率從78.7%增加到94.8%, kobs值從0.025 8 min-1提升到0.049 3 min-1,表明增加PMS濃度能顯著提升TC去除率,但PMS濃度從2.0 mmol/L逐步提高至4.0 mmol/L后,TC去除率及kobs值反而略微減少,這可能是PMS濃度增加導(dǎo)致過量活性自由基SO-4·發(fā)生自猝滅所致[19-20]。基于成本和效率考慮,PMS最佳投加濃度為2.0 mmol/L。

      由圖5(e)、 (f)可知,pH從3增大至9時(shí),TC去除率均在80%以上,表明MIL-88B(Co0.6-Mn0.4)在相當(dāng)寬泛的酸堿度條件下對TC均有較好去除效果。當(dāng)pH從3增大至5時(shí),TC去除率從84.6%增大到94.8%,kobs值從0.035 2 min-1增大到0.049 3 min-1,pH從5增大至7時(shí),TC去除率和kobs值均略微減少,當(dāng)pH增大至9時(shí),TC去除率減少至86.2%,kobs值減少至0.033 0 min-1。TC去除效率在弱酸性條件下達(dá)到最高,其次是在中性條件下,在強(qiáng)酸或者堿性條件去除效果較差,原因是在強(qiáng)酸性條件下TC分子呈質(zhì)子化形態(tài)(TCH3+)[21],MIL-88B(Co0.6-Mn0.4)表面呈帶正電狀態(tài),TC分子和MIL-88B(Co0.6-Mn0.4)接觸會(huì)產(chǎn)生靜電排斥效應(yīng);在堿性條件下,OH-會(huì)導(dǎo)致PMS自分解為O2和SO2-4,使反應(yīng)體系產(chǎn)生配合物氫氧化鈷等[22],導(dǎo)致TC去除效果降低。綜合考量,最佳pH為5。

      2.3自由基猝滅實(shí)驗(yàn)

      向體系中分別加入猝滅劑叔丁醇(TBA)、 糠醇(FFA)、 對苯醌(PBQ)、 MeOH來確定活性物種類型。 MeOH對OH·與SO-4·均有良好的淬滅作用, TBA對OH·具有很好的淬滅作用。 PBQ是典型的SO-4·猝滅劑,F(xiàn)FA是1O2猝滅劑。催化體系中活性物種猝滅劑對TC去除的影響如圖6所示。由圖可知,反應(yīng)體系加入TBA后,TC去除率為91.6%,表明OH·對TC去除的作用影響較小。反應(yīng)體系加入FFA后,TC去除率為68.1%,說明體系中存在活性物種1O2。反應(yīng)體系加入PBQ后,TC去除率減少為88.7%,表明O-2·對TC去除作用影響較小。反應(yīng)體系加入MeOH后,TC去除率減少為49.8%,與對照條件下去除率(94.8%)相比大幅減少,充分表明,SO-4·是反應(yīng)體系主要的活性物種。MeOH、 FFA的加入對TC去除作用均產(chǎn)生了抑制,從反應(yīng)速率上來看,MeOH的抑制作用強(qiáng)于FFA的。以上結(jié)果表明,SO-4·、 1O2是TC去除的主要活性物種。

      催化體系去除TC機(jī)制分析如圖7所示。由圖可知,MIL-88B(Co0.6-Mn0.4)-PMS體系實(shí)現(xiàn)TC高效去除主要是自由基SO-4·和非自由基1O2作用。通過金屬有機(jī)框架材料的雙金屬協(xié)同作用,進(jìn)一步增強(qiáng)了催化劑表面電子轉(zhuǎn)化效率,促進(jìn)SO-4·和1O2等產(chǎn)生,是該體系高效去除水中TC的關(guān)鍵。化學(xué)反應(yīng)式如下:

      Co2++HSO-5→Co3++SO-4·+OH- ,(1)

      Mn2++HSO-5→Mn3++SO-4·+OH- ,(2)

      HSO-5+SO2-5→HSO-4+SO2-4+1O2 ,(3)

      Co3++HSO-5→Co2++SO-5·+H+ ,(4)

      Mn3++HSO-5→Mn2++SO-5·+H+ ,(5)

      Co3++Mn2+→Co2++Mn3+ 。(6)

      2.4催化劑循環(huán)穩(wěn)定性

      為了科學(xué)評估MIL-88B(Co0.6-Mn0.4)可循環(huán)利用性,進(jìn)行4次循環(huán)使用實(shí)驗(yàn),催化劑循環(huán)使用效果圖如圖8所示。由圖可知,隨著使用次數(shù)增加,TC去除率分別達(dá)到了94.8%、 93.5%、 92.1%、 90.6%,TC去除率逐漸降低,但去除率降幅很小,在第4次循環(huán)使用時(shí)TC去除率率仍可達(dá)90%以上,表明MIL-88B(Co0.6-Mn0.4)具有較好的穩(wěn)定性。

      3 結(jié)論

      制備鈷、 錳共摻雜有機(jī)金屬框架固體粉狀材料MIL-88B(Co0.6-Mn0.4),作為PMS高效催化劑,成功實(shí)現(xiàn)了水中TC高效去除,并確定了影響因素的最優(yōu)參數(shù)。在MIL-88B(Co0.6-Mn0.4)質(zhì)量濃度為20 mg/L、 PMS濃度為2 mmol/L、 pH為5,反應(yīng)時(shí)間為60 min時(shí),對TC去除率可達(dá)94.8%。MIL-88B(Co0.6-Mn0.4)-PMS體系去除TC是以SO-4·和1O2為主要活性物種。循環(huán)使用4次后,TC的去除率仍可達(dá)90.6%,相較于初次使用去除率減少4.2%,證明MIL-88B(Co0.6-Mn0.4)是一種可重復(fù)利用的高效新型催化劑,更是一種處理實(shí)際抗生素廢水的可行技術(shù),具有廣闊的市場應(yīng)用前景。

      利益沖突聲明(Conflict of Interests)

      所有作者聲明不存在利益沖突。

      All authors disclose no relevant conflict of interests.

      作者貢獻(xiàn)(Author’s Contributions)

      耿上帥和閆濤參與了實(shí)驗(yàn)設(shè)計(jì),王皓企、 梁飛、 王立君、 魏東、 閆良國參與了論文的寫作和修改。所有作者均閱讀并同意了最終稿件的提交。

      The study was designed by GEN Shangshuai and YAN Tao. The manuscript was drafted and revised by WANG Haoqi, LIANG Fei, WANG Lijun, WEI Don and YAN Liangguo. All authors have read the last version of paper and consented for submission.

      參考文獻(xiàn)(References)

      [1]ZHOU D, CAI Y P, YANG Z F, et al. Interplay of compound pollutants with microplastics transported in saturated porous media: effect of co-existing graphene oxide and tetracycline[J]. Journal of Contaminant Hydrology, 2023, 259: 104255.

      [2]SHEVELEVA S A, KHOTIMCHENKO S A, MINAEVA L P, et al. Minor antibiotics residues in food: what are the risks for consumers?[J]. Voprosy Pitaniia, 2021, 90(3): 50-57.

      [3]朱睿, 譚燁, 李春全, 等. 基于過渡金屬活化的過硫酸鹽高級氧化技術(shù)研究進(jìn)展[J]. 化工礦物與加工, 2022, 51(1): 49-55.

      ZHU R, TAN Y, LI C Q, et al. Research progress of advanced persulfate oxidation technology based on activation by transition metals[J]. Industrial Minerals amp; Processing, 2022, 51(1): 49-55.

      [4]HE H N, ZHAO J F. The efficient degradation of diclofenac by ferrate and peroxymonosulfate: performances, mechanisms, and toxicity assessment[J]. Environmental Science and Pollution Research International, 2022, 30(5): 11959-11977.

      [5]GAO Y X, GAO W R, ZHU H N, et al. A review on n-doped biochar for oxidative degradation of organic contaminants in wastewater by persulfate activation[J]. International Journal of Environmental Research and Public Health, 2022, 19(22): 14805.

      [6]ZHAO C K, ZHONG S, LI C Y, et al. Property and mechanism of phenol degradation by biochar activated persulfate[J]. Journal of Materials Research and Technology, 2020, 9(1): 601-609.

      [7]HUANG Y X, LIN H, ZHANG Y H. Synthesis of MIL-101(Fe)-SiO2 composites with improved catalytic activity for reduction of nitroaromatic compounds[J]. Journal of Solid State Chemistry, 2020, 283: 121150.

      [8]WANG G L, CHEN S, QUAN X, et al. Enhanced activation of peroxymonosulfate by nitrogen doped porous carbon for effective removal of organic pollutants[J]. Carbon, 2017, 115: 730-739.

      [9]DUAN M J, GUAN Z Y, MA Y W, et al. A novel catalyst of MIL-101(Fe) doped with Co and Cu as persulfate activator: synthesis,characterization, and catalytic performance[J]. Chemical Papers, 2018, 72(1): 235-250.

      [10]LIU Z, SU R D, SUN X, et al. The obvious advantage of amino-functionalized metal-organic frameworks: as a persulfate activator for bisphenol F degradation[J]. Science of the Total Environment, 2020, 741: 140464.

      [11]WANG J, WAN J, MA Y, et al. Metal-organic frameworks MIL-88A with suitable synthesis conditions and optimal dosage for effective catalytic degradation of orange G through persulfate activation[J]. RSC Advances, 2016, 6(113): 112502-112511.

      [12]ZHANG R Z, YU Z B, JIANG R H, et al. Dual synergistic effect of S-doped carbon bridged semi crystalline MILN-based Co3S4-MnS2 nanostructure in electrocatalytic overall water splitting[J]. Electrochimica Acta, 2021, 366: 137438.

      [13]YAO L L, YANG W X, LIU H L, et al. Synthesis and ORR electrocatalytic activity of mixed Mn-Co oxides derived from divalent metal-based MIL-53 analogues[J]. Dalton Transactions, 2017, 46(44): 15512-15519.

      [14]ZHOU J J, JI W X, XU L, et al. Controllable transformation of CoNi-MOF-74 on Ni foam into hierarchical-porous Co(OH)2-Ni(OH)2 micro-rods with ultra-high specific surface area for energy storage[J]. Chemical Engineering Journal, 2022, 428: 132123.

      [15]SEAL N, KARTHICK K, SINGH M, et al. Mixed-ligand-devised anionic MOF with divergent open Co(II)-nodes as chemo-resistant, bi-functional material for electrochemical water oxidation and mild-condition tandem CO2 fixation[J]. Chemical Engineering Journal, 2022, 429: 132301.

      [16]ZHAO Y, LI B, LI Y, et al. Synergistic activation of peroxymonosulfate between Co and MnO for bisphenol A degradation with enhanced activity and stability[J]. Journal of Colloid and Interface Science, 2022, 623: 775-786.

      [17]LI J, HUANG H L, XUE W J, et al. Self-adaptive dual-metal-site pairs in metal-organic frameworks for selective CO2 photoreduction to CH4[J]. Nature Catalysis, 2021, 4(8): 719-729.

      [18]HOU C, CHEN W Q, FU L H, et al. Facile synthesis of a Co-Fe bi-MOFs-CNF membrane nanocomposite and its application in the degradation of tetrabromobisphenol A[J]. Carbohydrate Polymers, 2020, 247: 116731.

      [19]LONG X H, SHI H L, HUANG R F, et al. Identifying the evolution of primary oxidation mechanisms and pollutant degradation routes in the electro-cocatalytic Fenton-like systems[J]. Journal of Hazardous Materials, 2023, 445: 130577.

      [20]BAI J, LI Y H, SONG B W, et al. Activation of peroxymonosulfate by modified coagulation sludge for bisphenol A degradation[J]. Environmental Science and Pollution Research International, 2022, 29(52): 78832-78847.

      [21]JIANG X, GUO Y H, ZHANG L B, et al. Catalytic degradation of tetracycline hydrochloride by persulfate activated with nano FeO immobilized mesoporous carbon[J]. Chemical Engineering Journal, 2018, 341: 392-401.

      [22]SU S N, GUO W L, LENG Y Q, et al. Heterogeneous activation of oxone by CoxFe3-xO4 nanocatalysts for degradation of rhodamine B[J]. Journal of Hazardous Materials. 2013, 244: 736-742.

      Preparation of cobalt-manganese co-doped metal-organic

      framework compound MIL-88B (Co-Mn) for activating

      peroxymonosulfate to degrade tetracycline

      GEN Shangshuai1,2, WANG Haoqi1, LIANG Fei3, WANG Lijun4,5, WEI Dong1, YAN Tao1, YAN Liangguo1

      (1. School of Water Resources and Environment, University of Jinan, Jinan 250022, China; 2. Shandong Nuclear and Radiation Safety

      Monitoring Center, Jinan 250117, China; 3. Shandong Water Investment Co., LTD., Jinan 250101, China; 4. Shandong Mechanical Design

      and Research Institute, Jinan 250031, China; 5. College of Mechanical Engineering, Shandong University of Technology, Jinan 250031, China)

      Abstract

      Objective Due to the complex molecular structure of antibiotics, their recalcitrance to degradation poses a significantenvironmental threat, harmful to human life and safety. More seriously, this accumulation also has a crucial impact on human survival and the sustainable development of the ecological environment. Advanced oxidation technology based on sulfate radical has been used as an effective treatment option for the removal of antibiotics. In recent years, the use of metal-organic frameworks (MOFs) to catalyze peroxymonosulfate has attracted extensive attention from researchers. Importantly, the catalyst prepared by pre-modification or post-modification of MOFs-based material exhibit key features, includinga porous structure, multiple active sites and good stability. Therefore, a high-efficiency solid catalyst, Co-Mn co-doped metal-organic framework compounds, is studied in this paper for the efficient degradation of TC in water.

      Methods In this paper, Co-doped metal-organic framework compound (MIL-88B(Co-Mn)) is prepared by solvothermal method. Firstly, Co(NO3)26H2O and Mn(NO3)24H2O with a total mass of 320 mg were dissolved in the DMF solution containing terephthalic acid according to different molar ratios and the mixture was stirred for 30 minutes; Then, the resultant light red solution was reacted in a muffle furnace at 160 ℃ for 24 h. After cooling down, the obtained product was washed three times with DMF, methanol and deionized water respectively and dried in an oven at 60 ℃ for 12 h. Finally, catalysts with different molar ratios of cobalt and manganese were synthesized.

      Results and Discussion X-ray diffraction (XRD) pattern of MIL-88B(Cox-Mn1-x) shows the similar diffraction mode with that of MIL-88B, in which distinct characteristic peaks appear at around 14°, 16°, 18°, 27° and 45° respectively. Moreover, the characteristic peaks of MIL-88B(Cox-Mn1-x) with different composite proportions are consistent with those of MIL-88B XRD pattern, indicating that the catalysts are successfully prepared. The micro-morphology and element distribution of the samples are revealed by scanning electron microscopy. MIL-88B(Cox-Mn1-x) materials all exhibit a relatively uniform and well-defined three-dimensional honeycomb structure. Meanwhile, element mapping images prove the distribution of Co, Mn, C and O elements in MIL-88B(Co0.6-Mn0.4) material, which further indicates the presence of cobalt-manganese metal and carbon oxygen elements in the catalyst. To determine the valence state and surface element composition of the catalysts, the composition of MIL-88B(Co0.6-Mn0.4) is studied by X-ray photoelectron spectroscopy (XPS). Elements such as Co, Mn, C, and O are detected in the full spectrum of MIL-88B(Co0.6-Mn0.4). In addition, the XPS spectra of Mn 2p and Co 2p are analyzed, confirming that in the MIL-88B(Co0.6-Mn0.4) catalyst, Co and Mn elements mainly exist in the form of Co2+, Co3+, Mn2+ and Mn3+. The introduction of Co and Mn bimetallic active sites in MIL-88B can further improve the electron transfer efficiency of the catalytic PMS process, thereby promotes the formation of SO·-4, ultimately improving the removal performance of pollutants. The catalytic performance of the catalyst is appraised through TC elimination over MIL-88B(Co0.6-Mn0.4) in the presence of PMS. Apparently, the prepared MIL-88B(Co0.6-Mn0.4) catalyst in the experiment exhibits excellent catalytic performance. After the reaction, the degradation rate of TC in the MIL-88B (Co0.6-Mn0.4)-PMS systems reaches 91.2%. Furthermore, the effect of different molar ratio cobalt-manganese doping amount on the performance of the catalyst is investigated, and the experimental conditions are optimized. The results shows that when the molar ratio of Co(NO3)2·6H2O and Mn(NO3)2·4H2O is 3∶2, pH=5, the TC mass concentration is 10 mg·L-1, the catalyst mass concentration is 20 mg·L-1, and the molar mass of peroxymonosulfate is 2 mmol·L-1, the removal rate of TC can reach more than 94%. Meanwhile, the stability of the catalyst is evaluated through cycling experiments. After the fourth cycle, the MIL-88B(Co-Mn) catalyst maintains approximately 90% of its original catalytic performance, indicating the favorable durability of MIL-88B(Co-Mn).

      Conclusion In this study, a cobalt-manganese co-doped metal-organic framework compound MIL-88B(Co0.6-Mn0.4) is prepared by the solvothermal method. And it is used to remarkably catalyze the removal of tetracycline from water by peroxymonosulfate. The reason is that the appropriate ratio of cobalt-manganese atoms to metals can significantly enhance the bimetallic synergy of metal-organic framework materials, thereby improving the ability of catalysts to activate peroxymonosulfate. Based on cycling experiments, the removal rate of TC can still reach 90.6%, which proves that MIL-88B (Co0.6-Mn0.4) is a new catalyst with high efficiency and reusability. This work also directs a feasible technology for treating actual antibiotic wastewater, and effectively removing TC from water by catalyzing peroxymonosulfate.

      Keywords: solvothermal method; cobalt manganese co-doping; metal-organic framework; peroxymonosulfate radical; tetracycline

      (責(zé)任編輯:武秀娟)

      收稿日期: 2023-11-09,修回日期:2023-12-26,上線日期:2024-01-18。

      基金項(xiàng)目:國家自然科學(xué)基金項(xiàng)目,編號(hào):52270071;山東省自然科學(xué)基金項(xiàng)目,編號(hào):ZR2020MB091。

      第一作者簡介:耿上帥(1993—),男,碩士生,研究方向?yàn)榻饘儆袡C(jī)框架材料催化過一硫酸鹽降解水中污染物。E-mail: 1055389780@qq.com。

      通信作者簡介:閆濤(1980—),男,副教授,博士,碩士生導(dǎo)師,研究方向?yàn)榄h(huán)境功能材料。E-mail: yantujn@163.com。

      南昌市| 咸丰县| 汉中市| 曲松县| 博乐市| 河东区| 北宁市| 保德县| 沙河市| 皮山县| 洛浦县| 扬中市| 绥芬河市| 盈江县| 上栗县| 达州市| 凤冈县| 大化| 班玛县| 苗栗县| 沧州市| 灵璧县| 清水河县| 眉山市| 景洪市| 宜阳县| 通渭县| 静乐县| 宁陕县| 南开区| 淅川县| 常德市| 巩义市| 通许县| 汝州市| 湘西| 西盟| 昭通市| 布拖县| 仙游县| 吴旗县|