• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      鎂橄欖石對(duì)油井水泥抗CO2腐蝕性能的影響

      2024-09-24 00:00:00鄭怡杰龔鵬鄧卓然何鑫張春梅梅開(kāi)元程小偉
      中國(guó)粉體技術(shù) 2024年2期
      關(guān)鍵詞:腐蝕

      摘要: 【目的】 研究鎂橄欖石摻加對(duì)減輕超臨界CO 2 環(huán)境下油井水泥石的腐蝕滲透性能?!痉椒ā?以鎂橄欖石粉為外摻料配制不同的油井水泥,分析溫度為150 ℃,CO 2 總壓為50 MPa條件下鎂橄欖石水泥石的抗壓強(qiáng)度,優(yōu)選出鎂橄欖石粉的最佳摻量;利用滲透率、熱重分析(thermo gravimetric analysis,TGA)、X 射線衍射(X-Ray diffraction,XRD)和掃描電子顯微鏡(scanning electron microscope,SEM)進(jìn)行測(cè)試,評(píng)價(jià)鎂橄欖石對(duì)油井水泥石抗CO 2 腐蝕性能的影響,分析鎂橄欖石對(duì)油井水泥石抗CO 2 腐蝕的作用機(jī)制?!窘Y(jié)果】 鎂橄欖石粉的摻入不會(huì)影響油井水泥的流動(dòng)度,當(dāng)鎂橄欖石粉的質(zhì)量分?jǐn)?shù)為2%時(shí),對(duì)比腐蝕前油井水泥石的,抗壓強(qiáng)度提高35. 47%,滲透率降低0. 010 4 mD;腐蝕28 d后,鎂橄欖石水泥石的抗壓強(qiáng)度為空白水泥石的193. 71%,且仍高于腐蝕前?!窘Y(jié)論】 鎂橄欖石是一種抗CO 2 腐蝕外加劑,能提升油井水泥的抗CO 2 腐蝕性能。

      關(guān)鍵詞: 鎂橄欖石; 超臨界二氧化碳; 腐蝕; 油井水泥石

      中圖分類號(hào):TE256;TB4;TQ324.8 "文獻(xiàn)標(biāo)志碼:A

      引用格式:

      鄭怡杰, 龔鵬, 鄧卓然, 等. 鎂橄欖石對(duì)油井水泥抗CO 2 腐蝕性能的影響[J]. 中國(guó)粉體技術(shù), 2024, 30(2): 151-163.

      ZHENG Y J, GONG P, DENG Z R, et al. Effect of magnesium olivine on CO 2 corrosion resistance of oil well cement [J]. China

      Powder Science and Technology, 2024, 30(2): 151?163.

      面對(duì)愈演愈烈的氣候變化問(wèn)題,中國(guó)積極地提出碳中和碳達(dá)峰的“雙碳”目標(biāo)任務(wù)[1-3] ,其中CO2 的捕集、利用與封存(carbon capture, utilization and storage,CCUS)技術(shù)已成為不可或缺的減排關(guān)鍵技術(shù),尤其是在石油與天然氣行業(yè),因?yàn)榫奂疌O 2 和油氣所需的條件有相似性,所以大多數(shù)CCUS項(xiàng)目都將油氣田作為CO 2 氣體回注的首要選擇,以實(shí)現(xiàn)CO 2 的長(zhǎng)期安全封存[4-7] 。隨著科學(xué)技術(shù)的進(jìn)步,利用回注的CO 2 驅(qū)油提高油氣采收率(carbon capture, utilization and storage-enhanced oil-gas recovery,CCUS-EOR-EGR)也已逐步大規(guī)模應(yīng)用[8-10] 。CCUS 井內(nèi)的二氧化碳常常是以超臨界狀態(tài)(臨界點(diǎn)溫度對(duì)應(yīng)于31.26 ℃,壓強(qiáng)對(duì)應(yīng)于7.39 MPa)存在[11-12] ,意味著油井水泥面臨的應(yīng)用環(huán)境更加苛刻和極限,所以對(duì)于油井水泥的抗CO 2 腐蝕性能提出了更高要求。

      姚曉等[13] 從熱力學(xué)角度出發(fā),對(duì)水泥石的水化產(chǎn)物受CO2 侵蝕的熱力學(xué)條件進(jìn)行了計(jì)算,根據(jù)熱力學(xué)計(jì)算結(jié)果發(fā)現(xiàn),CO 2 對(duì)水泥石的水化產(chǎn)物和腐蝕程度有所區(qū)別,Ca(OH)2 和AFt (3CaO·Al 2 O 3 ·3CaSO 4 ·32H 2 O)是較容易被腐蝕的水化產(chǎn)物。劉思楠等[14] 通過(guò)微計(jì)算機(jī)斷層掃描(micro computed tomography,micro-CT)等測(cè)試手段研究了普通硅酸鹽水泥和G級(jí)油井水泥樣品與不同濃度的CO 2 進(jìn)行反應(yīng),發(fā)現(xiàn)G級(jí)油井水泥抗CO 2 腐蝕性能優(yōu)于普通硅酸鹽水泥,而且油井水泥的碳化反應(yīng)主要是鈣基水泥水化物轉(zhuǎn)化為方解石,Wooyong等[15] 和Miao等 [16] 通過(guò)X射線CT(X-ray computed tomography,XCT)測(cè)試長(zhǎng)時(shí)間腐蝕后的油井水泥也得出了相同的實(shí)驗(yàn)結(jié)果。Kutchko等[17] 總結(jié)發(fā)現(xiàn),CO2 對(duì)油井水泥石的腐蝕本質(zhì)上是一系列化學(xué)反應(yīng)的結(jié)果,依次為CO 2 的水解、碳化過(guò)程和淋濾脫鈣過(guò)程。在淋濾脫鈣作用結(jié)束后,水泥石中只留下不具有膠結(jié)能力的無(wú)定型二氧化硅,使得油井水泥石的孔隙度和滲透率提高,強(qiáng)度降低,嚴(yán)重影響水泥石的服役壽命。

      為了減緩 CO 2 對(duì)水泥石的侵蝕,人們對(duì)如粉煤灰、硅灰和礦渣微粉等火山灰材料開(kāi)展了廣泛研究[18] 。Ledesma等 [19] 對(duì)添加火山灰的G級(jí)油井水泥在CO2 飽和環(huán)境下的性能進(jìn)行了研究評(píng)價(jià),發(fā)現(xiàn)添加質(zhì)量分?jǐn)?shù)分別為5%和10%的分布均勻的火山灰顆粒能減少碳化深度,并且在腐蝕14 d后水泥石的抗壓強(qiáng)度并沒(méi)有發(fā)生損失。Barbara等[20] 研究發(fā)現(xiàn)采用F型火山灰作為H型水泥的添加劑,推斷將不同比例的火山灰-水泥混合物暴露于超臨界CO 2 飽和溶液中反應(yīng)30 a后,水泥仍相對(duì)不滲透。還有一些納米顆粒材料如納米SiO 2 、納米CaCO 3 等,基于納米材料自身大比表面積的特性[21-23] ,能加速水化過(guò)程,從而生成更致密的水泥石基質(zhì),提高水泥石的耐腐蝕性。Yeon等[24] 研究發(fā)現(xiàn)在水泥中加入納米SiO2 ,可使水泥基體更加致密,提高耐CO 2 腐蝕的性能,而且,納米SiO 2 有利于確保水泥的可加工性和初始強(qiáng)度。Palilu等[25] 發(fā)現(xiàn)摻入質(zhì)量分?jǐn)?shù)為0.5%的納米玻璃片和質(zhì)量分?jǐn)?shù)為0.05%的多壁碳納米管的水泥石樣品具有最佳的耐CO 2 的腐蝕性能,可以顯著抵抗碳酸化作用并防止在CO 2 存在時(shí)發(fā)生嚴(yán)重的化學(xué)反應(yīng)。

      綜上,提高水泥石的致密性能夠有效地防止水泥受到CO 2 腐蝕而發(fā)生破壞,而鎂橄欖石作為一種天然的硅酸鹽礦物,來(lái)源豐富,成本低廉,摻入建筑水泥后,不僅有可能增加建筑材料封存CO 2 的數(shù)量,還能提升其物理性能,展現(xiàn)出了巨大的應(yīng)用潛力,在建筑水泥領(lǐng)域已有許多研究[26-30] 。主要成分為鎂橄欖石的玄武巖,作為油井水泥的增韌材料在油井水泥領(lǐng)域已有大量研究[31-32] ,但現(xiàn)階段關(guān)于鎂橄欖石增強(qiáng)油井水泥抗CO 2 腐蝕性能的研究很少,如果利用鎂橄欖石吸收CO 2 的特性在腐蝕過(guò)程中用于促進(jìn)生成致密的碳酸鈣填充于微裂紋和微縫隙,就有可能提高CCUS井油井水泥石的抗CO 2 腐蝕性能。本文中基于CCUS井的特殊環(huán)境,對(duì)油井水泥石開(kāi)展超臨界CO 2 飽和水溶液下的腐蝕實(shí)驗(yàn),通過(guò)抗壓強(qiáng)度、滲透率、X射線衍射儀(X-ray diffraction,XRD)、熱重分析(thermogravimetry analysis,TGA)和掃描電子顯微鏡(scanning electron microscope,SEM)測(cè)試,研究鎂橄欖石的最佳摻量和抗腐蝕微觀機(jī)制。

      1 材料與方法

      1.1 主要材料與儀器設(shè)備

      材料:水泥(四川嘉華特種水泥公司生產(chǎn)G級(jí)油井水泥),鎂橄欖石(鄭州東澤鑄造材料有限公司),油井水泥和鎂橄欖石的主要化學(xué)成分和礦物組成見(jiàn)表1、2,減水劑和分散劑(河南衛(wèi)輝市化工有限公司)。鎂橄欖石顆粒的SEM圖像如圖1所示,鎂橄欖石主要以細(xì)小的顆粒分布,有的則附著在大的塊狀和片層狀鎂橄欖石顆粒上,且鎂橄欖石顆粒分布均勻,更有利于發(fā)生反應(yīng)。圖2所示為鎂橄欖石顆粒的粒度分布曲線,具體見(jiàn)表3。鎂橄欖石顆粒的粒徑分布為0.3~100 μm,平均粒徑為23.283 μm,其中粒徑小于15.277 μm的樣品占整體樣品的90%。

      儀器:Mastersizer-2000型激光粒度分析儀(英國(guó)馬爾文儀器有限公司);TYE-300B型電子液壓式壓力試驗(yàn)機(jī)(無(wú)錫建儀儀器機(jī)械有限公司);DX-2700型X射線衍射儀(丹東浩元儀器有限公司);TGA/SDTA85/e型熱重測(cè)試儀(瑞士梅特勒-托利多公司);TY-3型滲透率測(cè)定儀(海安縣石油科研儀器有限公司);ZEISS EVO MA15型掃描電子顯微鏡(卡爾蔡司顯微圖像有限公司)。

      1.2 水泥漿配方

      水泥漿配方及其基本性能如表4所示,水泥漿密度為1.92 g/cm 3 。按照表4水泥漿配方制備水泥石試樣,測(cè)試水泥石試樣抗壓強(qiáng)度,優(yōu)選出最優(yōu)的鎂橄欖石加量(質(zhì)量分?jǐn)?shù),下同)。

      1.3 水泥石試樣制備

      水泥漿的配制和養(yǎng)護(hù)按照GB /T 19139—2012《油井水泥試驗(yàn)方法》來(lái)進(jìn)行,漿體倒入直徑、高度分別為25 、25 mm的圓柱體模具中后,放入OWC-9390型高溫高壓養(yǎng)護(hù)釜,養(yǎng)護(hù)(溫度為90 ℃、 壓強(qiáng)為5MPa),7 d后取出模具,脫模,再放入高溫高壓CO 2 腐蝕儀中超臨界CO 2 飽和溶液(溫度為150 ℃, CO 2 壓力為50 MPa)腐蝕。圖3所示為高溫高壓CO 2 腐蝕儀(成都巖心科技有限公司)。

      1.4 水泥石的測(cè)試

      1.4.1 力學(xué)性能測(cè)試

      按照標(biāo)準(zhǔn)GB/T 19139—2012《油井水泥試驗(yàn)方法》,使用承載力為200 kN的電子液壓試驗(yàn)機(jī)以負(fù)載速率為(1 200 ± 100) N/s條件進(jìn)行抗壓強(qiáng)度測(cè)試。每組實(shí)驗(yàn)3個(gè)試樣,數(shù)據(jù)取平均值。

      1.4.2 滲透率測(cè)試

      將腐蝕后的試樣在溫度為60 ℃下烘干3 d,使用氣體滲透率自動(dòng)測(cè)定儀對(duì)試樣進(jìn)行滲透率測(cè)試。測(cè)試溫度為室溫,測(cè)試工作介質(zhì)為N 2 。

      1.4.3 微觀形貌分析

      在腐蝕后的水泥石表面(厚度為0.5~1 mm)選取測(cè)試樣品,通過(guò)研磨制成粉末后,利用XRD進(jìn)行物相分析,掃描速率為0.04(°)/s,衍射角度為5°~80°。通過(guò)TGA測(cè)試,溫度為40~1 000 ℃,以加熱速率為10 ℃/min的條件對(duì)水泥腐蝕表面(0.5~1 mm)的腐蝕產(chǎn)物成分進(jìn)行定量分析。利用配備能譜儀(energydispersive spectrometer,EDS)的SEM測(cè)試,對(duì)腐蝕前、后水泥石試樣表面的微觀形貌進(jìn)行觀察,測(cè)試工作電壓為 20 ~30 000 V,得到腐蝕產(chǎn)物的微觀形貌圖像。

      2 結(jié)果與分析

      2.1 鎂橄欖石對(duì)固井水泥石抗壓強(qiáng)度的影響

      按照表4設(shè)計(jì)的6種不同鎂橄欖石粉質(zhì)量分?jǐn)?shù)的水泥漿配方配制水泥漿,可以看出,鎂橄欖石粉的加入并不會(huì)影響油井水泥漿的密度,且漿體的流動(dòng)性仍然保持良好。通過(guò)對(duì)比室內(nèi)腐蝕7 d試驗(yàn)前、后不同鎂橄欖石粉質(zhì)量分?jǐn)?shù)的水泥石的抗壓強(qiáng)度,優(yōu)選出性能最好的鎂橄欖石摻量體系水泥配方。

      超臨界 CO 2 腐蝕前后, 抗腐蝕劑鎂橄欖石粉的質(zhì)量分?jǐn)?shù)對(duì)于油井水泥石抗壓強(qiáng)度的影響結(jié)果如圖4所示。 由圖可知, 加入鎂橄欖石能提高腐蝕前后水泥石的抗壓強(qiáng)度,而且隨著鎂橄欖石的質(zhì)量分?jǐn)?shù)增加,抗壓強(qiáng)度呈現(xiàn)先增大后減小的趨勢(shì)。當(dāng)鎂橄欖石粉的摻量為2%時(shí),5#水泥石腐蝕前后的抗壓強(qiáng)度最高分別為30.48、 37.24 MPa,比較于腐蝕前的1#純水泥石,其相對(duì)抗壓強(qiáng)度值增加 35.47% 和 65.51%。這是由于鎂橄欖石作為一種細(xì)小顆粒外加劑填充于水泥石中的部分微孔隙,提高水泥石的致密度,從而增大水泥石的抗壓強(qiáng)度。受到CO 2 侵蝕后, 水泥當(dāng)中的Ca(OH)2 、 CSH(Ca 5 Si 6 O 16 (OH)·4H 2 O)等組分與碳酸發(fā)生如公式(1)—(3)所示的化學(xué)反應(yīng), 生成碳酸鈣。 因?yàn)樘妓徕}本身密度大, 硬度高, 滲透率低,所以在早期CO 2 腐蝕過(guò)程中, 腐蝕7 d后的碳酸鈣表層也能在一定程度上提高水泥石的抗壓強(qiáng)度。

      通過(guò)上述實(shí)驗(yàn)篩選出鎂橄欖石的最優(yōu)加量為2%, 進(jìn)一步開(kāi)展高溫高壓條件下的CO 2 腐蝕試驗(yàn), 研究鎂橄欖石材料對(duì)油井水泥石抗壓強(qiáng)度的影響規(guī)律。1#和5#水泥石腐蝕7、 14、 28 d后的抗壓強(qiáng)度測(cè)試結(jié)果如圖5所示。由圖可知,雖然腐蝕7 d后抗壓強(qiáng)度有短暫的提升, 但是隨著腐蝕時(shí)間的增長(zhǎng), 1#和5#水泥石的抗壓強(qiáng)度都在降低。 當(dāng)腐蝕時(shí)間達(dá)到14 d時(shí), 1#和5#水泥石的抗壓強(qiáng)度分別為21.78、 36.36 MPa, 1#水泥石的相對(duì)抗壓強(qiáng)度只有腐蝕前的96.80%,而5#水泥石的相對(duì)抗壓強(qiáng)度為腐蝕前的119.29%,相較于腐蝕 7 d時(shí), 5#水泥石抗壓強(qiáng)度衰減更小。腐蝕 28 d 后, 1#水泥石抗壓強(qiáng)度只有17.18 MPa,其相對(duì)抗壓強(qiáng)度降低為腐蝕前的76.36%,抗壓強(qiáng)度衰退明顯;而5#水泥石抗壓強(qiáng)度為33.28 MPa,相對(duì)抗壓強(qiáng)度為腐蝕前的109.19%,此時(shí)仍高于腐蝕前抗壓強(qiáng)度。實(shí)驗(yàn)結(jié)果證明,鎂橄欖石的摻入不僅能明顯提升腐蝕前油井水泥石的抗壓強(qiáng)度,并在受到超臨界CO 2 侵蝕后,仍能保證油井水泥石具有較好的力學(xué)性能。

      2.2 鎂橄欖石對(duì)固井水泥石滲透率的影響

      滲透率是決定水泥石抗CO 2 腐蝕性能的重要參數(shù)[33] ,滲透率越大,意味著水泥石內(nèi)部酸性氣-液體流通的路徑越多,水泥石受到的侵蝕情況越嚴(yán)重。圖6所示為CO 2 腐蝕后1#和5#水泥石的滲透率測(cè)試結(jié)果圖。如圖所示,未腐蝕前的1#水泥石的滲透率為 0.076 0 mD(1 mD=1×10 -3μm 2 ),摻入鎂橄欖石的 5#水泥石的滲透率為0.065 6 mD,出現(xiàn)明顯降低,提升水泥石的密實(shí)度。隨著腐蝕時(shí)間的增長(zhǎng),1#水泥石的滲透率逐漸增大,5#水泥石的滲透率先減小后增大。CO 2腐蝕28 d后,1#和5#水泥石的滲透率分別增大到0.172 6、 0.093 4 mD,但5#水泥石的滲透率只有1#水泥石的54.11%,這可能是由于鎂橄欖石的添加對(duì)腐蝕前、后水泥石的滲透率的改善明顯,使得5#水泥石的整體結(jié)構(gòu)更加致密,減少超臨界CO 2的侵蝕通道,從而有效提升油井水泥石的抗腐蝕性能。

      2.3 鎂橄欖石水泥石抗CO 2 腐蝕機(jī)制

      2.3.1 XRD分析

      通過(guò)抗壓強(qiáng)度測(cè)試已經(jīng)知道, 當(dāng)質(zhì)量分?jǐn)?shù)為2%的鎂橄欖石摻入油井水泥后, 5#水泥石的抗壓強(qiáng)度和滲透率都優(yōu)于1#水泥石的, 說(shuō)明鎂橄欖石對(duì)油井水泥石的力學(xué)性能有提升作用, 因此對(duì)超臨界CO 2 腐蝕0、 7、 14、 28 d后的1#和5#水泥石試樣進(jìn)行XRD測(cè)試,水泥石的物相變化如圖7所示。 由圖可知, 在未腐蝕時(shí), 1#和5#水泥石中主要衍射峰為Ca(OH)2 的, 其中5#水泥石的Ca(OH) 2 衍射峰強(qiáng)度低于1#水泥石的, 說(shuō)明鎂橄欖石的摻入在水泥石的早期水化過(guò)程, 抑制Ca(OH)2 的生成和長(zhǎng)大。由于在水泥石中, Ca(OH)2 是最易因腐蝕發(fā)生變化的成分[34] , 所以減少Ca(OH)2 的含量能一定程度上提升水泥石的抗腐蝕性能。 經(jīng)過(guò)高溫高壓CO 2 環(huán)境腐蝕7 d后, 1#和5#水泥石中出現(xiàn)方解石型碳酸鈣(calcite-CaCO 3 )的衍射峰;當(dāng)腐蝕時(shí)間達(dá)到 14 d時(shí),少量文石型碳酸鈣(aragonite-CaCO 3 )開(kāi)始在1#和5#水泥石中生成。隨著腐蝕反應(yīng)時(shí)間的延長(zhǎng),1#和5#水泥石中方解石衍射峰的強(qiáng)度逐漸增強(qiáng),Ca(OH)2 衍射峰逐漸減弱,這是由于在超臨界CO 2 腐蝕環(huán)境下,CO 2 和Ca(OH)2 發(fā)生如式(1)所示的反應(yīng)。對(duì)比腐蝕28 d后的1#和5#水泥石發(fā)現(xiàn),5#水泥石中方解石衍射峰強(qiáng)度更高更明顯,Ca(OH)2 衍射峰強(qiáng)度相對(duì)較弱,說(shuō)明5#水泥石中可能生成較多的碳酸鈣,并作為孔隙填充組分。又由于碳酸鈣本身具有密度大、硬度高、滲透率低的特點(diǎn),從而保證水泥石具有較高的抗壓強(qiáng)度和較低的滲透率,增強(qiáng)5#油井水泥石的抗CO 2 腐蝕能力。

      2.3.2 TGA分析

      通過(guò)對(duì)腐蝕前后1#和5#水泥石外層中的各種物相組成進(jìn)行TGA測(cè)試,定量研究結(jié)果如圖8所示。由圖可知,水泥石中主要有2個(gè)失質(zhì)量峰,分別代表Ca(OH)2 在溫度為400~500 ℃下受熱分解脫羥基水和CaCO 3 在溫度為gt;500~750 ℃下受熱分解脫碳,每個(gè)階段的具體失質(zhì)量分?jǐn)?shù)如表5所示。對(duì)比2種水泥石發(fā)現(xiàn),在溫度為320~400 ℃時(shí),5#水泥石存在一個(gè)比1#水泥石更明顯的分解峰,經(jīng)過(guò)查閱文獻(xiàn)可知,該峰可能是碳酸鎂分解放出CO 2[35-36]。 這可能是由于水泥中的鎂橄欖石在超臨界CO 2 腐蝕環(huán)境與CO 2 直接反應(yīng)并生成MgCO 3 等碳化產(chǎn)物;但由于生成的MgCO 3 含量較低,因此XRD無(wú)法觀測(cè)到,能通過(guò)TGA測(cè)試發(fā)現(xiàn)MgCO 3 的生成。

      進(jìn)一步通過(guò)計(jì)算可以得到,1#和5#水泥石試樣中Ca(OH)2 和CaCO 3 的質(zhì)量分?jǐn)?shù)的變化,圖9所示為二者質(zhì)量分?jǐn)?shù)的計(jì)算結(jié)果。由圖可知,腐蝕前5#水泥石中Ca(OH)2 的質(zhì)量分?jǐn)?shù)為24.52%,小于1#水泥石的29.97%,說(shuō)明鎂橄欖石的摻入抑制了Ca(OH)2 的生成,這和XRD結(jié)果一致。隨著腐蝕時(shí)間的延長(zhǎng),1#和5#水泥石試樣中的Ca(OH)2 的質(zhì)量分?jǐn)?shù)都在不斷減少,而CaCO 3 的含量不斷增加,說(shuō)明隨著腐蝕齡期的延長(zhǎng),水泥石受到CO 2 腐蝕的影響增大。但是從腐蝕14 d到腐蝕28 d,1#水泥石中的CaCO 3 含量增長(zhǎng)為8.13%,大于5#水泥石中CaCO 3 的增長(zhǎng)量6.04%,說(shuō)明5#水泥石由于前期水泥石中存在的方解石型碳酸鈣為其提供了致密的微觀結(jié)構(gòu),一定程度上阻止了超臨界CO 2 的侵入。

      2.3.3 微觀形貌分析

      為了研究鎂橄欖石的摻入對(duì)油井水泥石微觀形貌的影響,利用SEM觀察1#和5#水泥石的微觀形貌。圖10所示為1#和5#水泥石腐蝕28 d后的SEM圖像。由圖可以發(fā)現(xiàn),此時(shí)1#油井水泥石在淋濾脫鈣作用下,內(nèi)部受到化學(xué)侵蝕和超臨界CO 2 腐蝕情況嚴(yán)重,出現(xiàn)較多的孔隙,整體結(jié)構(gòu)松散多孔,致密性較差,這和滲透率實(shí)驗(yàn)的結(jié)果一致,腐蝕后的水泥石為CO 2 分子侵入提供更多通道,說(shuō)明1#水泥石的抗腐蝕性能較差。5#油井水泥石SEM圖像顯示被腐蝕的表層整體黏結(jié)較好,結(jié)構(gòu)更為致密,毛細(xì)孔和小孔隙被腐蝕產(chǎn)物碳酸鈣填塞,從而提高水泥石的密實(shí)度和強(qiáng)度,可供超臨界CO 2 侵入的腐蝕通道減少,對(duì)腐蝕介質(zhì)CO 2 的進(jìn)一步入侵起到阻礙作用,則證明鎂橄欖石粉的摻入有利于提升油井水泥石的抗CO 2 腐蝕性能。

      為了探究鎂橄欖石對(duì)油井水泥石抗腐蝕性能提升的作用機(jī)制, 對(duì)腐蝕前1#和5#水泥石、 腐蝕7、14 d后5#水泥石的微觀形貌進(jìn)行觀察,圖11為具體的SEM圖像,其中圖11(a)、 (b)所示分別為未腐蝕的1#和5#水泥石的。由圖11(b)能觀察到,分布在較大塊狀鎂橄欖石上的小顆粒鎂橄欖石已經(jīng)消失,參與了水泥水化,抑制了Ca(OH)2 的生成;并發(fā)現(xiàn)摻入質(zhì)量分?jǐn)?shù)為2%的鎂橄欖石粉的5#水泥石比1#水泥石試樣表面微孔更少,質(zhì)地更為均勻,從而對(duì)水泥石的宏觀力學(xué)性能產(chǎn)生正面影響,這與未腐蝕5#水泥石的抗壓強(qiáng)度測(cè)試結(jié)果一致。

      腐蝕7 d后的5#水泥石微觀形貌如圖11(c)所示,鎂橄欖石顆粒被其周圍誘導(dǎo)生成的密實(shí)且均勻的腐蝕產(chǎn)物緊緊包裹,并且這些腐蝕產(chǎn)物填充于微孔隙中,優(yōu)化水泥石的微觀結(jié)構(gòu),進(jìn)而提高水泥石的微觀和宏觀力學(xué)性能,這與腐蝕7 d后的水泥石抗壓強(qiáng)度和滲透率測(cè)試結(jié)果一致。

      隨著腐蝕時(shí)間的延長(zhǎng),發(fā)現(xiàn)腐蝕14 d后的5#水泥石腐蝕產(chǎn)物的形態(tài)發(fā)生變化,出現(xiàn)了六棱柱狀的腐蝕產(chǎn)物,而且很難觀察到明顯的鎂橄欖石顆粒,如圖11(d)所示。因?yàn)橐?guī)則的棱柱狀碳酸鈣是典型的方解石晶體結(jié)構(gòu),所以通過(guò)對(duì)這種形貌的腐蝕產(chǎn)物進(jìn)行能量色散譜儀(energy dispersion spectrometer,EDS)掃描,圖12為EDS掃描結(jié)果。圖12(a)顯示5#-7 d樣品中的特征產(chǎn)物為鎂橄欖石,且由圖12(b)可以證實(shí)5#-14 d樣品的腐蝕產(chǎn)物為CaCO 3 ,這與5#-14 d樣品的XRD圖譜中顯示腐蝕產(chǎn)物主要為方解石的測(cè)試結(jié)果一致。方解石晶體作為碳酸鈣3種常見(jiàn)形態(tài)中最穩(wěn)定、性能最好的晶型,它的產(chǎn)生進(jìn)一步說(shuō)明鎂橄欖石為服役于超臨界CO 2 腐蝕環(huán)境中的油井水泥石產(chǎn)生正面影響,優(yōu)化水泥石的微觀結(jié)構(gòu),提升油井水泥石的抗CO 2 腐蝕性能,對(duì)安全利用和封存CO 2 具有積極意義。

      3 結(jié)論

      1)摻入鎂橄欖石能提升油井水泥石的力學(xué)性能,其中質(zhì)量分?jǐn)?shù)為2%為鎂橄欖石粉的最佳添加量,鎂橄欖石水泥石的抗壓強(qiáng)度增長(zhǎng)率為35.47%。

      2)在溫度為150 ℃、 CO 2 壓力為50 MPa 的腐蝕條件下,摻入質(zhì)量分?jǐn)?shù)為2%鎂橄欖石粉的油井水泥石的抗壓強(qiáng)度和滲透率優(yōu)于空白水泥石。腐蝕28 d后,空白水泥石的抗壓強(qiáng)度和滲透率分別為17.18MPa和0.172 6 mD,相對(duì)腐蝕前抗壓強(qiáng)度衰退率為23.64%,滲透率增大了0.096 6 mD;而摻入質(zhì)量分?jǐn)?shù)為2%鎂橄欖石摻量的水泥石抗壓強(qiáng)度為33.28 MPa,仍高于腐蝕前的水泥石抗壓強(qiáng)度,同時(shí)滲透率增長(zhǎng)值為0.027 8 mD。

      3)摻入質(zhì)量分?jǐn)?shù)為2%鎂橄欖石的油井水泥石中,Ca(OH)2 衍射峰強(qiáng)度低于空白水泥石,是因?yàn)殒V橄欖石的引入抑制了水化過(guò)程中Ca(OH)2 的形成,5#水泥石Ca(OH) 2 的質(zhì)量分?jǐn)?shù)為24.52%,1#水泥石的為29.97%;隨著腐蝕時(shí)間的延長(zhǎng),CaCO 3 的衍射峰強(qiáng)度和含量都在逐漸增大,而且在摻入質(zhì)量分?jǐn)?shù)為2%鎂橄欖石的油井水泥石的產(chǎn)物主要為性能較好的方解石型碳酸鈣。

      4)摻入鎂橄欖石的油井水泥石中微孔更少,整體更加密實(shí)。對(duì)比腐蝕28 d后的1#和5# 2種水泥石,由于鎂橄欖石能在早期腐蝕過(guò)程中增加水泥石中的方解石含量,這些方解石填充于毛細(xì)孔和其他微孔,不僅提升鎂橄欖石水泥石的密實(shí)度和整體強(qiáng)度,而且優(yōu)化油井水泥石的微觀結(jié)構(gòu),減少超臨界CO 2 侵入的通道,從而提升油井水泥石的力學(xué)性能和抗CO 2 腐蝕性能。

      利益沖突聲明(Conflict of Interests)

      所有作者聲明不存在利益沖突。

      All authors disclose no relevant conflict of interests.

      作者貢獻(xiàn)(Author’s Contributions)

      鄭怡杰、 龔鵬、 鄧卓然、 何鑫、 梅開(kāi)元、 程小偉參與了實(shí)驗(yàn)設(shè)計(jì),鄭怡杰、 張春梅、 梅開(kāi)元、 程小偉參與了論文的寫作和修改。所有作者均閱讀并同意了最終稿件的提交。

      The study was designed by ZHENG Yijie, GONG Peng, DENG Zhuoran, HE Xin, MEI Kaiyuan, CHENG

      Xiaowei. The manuscript was drafted and revised by ZHENG Yijie, ZHANG Chunmei,MEI Kaiyuan,

      CHENG Xiaowei. All authors have read the last version of paper and consented for submission.

      參考文獻(xiàn)(References)

      [1]宋新民, 楊思玉. 國(guó)內(nèi)外CCS技術(shù)現(xiàn)狀與中國(guó)主動(dòng)應(yīng)對(duì)策略[J]. 油氣藏評(píng)價(jià)與開(kāi)發(fā), 2011(1): 25-30.

      SONG X M, YANG S Y. Current situation of CCS technology at home and abroad and the positive strategy that China should adopt toward it [J]. Reservoir Evaluation and Development, 2011(1): 25-30.

      [2]TURGUT M G. Carbon dioxide emissions, capture, storage and utilization: review of materials, processes and technologies[J]. Progress in Energy and Combustion Science, 2022, 89: 100965.

      [3]ZENG H, XIAO C, CHEN X, et al. State of China’s climate in 2018[J]. Atmospheric and Oceanic Science Letters, 2019,12(5): 349-354.

      [4]FRANKLIN M O. Carbon capture, utilization, and storage: an update[J]. SPE Journal, 2018, 23(6): 2444-2455.

      [5]VIJETA A, RISHABH K S, KUMAR R, et al. Separation and sequestration of CO 2 in geological formations [J]. Materials Science for Energy Technologies, 2019, 2(3): 647-656.

      [6]FREIRE A L, JOSé H J, MOREIRA. Potential applications for geopolymers in carbon capture and storage[J]. Interna-tional Journal of Greenhouse Gas Control, 2022, 118: 103687.

      [7]CHEN X H, WU X. The roles of carbon capture, utilization and storage in the transition to a low-carbon energy system using a stochastic optimal scheduling approach[J]. Journal of Cleaner Production, 2022, 366: 132860.

      [8]ALFARGE D, WEI M, BAI B J. Data analysis for CO 2 -EOR in shale-oil reservoirs based on a laboratory database [J].Journal of Petroleum Science and Engineering, 2018, 162: 697-711.

      [9]胡永樂(lè), 郝明強(qiáng), 陳國(guó)利, 等. 中國(guó)CO 2 驅(qū)油與埋存技術(shù)及實(shí)踐[J]. 石油勘探與開(kāi)發(fā), 2019, 46(4): 716-727.

      HU Y L, HAO M Q, CHEN G L, et al. Technologies and practice of CO 2 flooding and sequestration in China[J]. Petroleum Exploration and Development, 2019, 46(4): 716-727.

      [10]WANG Y Y, WANG X G, DONG R C, et al. Reservoir heterogeneity controls of CO 2 -EOR and storage potentials in residual oil zones: insights from numerical simulations[J]. Petroleum Science, 2023, 3: 023.

      [11]MOHAMED R G, IBRAHIM A F, ADEBAYO A. Uncertainty quantification for CO 2 storage during intermittent CO 2 -EOR in oil reservoirs [J]. International Journal of Coal Geology, 2023, 266: 104177.

      [12]STEFAN B. Sequestration of CO 2 in geological media: criteria and approach for site selection in response to climate change[J]. Energy Conversion and Management, 2000, 41(9): 953-970.

      [13]姚曉, 唐明述. 油井水泥石CO 2 腐蝕的熱力學(xué)條件[J]. 油田化學(xué), 1999, 16(1): 10-14.

      YAO X, TANG M S. Study on the structure and properties of two microcrosslinked carboxymethyl celluloses[J]. Oilfield Chemistry, 1999, 16(1): 10-14 .

      [14]劉思楠, 張力為, 甘滿光, 等 . 地質(zhì)封存環(huán)境 CO 2 壓力影響水泥碳化程度的試驗(yàn)研究[J]. 中國(guó)電機(jī)工程學(xué)報(bào),2022, 42(9): 3126-3135.

      LIU S N, ZHANG L W, GAN M G, et al. Experimental study of the effect of CO 2 pressure on the degree of cement carbon?ation under geologic CO 2 storage environment [J]. Proceedings of the CSEE, 2022, 42(9): 3126-3135.

      [15]WOOYONG U M, KENTON R A, JUNG, et al. Geochemical alteration of wellbore cement by CO 2 or CO 2 + H 2 S reaction during long-term carbon storage[J]. Greenhouse Gases: Science and Technology, 2017, 7(5): 852-865.

      [16]MIAO X X, ZHANG L W, WANG Y, et al. Characterisation of wellbore cement microstructure alteration under geologic carbon storage using X-ray computed micro-tomography: a framework for fast CT image registration and carbonate shell morphology quantification[J]. Cement and Concrete Composites, 2020, 108: 103524.

      [17]KUTCHKO B G, STRAZISAR B R, DZOMBAK D A, et al. Degradation of well cement by CO 2 under geologic sequestra? tion conditions [J]. Environmental Science and Technology, 2007, 41(13): 4787-4792.

      [18]謝超, 王起才, 于本田, 等. 納米SiO 2 -礦渣-水泥復(fù)合膠凝材料的抗硫酸鹽侵蝕試驗(yàn)[J]. 材料科學(xué)與工程學(xué)報(bào),2020, 38(1): 88-93.

      XIE C, WANG Q C, YU B T, et al. Experimental study on sulfate attack resistance of nano SiO 2 -slag-cement composite cementitious [J]. Materials. Journal of Materials Science and Engineering, 2020, 38(1): 88-93.

      [19]LEDESMA R B, LOPES N F, BACCA K G, et al. Zeolite and fly ash in the composition of oil well cement: evaluation of

      degradation by CO 2 under geological storage condition[J]. Journal of Petroleum Science and Engineering, 2020, 185:106656.

      [20]BARBARA G K, BRIAN R S, NICOLAS H, et al. CO 2 reaction with hydrated Class H well cement under geologic seques?tration conditions: effects of flyash admixtures[J]. Environmental Science and Technology, 2009, 43(10): 3947-3952.

      [21]佟鈺, 閆海敏, 王昭寧, 等. 納米二氧化硅粒徑對(duì)水泥砂漿抗壓強(qiáng)度及抗氯離子滲透性能的影響[J]. 中國(guó)粉體技術(shù), 2022, 28(5): 11-16.

      TONG Y, YAN H M, WANG Z N, et al. Influence of particle size of nano-silica on compressive strength and chloride ion penetration resistance of cement mortar [J]. China Powder Science and Technology, 2022, 28(5): 11-16.

      [22]CAO M L, MING X, YIN H, et al. Influence of high temperature on strength, ultrasonic velocity and mass loss of calcium carbonate whisker reinforced cement paste[J]. Composites: Part B, Engineering, 2019, 163: 438-446.

      [23]PAUL, CHANDRA S, ROOYEN V, et al. Properties of cement-based composites using nanoparticles: a comprehensivereview[J]. Construction and Building Materials, 2018, 189: 1019-1034.

      [24]YEON J J, KWANG S Y, TAE S Y. Effect of nano-silica and curing conditions on the reaction rate of class G well cement exposed to geological CO 2 -sequestration conditions [J]. Cement and Concrete Research, 2018, 109: 208-216.

      [25]PALILU J M A, SOEGIJONO B A, MARBUN B T H C. The role of MgO as swelling cements admixtures under CO 2 attack on API Class-G cement [J]. Journal of Physics: Conference Series, 2019, 1245(1): 012036.

      [26]FASIHNIKOUTALAB M H, POURAKBAR S, BALL R J. The effect of olivine content and curing time on the strength of treated soil in presence of potassium hydroxide[J]. International Journal of Geo-synthetics and Ground Engineering,2017, 3(2): 12.

      [27]PAUL W, RICHARD J, PAINE K. Olivine as a reactive aggregate in lime mortars[J]. Construction and Building Materi? als, 2019, 195: 115-126.

      [28]ACHANG M, RADONJIC M. Adding olivine micro particles to Portland cement based wellbore cement slurry as a sacrifi?cial material: a quest for the solution in mitigating corrosion of wellbore cement[J]. Cement and Concrete Composites,2021, 121: 104078.

      [29]尹玉明, 趙伶玲. 基于分子動(dòng)力學(xué)的鎂橄欖石表面分子吸附與溶解研究[J]. 東南大學(xué)學(xué)報(bào)(自然科學(xué)版), 2021,51(1): 121-128.

      YIN Y M, ZHAO L L. Study on molecules adsorption and dissolution on the surface of forsterite based on molecular dynamics [J]. Journal of Southeast University(Natrue and Science), 2021, 51(1): 121-128.

      [30]POWER I M, KENWARD P A, DIPPLE G M, et al. Room temperature magnesite precipitation[J]. Crystal Growth and Design, 2017, 17(11): 5652-5659.

      [31]陳凡斌, 張浩. 玄武巖纖維對(duì)油井水泥石韌性改善的室內(nèi)研究[J]. 科技視界(學(xué)術(shù)刊), 2015(1): 2095-2457.

      CHEN F B, ZHANG H. The Development and research status of thermal recovery cement slurry technology[J]. Science and Technology Vision, 2015(1): 2095-2457.

      [32]程小偉, 張明亮, 楊永勝, 等. 玄武巖纖維對(duì)鋁酸鹽水泥石性能的影響[J]. 石油鉆采工藝, 2016, 38(1): 42-47.

      CHENG X W, ZHANG M L, YANG Y S, et al. Effects of basalt fiber on the performance of aluminate cement stone[J].Oil Drilling and Production Technology, 2016, 38(1): 42-47.

      [33]田輝, 郭辛陽(yáng), 宋雨媛, 等. 基于化學(xué)熱力學(xué)的耐二氧化碳腐蝕水泥水化產(chǎn)物控制[J]. 鉆采工藝, 2021, 44(2):86-89.

      TIAN H, GUO X Y, SONG Y Y, et al. Control of hydration products of CO 2 resistant cements based on chemical thermo?dynamics [J]. Drilling and Production Technology, 2021, 44(2): 86-89.

      [34]陸沛青, 劉仍光, 楊廣國(guó), 等 . 增強(qiáng)油井水泥石抗二氧化碳腐蝕方法[J]. 材料科學(xué)與工程學(xué)報(bào), 2020, 38(4):566-570.

      LU P Q, LIU N G, YANG G G, et al. Methods of strengthening anti-CO 2 corrosion of oil well cement stone[J]. Journal of Materials Science and Engineering, 2020, 38(4): 566-570.

      [35]王春迎, 杜志明, 叢曉民, 等. 堿式碳酸鎂的熱分解研究[J]. 應(yīng)用化工, 2008(6): 657-660.

      WANG C Y, DU Z M, CONG X M, et al. Investigation in thermal decomposition of basic magnesium carbonate[J].

      Applied Chemical Industry, 2008(6): 657-660.

      [36]BREMEN A M, PLOCH T, MHAMDI A, et al. A mechanistic model of direct forsterite carbonation[J]. Chemical

      Engineering Journal, 2021, 404: 126480

      Effect of magnesium olivine on CO 2 corrosion

      resistance of oil well cement

      ZHENG Yijie, GONG Peng, DENG Zhuoran, HE Xin, ZHANG Chunmei,

      MEI Kaiyuan, CHENG Xiaowei

      (School of New Energy and Materials, National Key Laboratory of Oil and Gas Reservoir Geology and

      Exploitation, Southwest Petroleum University, Chengdu 610500, China)

      Abstract

      Objective Using CO 2 injection to enhance oil and gas recovery is crucial in the carbon neutralization process. However, the pres?ence of supercritical CO 2 in CCUS wells poses higher demands on the corrosion resistance of wellbore cement. Magnesiumolivine, characterized by abundant sources and low cost, has been extensively studied in the field of construction cement. Yet,research on enhancing the resistance of wellbore cement to CO 2 corrosion using magnesium olivine is relatively limited. In thisstudy, conducted in the unique environment of CCUS wells, corrosion experiments will be carried out using supercritical CO 2 -saturated solutions. Various testing methods, including compressive strength, permeability, X-ray diffraction (XRD), thermo?gravimetric analysis (TGA), and scanning electron microscopy (SEM), will be employed to investigate the optimal dosage ofmagnesium olivine and its role in the micro-mechanism of corrosion resistance. This research aims to provide new theoreticaland practical support for enhancing the resistance of wellbore cement to CO 2 corrosion, contributing technological solutionstowards achieving the “carbon neutrality and peak carbon” goals.

      Methods Utilizing layered olivine magnesium with an average particle size of 23 μm as an additive and cement slurry with a den?sity of 1. 92 g/cm 3 , oil well cements with varying additive concentrations (0, 0. 5%, 1%, 1. 5%, 2%, 2. 5% and 3%) wereformulated and cured following GB/T 19139—2012. Under conditions of 150 ℃ and 50 MPa CO 2 pressure, compressive strengthand permeability were tested for both blank samples and samples with magnesium olivine, aiming to identify the optimal dosageof magnesium olivine. Thermal gravimetric analysis (TGA), X-ray diffraction (XRD), and scanning electron microscopy(SEM) were employed to analyze the impact and mechanisms of magnesium olivine on the CO 2 corrosion resistance performanceof the cement slurry.

      Results and Discussion Formulated cement slurries with different concentrations (0, 0. 5%, 1%, 1. 5%, 2%, 2. 5% and 3%) of magnesium olivine. No significant impact on the density of oil well cement slurries was observed with the addition of magne?sium olivine. Maintained good fluidity of the slurry, indicating favorable rheological properties. Conducted testing under condi?tions of 150 °C and 50 MPa CO 2 pressure. Magnesium olivine addition enhanced the compressive strength of cement both beforeand after corrosion, showing a 35. 47% increase at 2% olivine concentration. The compressive strength initially increased andthen decreased with higher olivine concentrations. Improved compressive strength attributed to the filling of micro-pores by mag?nesium olivine, enhancing cement density. Super-critical CO 2 corrosion resulted in the formation of calcium carbonate (CaCO 3 )on the cement surface. The presence of magnesium olivine contributed to the reduction of Ca(OH)2 and the formation of denseCaCO 3 , enhancing the cement's resistance to CO 2 corrosion. The addition of 2% magnesium olivine demonstrated the highestcompressive strength before and after corrosion. Extended corrosion testing up to 28 days revealed a gradual decrease in com?pressive strength for both control and magnesium olivine-added cement. Magnesium olivine-added cement showed better long-term performance, with slower deterioration in compressive strength compared to the blank cement stone, which improved by193. 71%. The permeability of the cement was effectively reduced by magnesium olivine, indicating improved resistance to CO 2corrosion. XRD and TGA analysis confirmed the presence of magnesium olivine and the formation of carbonates (CaCO 3 ) in thecorroded cement. The addition of magnesium olivine reduced Ca(OH) 2 content and influenced the types of carbonate phasesformed during corrosion. SEM images illustrated the microstructural changes in cement, showing the impact of magnesium oliv?ine on the formation of corrosion products. Magnesium olivine addition resulted in a denser microstructure, reduced pore forma?tion, and better overall cement integrity. The observed improvements in cement performance were attributed to the role of magne?sium olivine in hindering the penetration of CO 2 , optimizing microstructure, and promoting the formation of stable carbonatephases. The optimal addition of 2% magnesium olivine was identified as providing the best balance between enhancing compres?sive strength and resisting CO 2 corrosion in oil well cement. The study demonstrates the potential of magnesium olivine as aneffective additive for improving the durability and performance of oil well cement in the context of supercritical CO 2 corrosion.Conclusion The optimal addition of 2% magnesium olivine was identified as providing the best balance between enhancing com?pressive strength and resisting CO 2 corrosion in oil well cement. The study demonstrates the potential of magnesium olivine as aneffective additive for improving the durability and performance of oil well cement in the context of supercritical CO 2 corrosion.

      Keywords: magnesium olivine; supercritical CO 2 ; corrosion; oil-well cement(責(zé)任編輯:吳敬濤)

      猜你喜歡
      腐蝕
      銅覆鋼技術(shù)在輸電線路接地裝置中的應(yīng)用探討
      燃煤電廠濕法煙氣脫硫的腐蝕與防護(hù)
      談發(fā)電廠變電所接地裝置腐蝕及防腐措施設(shè)計(jì)
      鎂合金部件冷噴涂純鋁防腐蝕涂層在艦載機(jī)上的應(yīng)用研究
      一種三電極接地網(wǎng)腐蝕速度測(cè)量?jī)x的開(kāi)發(fā)
      溴化鋰溶液對(duì)制冷機(jī)組腐蝕及防范措施
      淺析石油管道焊接接頭的腐蝕與防護(hù)
      鎂合金的腐蝕特性及防護(hù)探討
      科技資訊(2016年19期)2016-11-15 08:38:47
      論述天然氣埋地鋼管腐蝕與防護(hù)
      鍍鋅產(chǎn)品表面腐蝕現(xiàn)象研究
      隆回县| 铁岭市| 会泽县| 马公市| 桐柏县| 咸阳市| 富阳市| 靖西县| 饶阳县| 沈阳市| 安福县| 阜南县| 嘉兴市| 平乐县| 蓬溪县| 射洪县| 昔阳县| 镇宁| 阿尔山市| 阳信县| 宝丰县| 揭阳市| 桃江县| 凌源市| 大渡口区| 湘乡市| 东海县| 大同县| 惠安县| 洛浦县| 鲁甸县| 大埔县| 安庆市| 陇南市| 海口市| 建湖县| 芒康县| 张掖市| 犍为县| 仲巴县| 孟连|