摘要: 【目的】為了解決使用傳統(tǒng)工藝制備超細(xì)粉體時(shí)存在的粒徑分布寬、 顆粒均勻性差、 溶劑殘留多、 操作條件苛刻等問(wèn)題, 尋求更為優(yōu)異的超細(xì)粉體制備工藝?!狙芯楷F(xiàn)狀】綜述超臨界CO2制備超細(xì)粉體在醫(yī)療、 材料和化學(xué)等領(lǐng)域的應(yīng)用; 總結(jié)超臨界CO2作為溶劑、 抗溶劑和輔助介質(zhì)時(shí)的代表超臨界溶液快速膨脹法(rapid expansion of supercritical solutions,RESS)、 氣體抗溶劑法(gas anti-solvent, GAS)、 超臨界抗溶劑法(supercritical anti-solvent, SAS)、 氣體飽和溶液法(particles from gas-saturated solutions, PGSS)、 帶鼓泡干燥器的CO2輔助霧化法(carbon dioxide assisted nebulization with bubble dryer, CAN-BD)、 超臨界流體輔助霧化法 (supercritical assisted atomization, SAA)、 強(qiáng)化混合超臨界流體輔助霧化法(supercritical fluid assisted atomization introduced by hydro-dynamic cavitation mixer, SAA-HCM)、 膨脹流體減壓至有機(jī)溶劑法(depressurization of an expanded liquid organic solution, DELOS)等工藝、 原理和優(yōu)缺點(diǎn)?!菊雇刻岢龀R界CO2制備超細(xì)粉體工藝是傳統(tǒng)制備工藝的有效代替,具有工藝流程簡(jiǎn)單、 工藝條件溫和、 產(chǎn)物粒徑分布窄、 產(chǎn)物平均粒徑小、 有毒溶劑使用少等優(yōu)點(diǎn)。認(rèn)為缺少具體的模型來(lái)描述和預(yù)測(cè)該工藝運(yùn)行過(guò)程中的相平衡、 物化性質(zhì)、 流體動(dòng)力學(xué)、 結(jié)晶與生長(zhǎng)過(guò)程;今后研究重點(diǎn)應(yīng)是建立具有代表性和可靠性的模型來(lái)對(duì)該工藝進(jìn)行模擬與預(yù)測(cè)等。
關(guān)鍵詞: 超臨界二氧化碳; 納米顆粒; 超細(xì)粉體
中圖分類(lèi)號(hào): TB44; O351.2文獻(xiàn)標(biāo)志碼:A
引用格式:
耿奎發(fā), 吳龔鵬, 苗華明, 等. 超臨界二氧化碳制備超細(xì)粉體研究進(jìn)展[J]. 中國(guó)粉體技術(shù), 2024, 30(2): 123-137.
GENG K F, WU G P, MIAO H M, et al. Progress in preparation of ultrafine powder by supercritical carbon dioxide[J]. China Powder Science and Technology, 2024, 30(2): 123-137.
超細(xì)粉體即C類(lèi)粉體, 是根據(jù)顆粒尺寸和顆粒與介質(zhì)的密度差關(guān)系界定的粒徑小于5 μm的顆粒[1]。 因?yàn)槌?xì)顆粒具有比普通顆粒更大的比表面積, 所以氣-固接觸效率遠(yuǎn)高于普通顆粒而受到重視。 研究表明, 氣相法、 液相法、 固相法等傳統(tǒng)的制備工藝仍然廣泛用于超細(xì)粉體的制備, 但制得的超細(xì)粉體粒徑分布寬且粒徑均勻性差[2-6]。 溶劑蒸發(fā)、 萃取、 溶膠-凝膠還原法等工藝難以生產(chǎn)亞微米或納米尺寸的無(wú)溶劑殘留的超細(xì)粉體。 固相法、 噴霧熱解法、 噴霧干燥法和火焰噴霧熱解法等工藝不適宜加工熱敏性材料, 過(guò)高的溫度會(huì)使熱敏性材料改性, 影響產(chǎn)品最終品質(zhì)[7-8]。 流化床化學(xué)氣相沉積法適用條件為高溫, 同樣不適用于熱敏性超細(xì)粉體的制備[9-11]。 為了改善傳統(tǒng)制備工藝對(duì)超細(xì)粉體材料所造成的缺陷,研究人員開(kāi)始探尋安全可靠、 顆粒形態(tài)易于調(diào)節(jié)的超細(xì)粉體制備工藝,超臨界CO2制備超細(xì)粉體便是其中一種。
超臨界狀態(tài)為在溫度和壓力均高于臨界值時(shí),流體處于一種兼具液體和氣體某些性質(zhì)的特殊狀態(tài)。超臨界CO2具有氣體與液體的雙重特性,密度接近液體但黏度卻與氣體相似。因?yàn)閿U(kuò)散系數(shù)接近于氣體,所以有非常好的流動(dòng)與傳質(zhì)特性[12]。不同于其他超臨界流體,超臨界CO2因?yàn)橛休^低的臨界溫度,所以在與眾多熱敏性物質(zhì)接觸過(guò)程中不會(huì)使熱敏物質(zhì)發(fā)生降解或改性[13]。超臨界CO2還有易于獲取、 不易燃、 無(wú)毒、 環(huán)境友好等優(yōu)勢(shì),是目前實(shí)驗(yàn)與工業(yè)應(yīng)用中比較理想的超臨界流體。
本文中介紹超臨界CO2制備超細(xì)粉體在實(shí)際工業(yè)生產(chǎn)中的應(yīng)用,重點(diǎn)總結(jié)應(yīng)用超臨界CO2制備超細(xì)粉體的多種工藝。根據(jù)CO2在工藝中的不同作用分別進(jìn)行工藝流程、 優(yōu)缺點(diǎn)、 研究進(jìn)展的討論,并提出超臨界CO2制備超細(xì)粉體的應(yīng)用前景。
1 超臨界CO2制備粉體的應(yīng)用
早在1898年, Gallagher等[14]將超臨界狀態(tài)的CO2溶解到含有溶劑的有機(jī)溶質(zhì)中, 制備了粒徑為5~10 μm的炸藥微粒,這是較早的利用超臨界CO2制備的微細(xì)顆粒。隨著超臨界CO2制備工藝的工藝過(guò)程、實(shí)驗(yàn)設(shè)備等不斷改進(jìn),制備的粉體顆粒逐步進(jìn)入納米量級(jí)。超臨界CO2技術(shù)制備微納米顆粒的工藝目前主要應(yīng)用于醫(yī)藥、 材料、 化工等領(lǐng)域。
1.1醫(yī)療行業(yè)
低水溶性藥物顆粒在應(yīng)用時(shí)往往難以被很好的吸收利用,通過(guò)超臨界CO2技術(shù)制備能得到粒徑更小、 形狀更均勻、 粒徑分布更窄的納米級(jí)藥物粉體。納米藥物具有增強(qiáng)藥物溶解速率、 穩(wěn)定藥效、 增強(qiáng)靶向性等優(yōu)點(diǎn)。Peng等[15]采用強(qiáng)化混合超臨界流體輔助霧化法(supercritical fluid assisted atomization introduced by hydro-dynamic cavitation mixer, SAA-HCM)制備了殼聚糖納米顆粒與甘露醇組合成的微納米顆粒,增強(qiáng)了藥物對(duì)肺癌的治療效果。
超臨界流體還被應(yīng)用于藥物顆粒包覆。Ono等[16]利用以超臨界CO2為添加劑的氣體飽和溶液法(particles from gas-saturated solutions, PGSS),使用蟲(chóng)膠將乳鐵蛋白進(jìn)行了包覆,并證明了包覆工藝有效地保護(hù)了乳鐵蛋白不被胃酸溶解。
近幾年新冠肺炎疫情波及全球,然而針對(duì)新冠肺炎的新藥研制卻不能滿(mǎn)足臨床要求。Ruiz等[17]討論了關(guān)于超臨界流體在應(yīng)對(duì)新冠肺炎疫情中的作用,包括將新藥微粉化來(lái)加強(qiáng)水溶性低的藥物的吸收效率,制備納米粉體藥物用于肺部治療,達(dá)到靶向給藥、 病毒滅活等目的。
1.2材料科學(xué)
在材料領(lǐng)域,超臨界CO2制備超細(xì)粉體的技術(shù)也被廣泛應(yīng)用。一些納米金屬氧化物因具有優(yōu)異電極材料性能而受到重視,在納米金屬氧化物的制備工藝中優(yōu)勢(shì)較為明顯的就是超臨界抗溶劑法(supercritical anti-solvent, SAS)[18-19]。Jiang等[20]使用超臨界流體促進(jìn)固體分散法(solution-enhanced dispersion by scCO2, SEDS),將超臨界CO2和有機(jī)聚合物同時(shí)通過(guò)同軸噴嘴噴射,得到不同形狀尺寸的金屬氧化物納米顆粒。
1.3化學(xué)工業(yè)
汽車(chē)尾氣是造成空氣污染的重要因素,用于控制尾氣排放的鈰鋯氧化物固溶體催化劑有很好的應(yīng)用前景。劉霖[21]利用超臨界抗溶劑法制備了納米晶鈰鋯氧化物固溶體,比傳統(tǒng)制備工藝得到的顆粒組分更均勻,熱穩(wěn)定性更好。這項(xiàng)工藝還被用于粉體尺寸的控制,Sakabe等[22]利用超臨界溶液快速膨脹法(rapid expansion of supercritical solutions,RESS),嘗試了5種操作條件下獲得不同粒徑的茶堿,發(fā)現(xiàn)過(guò)飽和對(duì)納米顆粒的尺寸影響顯著,因此可以通過(guò)對(duì)過(guò)飽和程度的控制達(dá)到控制粒徑的目的。
2 超臨界CO2制備超細(xì)粉體的工藝
傳統(tǒng)的超細(xì)粉體制備工藝有噴霧干燥、 冷凍干燥、 冷凝、 磨粒流、 蒸發(fā)溶劑等,但傳統(tǒng)工藝中使用的高溫條件、有毒有機(jī)溶劑等,可能使得最終產(chǎn)品變性或有毒溶劑殘余超過(guò)標(biāo)準(zhǔn)。通過(guò)傳統(tǒng)的微納米工藝得到的粉體往往會(huì)有形狀不規(guī)則、粒徑分布過(guò)大等缺點(diǎn)。已有的文獻(xiàn)表明,應(yīng)用超臨界流體制備超細(xì)粉體可以很好地克服上述缺陷[23-25]。
最早的超臨界CO2制備工藝是由Matson等于1987發(fā)明的RESS[26]。該工藝的產(chǎn)生為超臨界流體制備工藝后續(xù)發(fā)展奠定了基礎(chǔ),后來(lái)產(chǎn)生的SAS、 PGSS等多種制備工藝都是在RESS基礎(chǔ)上發(fā)展而來(lái)。
超臨界CO2的臨界溫度為30.98 ℃,壓強(qiáng)為7.38 MPa。探究超臨界CO2制備超細(xì)粉體工藝時(shí),根據(jù)超臨界CO2在整個(gè)制備過(guò)程中的作用,分為作為溶劑、 作為抗溶劑、 作為輔助介質(zhì)等3種類(lèi)型工藝。相關(guān)工藝如圖1所示。
2.1超臨界CO2作為溶劑的RESS工藝
當(dāng)超臨界CO2作為溶劑時(shí),代表工藝有RESS、 超臨界溶液與固體共溶劑快速膨脹法(rapid expansion of supercritical solutions with solid co-solvent, RESS-SC)、 超臨界溶液快速膨脹至液體溶劑法(rapid expansion of a supercritical CO2 solution into a liquid solvent, RESOLV)、 超臨界溶液快速膨脹至水溶液法(rapid expansion of supercritical solution into aqueous solution, RESSAS)、 超聲輔助下將超臨界CO2溶液快速膨脹至液體溶劑法(ultrasonic-assisted rapid expansion of a supercritical CO2 solution, US-RESOLV)、超臨界溶液結(jié)晶法(crystallization of organic solids from supercritical fluid, CSS)等。
其中RESS工藝,是較為常用的超臨界流體制備工藝,其他工藝是在RESS基礎(chǔ)上針對(duì)所制備的產(chǎn)品改良而來(lái)。
2.1.1 工藝原理
超臨界CO2受溫度和壓力的影響非常顯著。在經(jīng)過(guò)噴頭噴射到大氣壓環(huán)境中后,超臨界CO2急速膨脹,壓力降低使得溶解在其中的溶質(zhì)在極短的時(shí)間內(nèi)產(chǎn)生極大的過(guò)飽和度,析出大量晶核,形成粒徑很小、 粒徑分布窄的納米級(jí)顆粒[27-28]。整個(gè)工藝大致可以分為超臨界CO2的超臨界化、 溶質(zhì)在超臨界CO2中溶解、 超臨界溶液通過(guò)噴嘴快速膨脹等3個(gè)階段。首先,氣態(tài)CO2進(jìn)入冷卻器被冷卻成液態(tài),再經(jīng)過(guò)專(zhuān)門(mén)的高壓泵加壓至所需壓力,然后在加熱釜內(nèi)先被預(yù)熱器加熱至超臨界狀態(tài),隨后進(jìn)入萃取容器。在萃取容器中充分混合后,超臨界CO2與溶質(zhì)的混合物經(jīng)過(guò)噴嘴膨脹至顆粒形成釜,待結(jié)晶完成進(jìn)行收集、 純化并分析,工藝流程如圖2所示。
Hosseinpour等[29]以CO2為超臨界溶劑,使用RESS減小二丙酸倍氯米松(beclomethasone dipropionate, BDP)的粒徑。 通過(guò)實(shí)驗(yàn)發(fā)現(xiàn), 使用RESS制備的BDP顆粒平粒徑為64.1~294 nm, 比原顆粒粒徑9 μm尺寸明顯減小。 制備的顆粒有向轉(zhuǎn)球形轉(zhuǎn)變的趨勢(shì), 相比原先的顆粒更為規(guī)則。 Karimi等[30]使用超臨界溶液膨脹法將苦參提取物制備成超細(xì)粉體, 在壓強(qiáng)為2.54 MPa, 溫度為53 ℃, 平衡時(shí)間為23 min, 收集時(shí)間為57 min的最佳工藝條件下, 得到了粒徑分布為5~5 842 nm的苦參提取物顆粒。
2.1.2 工藝影響因素
在RESS工藝中,影響顆粒形態(tài)和粒徑分布的因素主要有溫度、 噴嘴結(jié)構(gòu)、 壓力。Rostamian等[31]以薄荷醇微固體共溶劑采用RESS-SC對(duì)阿司匹林顆粒進(jìn)行微粉化制備,探究溫度對(duì)最終產(chǎn)品形態(tài)與粒徑的影響。隨著溫度升高,粒徑先略有減小后顯著增大;Huang等[32]在探究RESS制備超細(xì)阿司匹林顆粒過(guò)程中各因素對(duì)粒徑影響時(shí)發(fā)現(xiàn)預(yù)膨脹溫度對(duì)顆粒沒(méi)有明顯影響,說(shuō)明預(yù)膨脹溫度對(duì)顆粒粒徑的影響取決于固體本身的化學(xué)性質(zhì)、溶劑溶質(zhì)分子之間的相互作用和工藝條件。
Sodeifian等[28]在RESS-SC制備阿瑞吡坦納米顆粒的實(shí)驗(yàn)中研究了噴嘴直徑對(duì)于析出顆粒的影響,發(fā)現(xiàn)隨著噴嘴有效直徑減小,析出的阿瑞吡坦納米顆粒尺寸越小。噴嘴有效直徑較小時(shí)噴嘴尖端的過(guò)飽和度和成核率增大,產(chǎn)生粒徑小的顆粒,但過(guò)高的過(guò)飽和度也有小顆粒凝固和團(tuán)聚的風(fēng)險(xiǎn)。噴嘴一般被認(rèn)為是RESS過(guò)程中的重要部分,很多的實(shí)驗(yàn)過(guò)程所用的噴嘴并不能直接應(yīng)用于實(shí)際生產(chǎn)中。郝明潔等[33]在調(diào)研了目前噴嘴設(shè)計(jì)的不足后,設(shè)計(jì)了一款入口管徑可調(diào)的撞擊流環(huán)隙可調(diào)噴嘴,配置了一套超臨界流體制備微細(xì)顆粒的實(shí)驗(yàn)裝置,通過(guò)對(duì)阿司匹林微細(xì)顆粒的制備實(shí)驗(yàn),驗(yàn)證了噴嘴用于藥物大批量生產(chǎn)的可行性。
膨脹壓力對(duì)粒徑的影響實(shí)驗(yàn)得到的結(jié)果也不盡相同。Rostamian等[31]在膨脹壓強(qiáng)為0.1~0.8 MPa的探究中發(fā)現(xiàn), 膨脹壓強(qiáng)為0.1~0.4 MPa時(shí), 平均粒徑逐漸增大, 粒徑分布變寬; 膨脹壓強(qiáng)為0.4~0.8 MPa時(shí), 平均粒徑逐漸減小,但是粒徑分布更寬。Sodeifian等[28]在實(shí)驗(yàn)中發(fā)現(xiàn),隨著壓力增大,噴嘴處過(guò)飽和度、 成核速率增大,粒徑變小。Kayrak等[34]在研究中發(fā)現(xiàn)膨脹壓強(qiáng)對(duì)布洛芬粒徑?jīng)]有明顯影響。膨脹壓力對(duì)粒徑的影響會(huì)因物質(zhì)化學(xué)性質(zhì)、 操作條件和物質(zhì)分子之間的相互作用不同而有不同結(jié)果。
2.1.3 工藝優(yōu)缺點(diǎn)及改良
RESS工藝要求溶質(zhì)和共溶劑必須在所使用的超臨界流體中有較大的溶解度,通常質(zhì)量分?jǐn)?shù)為1%或者0.1%以上[35],但大多數(shù)有機(jī)物無(wú)法達(dá)到這個(gè)要求,這也是RESS工藝在使用中存在的局限性。通常情況下研究者使用甲醇和乙醇等液體助溶劑來(lái)達(dá)到所制備化合物與超臨界CO2互溶的目的,但在沒(méi)有合適的液體溶劑可選用的情況下,實(shí)驗(yàn)者會(huì)選擇使用RESS-SC工藝,該工藝選用的薄荷醇固體共溶劑具有可溶于超臨界CO2,提高藥物在超臨界CO2中的溶解度,在噴嘴膨脹下仍為固體,具有易升華、 惰性不易產(chǎn)生化學(xué)反應(yīng)、 不易燃、 無(wú)毒等特點(diǎn),生產(chǎn)出的產(chǎn)品粒徑更小,粒徑分布更均勻,產(chǎn)品由于固體共溶劑的包覆作用也更加不容易團(tuán)聚。
通過(guò)RESS工藝制備得到的超細(xì)粉體粒徑小于5 μm,因?yàn)槌叽邕^(guò)小,所以分子間有較強(qiáng)的范德華力作用,宏觀(guān)表現(xiàn)為容易團(tuán)聚,難以流化。在RESS過(guò)程中,經(jīng)過(guò)膨脹析出的超細(xì)粉體容易團(tuán)聚成較大團(tuán)聚體,粒徑分布變寬,形狀也難以控制,研究者們對(duì)RESS工藝進(jìn)行了改進(jìn),為了防止產(chǎn)品顆粒發(fā)生團(tuán)聚,利用RESOLV將顆粒膨脹噴射到液相中,顆粒生長(zhǎng)被抑制,得到粒徑更小的顆粒,同時(shí)在溶液中添加各種水溶性化合物或者表面活性劑,可以獲得穩(wěn)定的納米顆粒懸濁液并防止在膨脹射流中顆粒發(fā)生團(tuán)聚[36]。納米懸濁液中的藥物顆粒還是有可能產(chǎn)生團(tuán)聚或者沉淀,被浸濕的顆粒由于范德華力和液體表面張力而產(chǎn)生團(tuán)聚。為了防止團(tuán)聚、沉淀產(chǎn)生,Razmimanesh等[37-38]使用US-RESOLV法,加入了超聲波對(duì)懸濁液進(jìn)行處理。通過(guò)大功率低頻超聲產(chǎn)生高振幅聲波傳播到液體介質(zhì)中,產(chǎn)生交替的高壓和低壓循環(huán)。因?yàn)橐后w介質(zhì)聲波振動(dòng)產(chǎn)生小的真空氣泡并不斷吸收聲波中的能量,所以最終會(huì)發(fā)生微小劇烈的內(nèi)爆,產(chǎn)生的液體射流能有效防止顆粒團(tuán)聚。US-RESOLV實(shí)驗(yàn)裝置如圖3所示[37]。超聲波的使用有效地減小了顆粒粒徑和粒徑分布,與RESOLV工藝有相似之處的還有RESSAS。Yekefallah等[39]利用RESSAS工藝制備了穩(wěn)定金染料木素、 槲皮素和咖啡酸等強(qiáng)效抗氧化劑的納米懸浮液。該工藝與RESOLV不同之處在于接收膨脹射流的液相只是水溶液,因此制備物質(zhì)為不溶或者難溶于水的化合物顆粒。RESS衍生來(lái)的工藝CSS,與原始的RESS工藝和傳統(tǒng)的冷卻結(jié)晶飽和溶液工藝非常相似。相比于傳統(tǒng)工藝只能以恒定的成核速率進(jìn)行生產(chǎn),該工藝不僅能通過(guò)溫度控制對(duì)成核速率進(jìn)行控制,還能通過(guò)改變超臨界溶質(zhì)負(fù)載溶液的壓力和壓力梯度進(jìn)行控制[40]。目前該工藝的應(yīng)用實(shí)例非常少,這可能是因?yàn)樵摴に噯未紊a(chǎn)粉體質(zhì)量少,需要的顆粒沉淀裝置體積較大,只能分批次生產(chǎn),而且還有壓力較高、 單次制備時(shí)間長(zhǎng)等缺點(diǎn)。
2.2超臨界CO2作為抗溶劑的工藝
超臨界CO2作為一種抗溶劑時(shí),被廣泛應(yīng)用于生產(chǎn)納米顆?;蚓w藥物??谷軇榇龠M(jìn)和控制在納米尺寸內(nèi)以非晶或結(jié)晶超細(xì)粉體的形式析出提供了獨(dú)特的機(jī)制。超臨界抗溶劑相關(guān)工藝的快速過(guò)飽和也促使許多新結(jié)晶的產(chǎn)生,這也是其他基于超臨界CO2的技術(shù)很難或者無(wú)法實(shí)現(xiàn)的。當(dāng)超臨界CO2被作為抗溶劑時(shí),相關(guān)的工藝包括氣體抗溶劑法(gas anti-solvent, GAS)、 SAS、 氣溶膠噴霧萃取系統(tǒng)(aerosol solvent extraction system, ASES)、 壓縮抗溶劑沉淀(precipitation with compressed fluid antisolvent, PCA)、 SEDS、 強(qiáng)化傳質(zhì)超臨界流體反溶劑(supercritical antisolvent with enhanced mass transfer, SAS-EM)等。
2.2.1 GAS工藝
基于高壓條件下CO2能與多種有機(jī)物互溶的現(xiàn)象,GAS工藝于1989年被提出,其原理是在高壓下超臨界或近臨界CO2通入帶有溶質(zhì)的溶劑中,在與溶劑互溶后,溶液體積膨脹溶解能力下降直至臨界值,導(dǎo)致溶質(zhì)以沉淀顆粒的形式從液相轉(zhuǎn)變?yōu)楣滔啵?1-42]。GAS工藝流程圖如圖4所示。
近年來(lái),超臨界CO2用于食品成分微粉化的研究也比較熱門(mén)[44],GAS工藝被公認(rèn)為最有效的各種藥物或食品成分微粉化方法。該工藝溫度較溫和,與舊微粉化方法相比,溫度敏感的藥物產(chǎn)品的溶劑殘留量非常低,粒徑分布比RESS制備的更窄,且通過(guò)操作條件可以很好地進(jìn)行控制[40]。
基于超臨界CO2的抗溶劑方法為控制各種物質(zhì)的結(jié)晶度和粒徑提供了一種有效的途徑。GAS工藝在食品和藥物工業(yè)中對(duì)物質(zhì)微粉化的地位,但無(wú)法連續(xù)生產(chǎn)的缺點(diǎn)也限制了其在實(shí)際生產(chǎn)中的應(yīng)用。相比之下,更多的研究者將目光轉(zhuǎn)向有霧化過(guò)程的抗溶劑工藝(ASES、 PCA、 SEDS、 SAS-EM、 ASAIS、 AAS),霧化能將溶液分解成超細(xì)液滴,經(jīng)過(guò)干燥后的顆粒的粒徑分布更窄,形狀更規(guī)則,粒徑更小。
2.2.2 SAS工藝
SAS工藝與GAS工藝主要區(qū)別在于是否霧化。為了進(jìn)一步細(xì)化顆粒,增大溶液與抗溶劑接觸面積,將溶液通過(guò)噴嘴霧化后加入釜內(nèi),而SAS工藝本身又是各種應(yīng)用超臨界抗溶劑工藝的總稱(chēng),包括ASES、 PCA、 SEDS、 SAS-EM、 ASAIS、 AAS、 GAS等。根據(jù)能否連續(xù)進(jìn)行產(chǎn)物的微粉化,將SAS工藝分為半連續(xù)和連續(xù)工藝(GAS屬于不連續(xù)SAS工藝)。
半連續(xù)SAS工藝即ASES和PCA工藝。與GAS工藝相比,可以連續(xù)注入溶液和超臨界CO2,這是進(jìn)行大規(guī)模生產(chǎn)的先決條件,該工藝過(guò)程的簡(jiǎn)化圖如圖5所示。
液化CO2經(jīng)高壓泵以一定的流量不斷注入到高壓釜內(nèi),控制容器內(nèi)溫度和壓力在所規(guī)定范圍內(nèi),然后利用高壓泵將溶劑通過(guò)噴嘴霧化噴射到高壓釜內(nèi),持續(xù)幾分鐘,然后以穩(wěn)定流速將帶有溶質(zhì)的溶液通過(guò)噴頭噴射到高壓釜內(nèi)。當(dāng)溶液與超臨界CO2接觸時(shí),溶劑與超臨界CO2發(fā)生互溶致使溶質(zhì)過(guò)飽和,最終溶質(zhì)以固體形態(tài)析出,附著在釜內(nèi)壁。在溶液輸送結(jié)束時(shí)要繼續(xù)通入超臨界CO2以去除殘留溶劑,最后,卸壓并從釜內(nèi)壁收集得到微粉化后的顆粒。
在生產(chǎn)微納米顆粒的過(guò)程中,為了提高超臨界相與液相溶劑之間傳質(zhì)效率,解決產(chǎn)品顆粒團(tuán)聚等問(wèn)題,進(jìn)行了改進(jìn)工藝。SAS-EM工藝通過(guò)在噴嘴處加一超聲場(chǎng),在超聲波的作用下提高超臨界CO2與溶劑之間傳質(zhì)效率并細(xì)化溶液液滴,使最終產(chǎn)品顆粒細(xì)化。Jin等[46]分別使用了SAS-EM和SAS等2種方法制備沙利度胺納米顆粒,并進(jìn)行顆粒尺寸、 溶出度、 結(jié)晶度的比較。結(jié)果表明,使用SAS-EM工藝制備的沙利度胺納米顆粒粒徑更小,溶出度更高,結(jié)晶率更低,而且2種工藝均使沙利度胺產(chǎn)生了從最初的β-多晶態(tài)轉(zhuǎn)變?yōu)榉蔷Е?多晶態(tài)的晶型轉(zhuǎn)變;SEDS工藝除了能提高傳質(zhì)效率, 減少顆粒團(tuán)聚,同時(shí)也會(huì)減少結(jié)晶的干燥時(shí)間。目前SEDS工藝也已被廣泛應(yīng)用到復(fù)合物分散[47-48]、 藥物微納米化等方面。與ASES、 PCA工藝的最大不同是,該工藝中溶液與超臨界CO2在噴灑前會(huì)經(jīng)過(guò)2通道或者3通道的同軸噴嘴提前混合。通常情況下,同軸噴嘴在噴嘴內(nèi)部有一定長(zhǎng)度的混合段,提供更好的預(yù)混合條件。藥物溶液通常沿內(nèi)通道流入,超臨界CO2沿外通道流入,噴嘴簡(jiǎn)化圖如圖6所示。
連續(xù)型SAS工藝,包括霧化與抗溶劑法(atomization and anti-solvent,AAS)和超臨界反溶劑誘導(dǎo)懸浮液的霧化(atomization of supercritical anti-solvent induced suspensions,ASAIS)工藝。AAS工藝類(lèi)似于SEDS工藝,但是SEDS工藝僅僅是通過(guò)同軸噴嘴將溶液霧化后最終留在通有超臨界CO2的高壓釜里,而AAS工藝則是利用在同軸噴嘴將溶液霧化后在近大氣壓下降固體顆粒收集到沉淀容器中。ASAIS工藝是AAS工藝與噴霧干燥的結(jié)合。
在食品或制藥工業(yè)中,噴霧干燥是許多熱敏性材料干燥的首選方法[49]。噴霧干燥過(guò)程包括噴嘴霧化環(huán)節(jié)、 細(xì)化小液滴、 霧化的液滴和干燥氣體混合4個(gè)環(huán)節(jié)。通常情況下使用空氣作為干燥介質(zhì),但當(dāng)溶劑為乙醇等易燃液體或者目標(biāo)產(chǎn)物對(duì)易被空氣氧化時(shí)使用氮?dú)庾鳛楦稍锝橘|(zhì)[50]。在A(yíng)SAIS工藝中,溶液與超臨界CO2通過(guò)同軸噴嘴膨脹噴灑至體積非常小的高壓釜中,通入干燥流體和干燥顆粒并使用旋風(fēng)分離器進(jìn)行收集。
涉及霧化的抗溶劑工藝也有一定的缺陷。半連續(xù)SAS工藝,例如ASES、 PCA、 SEDS、 SAS-EM工藝,由于從干燥過(guò)程開(kāi)始直至收集開(kāi)始前溶劑始終存在于高壓釜中,因此該過(guò)程非常容易產(chǎn)生過(guò)度結(jié)晶的顆粒,導(dǎo)致生產(chǎn)出的藥物顆粒粒徑過(guò)大,不具有較高的結(jié)晶動(dòng)力學(xué)特征,因此不利于控制最終產(chǎn)品的形態(tài)。連續(xù)型SAS工藝則一定程度上解決了以上問(wèn)題,如AAS和ASAIS工藝,與半連續(xù)SAS工藝相比,往往會(huì)產(chǎn)出結(jié)晶度更低的顆粒。因?yàn)樵谌軇┡c抗溶劑混合過(guò)程中,晶體的生長(zhǎng)只在同軸噴嘴內(nèi)進(jìn)行,溶劑在噴出噴嘴后被迅速蒸發(fā),所以連續(xù)型SAS工藝是目前在納米范圍內(nèi)生產(chǎn)超細(xì)粉體的最佳方法,同時(shí)還能靈活操控顆粒形態(tài),因此,連續(xù)型SAS工藝在工業(yè)生產(chǎn)中有良好前景。
2.3超臨界CO2作為輔助介質(zhì)的工藝
超臨界CO2作為溶質(zhì)、共溶劑、共溶質(zhì)等輔助介質(zhì)即添加劑時(shí),可以用于制備納米顆粒、 晶體、 顆粒共沉淀等,從超臨界CO2作為溶劑到作為抗溶劑再到輔助介質(zhì),這些工藝需要的CO2量越來(lái)越少,因此顆粒生成釜需要的容量也越來(lái)越小。
CO2在中等溫度壓力下是一種致密流體,能溶于大多數(shù)有機(jī)物,降低它們的熔點(diǎn)和黏度;它在壓力驟降時(shí)能產(chǎn)生強(qiáng)烈的焦湯效應(yīng),從而使局部溫度迅速降低。同時(shí)超臨界狀態(tài)下的CO2密度接近液體但黏度卻接近氣體,因此兩相(液態(tài)CO2和超臨界CO2)在有較大壓降時(shí),除了會(huì)有體積膨脹還會(huì)產(chǎn)生劇烈的二次爆炸射流,能將目標(biāo)溶液進(jìn)一步霧化。從已有文獻(xiàn)來(lái)看,這也是超臨界CO2作為輔助介質(zhì)制備納米顆?;蚣{米晶體時(shí)的最主要性質(zhì)。超臨界CO2作為輔助介質(zhì)時(shí)的工藝主要有PGSS、 帶鼓泡干燥器的CO2輔助霧化法(carbon dioxide assisted nebulization with bubble dryer, CAN-BD)、 超臨界流體輔助霧化法(supercritical assisted atomization, SAA)、 超臨界輔助膨脹至液體反溶劑法(supercritical-assisted injection in a liquid antisolvent, SAILA)、 SAA-HCM、 膨脹流體減壓至有機(jī)溶劑法(depressurization of an expanded liquid organic solution, DELOS)等。
2.3.1 PGSS工藝
PGSS工藝是Weidner等[51]在1996年發(fā)表的文章中提出的,目前已被廣泛用于各種包合物、 聚合體的制備。超臨界CO2溶解后通過(guò)降低溶質(zhì)的熔點(diǎn)和玻璃化轉(zhuǎn)變溫度起到增塑劑的作用,從而在膨脹過(guò)程過(guò)程中促進(jìn)有機(jī)物分散成小液滴[52]。該工藝的流程為超臨界CO2與熔融有機(jī)物在靜態(tài)混合器中混合;在近大氣壓下經(jīng)過(guò)噴嘴膨脹噴灑到顆粒形成釜,分散成小液滴;小液滴中的超臨界CO2迅速膨脹,局部冷卻快速凝固;結(jié)晶后的產(chǎn)物經(jīng)過(guò)過(guò)濾器或者旋風(fēng)分離器收集。
通過(guò)調(diào)節(jié)熔融物中的超臨界CO2質(zhì)量濃度、沉淀壓力、沉淀溫度、噴嘴尺寸等工藝參數(shù)都能對(duì)產(chǎn)物形態(tài)產(chǎn)生一定影響。Banoic'等[52]利用PGSS工藝,在壓強(qiáng)為18 MPa、 溫度為70 ℃時(shí),以聚乙二醇胡蘿卜渣提取物為涂層材料制得包封率為61.60%~73.73%的褐藻色素微粒。PGSS工藝流程簡(jiǎn)化圖如圖7所示。在食品工業(yè)中PGSS工藝也同樣受重視,Klettenhammer等[53]以乙醇為助溶劑在壓強(qiáng)為30 MPa、 溫度為60 ℃、 CO2體積流量為2 L/h、 時(shí)間為2 h條件下,使用不同質(zhì)量濃度的亞麻油和葵花籽蠟作為包覆材料混合得到什么;在溫度為75 ℃、 時(shí)間為30 min、 壓強(qiáng)分別為10、 20和30 MPa的條件下,制得亞麻油微膠囊。研究發(fā)現(xiàn),在壓強(qiáng)10 MPa時(shí),PGSS的包封率、粉末密度和流動(dòng)性最佳。Tandya等[54]探究工藝、萃取溫度、預(yù)膨脹壓力,噴嘴尺寸對(duì)環(huán)孢素微粉化的影響。結(jié)果表明,通過(guò)RESS和PGSS工藝制得的微米級(jí)環(huán)孢素平均粒徑均小于1 μm,但經(jīng)過(guò)PGSS工藝制備的顆粒質(zhì)量卻明顯高于RESS工藝制備所得。萃取溫度和預(yù)膨脹壓力對(duì)粒徑和顆粒形貌也沒(méi)有顯著影響,但噴嘴直徑增大后,粒徑略有增大,團(tuán)聚度也有所降低。
總的來(lái)說(shuō),PGSS工藝適用于聚合物與活性成分的混合物生產(chǎn)復(fù)合物,因此可能需要進(jìn)一步的純化過(guò)程來(lái)去除不需要的物質(zhì),但是該工藝簡(jiǎn)化了從減壓產(chǎn)生的高速氣體中捕獲目標(biāo)顆粒的步驟,避免了顆粒團(tuán)聚問(wèn)題。除此之外,與其他基于超臨界CO2的技術(shù)相比,PGSS工藝不需要有機(jī)溶劑,但是目標(biāo)物質(zhì)需要處于熔融態(tài)的條件也決定了該工藝不合適熱敏性物質(zhì)的微粉化。
2.3.2 CAN-BD工藝
CAN-BD工藝是對(duì)PGSS工藝的改進(jìn)。該方法將PGSS工藝的應(yīng)用拓展到了任意的水溶性化合物[55]。Hotchkiss等[55]利用CAN-BD制備了粒徑為100~400 nm、 平均粒徑為228 nm的三胺三硝基苯,經(jīng)過(guò)掃描電子顯微鏡和粒徑測(cè)量,發(fā)現(xiàn)多次實(shí)驗(yàn)的結(jié)果吻合性較好。該工藝過(guò)程通常會(huì)將例如蛋白質(zhì)、 無(wú)機(jī)鹽等具有親水性的物質(zhì)溶解在水溶液中,在體積小于1 μL的三通內(nèi)與超臨界CO2混合。混合后的乳狀液經(jīng)過(guò)毛細(xì)管節(jié)流器減壓膨脹成包含大量微小液滴的氣溶膠。然后將氣溶膠引入干燥室,使用加熱后的空氣或氮?dú)膺M(jìn)行干燥??梢酝ㄟ^(guò)調(diào)節(jié)溫度、 壓力、 流量和毛細(xì)管尺寸對(duì)最終產(chǎn)品的形態(tài)進(jìn)行控制;但是如果當(dāng)溶劑是水時(shí),干燥氣溶膠所需要的氣體溫度會(huì)較高,因此該工藝不適用于熱敏性物質(zhì)。在溶劑為醇或者水醇混合物時(shí),干燥溫度為10~25 ℃,是比較溫和的干燥工藝[56-57]。
2.3.3 SAA工藝
相對(duì)于PGSS工藝能更好地控制顆粒形態(tài)和粒徑分布,但是通常需要使用一定量的液體溶劑[58]。大多數(shù)研究者使用SAA工藝制備出的粉體都是亞微米級(jí)[59-60],只有少數(shù)文獻(xiàn)記載使用SAA生產(chǎn)出了納米藥物顆粒[61]。主要改進(jìn)就是使用專(zhuān)門(mén)的溶液混合釜代替微小體積內(nèi)的溶液混合,實(shí)現(xiàn)溶液與超臨界CO2之間的完全混合,在減壓釋放CO2時(shí)會(huì)產(chǎn)生二次霧化,使溶液更充分霧化。影響SAA工藝中顆粒平均粒徑或尺寸的最重要參數(shù)是CO2與溶液進(jìn)料流量之比,也就是氣液比[58,62]。SAA工藝要求超臨界CO2與溶液在溶液混合釜中應(yīng)有足夠的停滯時(shí)間,當(dāng)超臨界CO2進(jìn)料過(guò)快時(shí),溶劑會(huì)與超臨界CO2互溶,產(chǎn)生抗溶劑效應(yīng)導(dǎo)致溶質(zhì)在溶液混合釜中產(chǎn)生沉淀。在液氣比增大時(shí),超臨界CO2溶解于溶液中會(huì)使混合物黏度和表面張力減小,最終顆粒尺寸變小,平均粒徑減??;而當(dāng)液氣比減小時(shí),溶液體積過(guò)大,且在溶液混合釜的低溫下,溶劑完全蒸發(fā)時(shí)間增加,溶質(zhì)析出緩慢。多數(shù)文獻(xiàn)指出,在液氣比為1.8時(shí)最有利于獲得形態(tài)更規(guī)則的顆粒[58-59,62]。溶質(zhì)的質(zhì)量濃度也是非常重要的影響因素,在WU等[58]的研究中發(fā)現(xiàn),紅霉素納米顆粒僅僅在溶質(zhì)質(zhì)量濃度小于40 g/L時(shí)產(chǎn)出。當(dāng)使用SAA工藝生產(chǎn)復(fù)合顆粒時(shí),溶液中的聚合物和藥物質(zhì)量比,聚合物種類(lèi)都會(huì)影響產(chǎn)物的形態(tài)。Adami等[62]分別使用聚乙烯吡咯烷酮(polyvinylpyrrolidone, PVP)、 木犀草素(luteolin, LUT)和棕櫚酰乙醇酰胺(palmitoylethanolamide, PEA)進(jìn)行復(fù)合,并探究了不同的配料質(zhì)量比對(duì)PEA復(fù)合顆粒的影響。結(jié)果表明,PEA和PVP質(zhì)量比為1∶8時(shí)制得顆粒為球形,質(zhì)量比為1∶3、 1∶5時(shí)復(fù)合顆粒形狀不夠理想且有大量的聚合。在使用LUT制備時(shí)PEA和LUT質(zhì)量比為10∶1時(shí)就制備出了準(zhǔn)球形顆粒,這可能與PEA和LUT之間的相互作用有關(guān),也進(jìn)一步說(shuō)明了不同的聚合物對(duì)藥物生產(chǎn)復(fù)合顆粒結(jié)果的影響。
2.3.4 SAA-HCM工藝
蔡美強(qiáng)[63]第一次將水力空化混合器(hydrodynamic cavitation mixer, HCM)引入到SAA工藝,提出了SAA-HCM,成功制備了直徑小于2 μm的球形非晶鹽酸左氧氟沙星顆粒,同時(shí)還制得了能保持溶菌酶生物活性的溶菌酶微顆粒,粒徑為0.2~5 μm,非常適合氣溶膠給藥。 HCM是利用水力空化潰滅時(shí)產(chǎn)生的沖擊波和高速射流混合,能有效促進(jìn)混合器內(nèi)的兩相傳質(zhì)的裝置。PGSS干燥和超臨界CO2輔助噴霧干燥工藝使用了靜態(tài)混合器,也達(dá)到了有效的混合條件[64-65]。超臨界CO2輔助噴霧干燥工藝已被應(yīng)用于制備新型納米藥物和用于診斷和肺部輸送的金納米藥物顆粒[65]。
上述方法需要使用氣旋或過(guò)濾器進(jìn)行納米顆粒的收集,但是當(dāng)納米顆粒在高速氣流中分散時(shí),氣旋并不能有效地進(jìn)行收集,過(guò)濾器收集效率雖然較高;但是,因?yàn)椴荒芊奖愕耐度牍I(yè)生產(chǎn),所以也限制了它在工業(yè)上的應(yīng)用。
為解決上述問(wèn)題,研究者提出了相應(yīng)的技術(shù)改進(jìn)。Campardelli等[66]開(kāi)發(fā)了一種用水相取代氣旋和過(guò)濾器來(lái)收集產(chǎn)品顆粒的技術(shù),即SAILA。水相在捕獲混合物霧化液滴的同時(shí)也作為目標(biāo)產(chǎn)物的抗溶劑。該工藝有2個(gè)先決條件:1)溶質(zhì)必須是不溶于水的,但是需要溶于有機(jī)溶劑; 2)水和有機(jī)溶劑必須是任意互溶的。這里的CO2起共溶劑作用,而水則是抗溶劑。該技術(shù)也被應(yīng)用到了純化合物的微粉化、 聚合物與藥物的共沉淀方面[67-69]。
2.3.5 DELOS工藝
另一個(gè)有效處理納米顆粒難以收集難題的案例是DELOS。該工藝基于超臨界CO2減壓會(huì)產(chǎn)生焦湯效應(yīng)的性質(zhì),使溶解的有機(jī)物溶質(zhì)達(dá)到過(guò)飽和,從而析出微小尺寸的顆粒。當(dāng)超臨界CO2在溫度為25 ℃、 壓強(qiáng)為10 MPa等相對(duì)溫和的條件下溶解到溶劑中達(dá)到飽和時(shí),此時(shí)對(duì)混合物減壓到大氣壓可產(chǎn)生近100 ℃的溫降,溶液顯著達(dá)到過(guò)飽和,產(chǎn)生大量的晶核,析出粒徑分布比較窄的亞微米或微米級(jí)的晶體顆粒[55]。目前對(duì)于該工藝相關(guān)的文獻(xiàn)并不多,還處于探索階段[70-71]。
超臨界CO2作為輔助介質(zhì)應(yīng)用于純有機(jī)物或聚合物,生產(chǎn)微納米顆粒無(wú)疑是成功、 有效的,并且在眾多領(lǐng)域都有應(yīng)用。目前最主要難題是納米顆粒的收集。有研究人員通過(guò)降低溶劑質(zhì)量濃度來(lái)使產(chǎn)物顆粒粒徑分布變窄,方便旋風(fēng)或者過(guò)濾器收集;但過(guò)濾器更多用于實(shí)驗(yàn),實(shí)際生產(chǎn)并不能方便應(yīng)用,因此出現(xiàn)了在液相捕捉收集產(chǎn)物納米顆粒的技術(shù)。這些工藝在應(yīng)用時(shí)還需要進(jìn)一步過(guò)濾或者純化,避免了噴霧干燥和顆粒過(guò)濾收集,因此也更適合于工業(yè)連續(xù)生產(chǎn)。
3 總結(jié)
通過(guò)超臨界CO2在工藝流程中的不同作用,將眾多工藝及變種歸為超臨界CO2作為溶劑、 抗溶劑和輔助介質(zhì)(溶質(zhì)、 共溶劑、 共溶質(zhì))3種工藝,并對(duì)3種工藝進(jìn)行了現(xiàn)狀、 影響因素和優(yōu)缺點(diǎn)的討論。
1)超臨界CO2在超細(xì)粉體的生產(chǎn)工藝中可以發(fā)揮多種特定的作用(溶劑、 抗溶劑、 輔助介質(zhì)),因此超臨界CO2制備超細(xì)粉體的工藝在本質(zhì)上是相通的。通常決定使用哪一種超臨界工藝更多取決于目標(biāo)物質(zhì)在超臨界CO2和溶劑中的溶解度以及該物質(zhì)在不同工藝條件下的表現(xiàn)。作為某一系列基于超臨界CO2的工藝的典型缺點(diǎn),有時(shí)可以作為另一類(lèi)超臨界CO2工藝的優(yōu)勢(shì)(對(duì)某物質(zhì)的難溶性往往能在其他工藝中轉(zhuǎn)化為出色的抗溶劑能力)。所有的超臨界工藝都是傳統(tǒng)制備工藝的有效替代。
2)在超臨界工藝中,對(duì)產(chǎn)物顆粒的尺寸、 粒徑分布、 形態(tài)和結(jié)晶度產(chǎn)生影響的操作參數(shù)有眾多相同之處。溫度、 壓力、 噴嘴的幾何結(jié)構(gòu)在所有涉及霧化的工藝中起著重要的作用,因此雖然目前仍未有明確的模型來(lái)計(jì)算和預(yù)測(cè)超臨界工藝的過(guò)程。根據(jù)已有成果來(lái)看,通過(guò)調(diào)節(jié)操作條件能完成對(duì)粒徑、 粒徑分布、 形態(tài)和結(jié)晶度等的控制,有利于對(duì)最終產(chǎn)品的質(zhì)量和完整性進(jìn)行控制和優(yōu)化。
3)對(duì)于工藝中的缺點(diǎn),如針對(duì)某些極性顆粒在使用旋風(fēng)分離器或過(guò)濾器時(shí)出現(xiàn)靜電難以有效收集的問(wèn)題,可以通過(guò)外加電場(chǎng)的方法進(jìn)行干擾,然后進(jìn)行顆粒收集。針對(duì)使用液相收集的方法在分離純化時(shí),有雜質(zhì)殘留影響產(chǎn)品最終效力的問(wèn)題,可以選用液相物質(zhì)。對(duì)于噴嘴容易堵塞的情況,不容易被過(guò)早析出的結(jié)晶堵塞的噴嘴或霧化結(jié)構(gòu)也亟需發(fā)明并生產(chǎn)。
4)超臨界CO2制備超細(xì)粉體的工藝目前仍處于探索階段,雖然以上所有基于超臨界CO2的制備超細(xì)粉體的工藝都有成功的實(shí)驗(yàn)室結(jié)果,但是在實(shí)際的生產(chǎn)中一些問(wèn)題仍然阻礙該技術(shù)廣泛運(yùn)用。其中就包括了該技術(shù)仍停留在通過(guò)實(shí)驗(yàn)室結(jié)果來(lái)定性分析各種因素對(duì)最終產(chǎn)物的影響,同時(shí)也缺少具有代表性和可靠性的模型來(lái)描述和預(yù)測(cè)該技術(shù)運(yùn)行過(guò)程中的相平衡、 物化性質(zhì)、 流體動(dòng)力學(xué)、 結(jié)晶與生長(zhǎng)過(guò)程。這些問(wèn)題是所有涉及納米領(lǐng)域的工藝的共同難題,應(yīng)嘗試從相關(guān)科學(xué)的深入研究以及跨領(lǐng)域合作等方面尋求解決辦法。
利益沖突聲明(Conflict of Interests)
所有作者聲明不存在利益沖突。
All authors disclose no relevant conflict of interests.
作者貢獻(xiàn)(Author’s Contributions)
苗華明、 叢日剛和魏振文參與了論文結(jié)構(gòu)與主題設(shè)計(jì),耿奎發(fā)進(jìn)行了文獻(xiàn)搜集與文章撰寫(xiě),何燕與吳龔鵬進(jìn)行了審閱與修改。所有作者均閱讀并同意了最終稿件的提交。
The topic and structure of the paper are conceived by MIAO Huaming, CONG Rigang and WEI Zhenwen. GENG Kuifa was responsible for reference collection and manuscript preparation. Papers are reviewed and revised by HE Yan and WU Gongpeng. All authors have read the last version of paper and consented for submission.
參考文獻(xiàn)(References)
[1]KAMRANIAN MARNANI A, BCK A, ANTONYUK S, et al. The effect of the presence of very cohesive Geldart C ultra-fine particles on the fluidization of Geldart A fine particle beds[J]. Processes, 2019, 7(1): 35.
[2]BAI M, LIU Z H, ZHOU L J, et al. Preparation of ultrafine rhenium powders by CVD hydrogen reduction of volatile rhenium oxides[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(2): 538-542.
[3]HUANG Z, LIU J H, DENG X G, et al. Low temperature molten salt preparation of molybdenum nanoparticles[J]. International Journal of Refractory Metals and Hard Materials, 2016, 54: 315-321.
[4]NERSISYAN H H, LEE J H, WON C W. The synthesis of nanostructured molybdenum under self-propagating high-temperature synthesis mode[J]. Materials Chemistry and Physics, 2005, 89(2/3): 283-288.
[5]ZHU X Y, HU P, XING H R, et al. Preparation of nanoporous flake molybdenum powder by sol-gel reduction method[J]. Materials Characterization, 2022, 187: 111879.
[6]WANG Y J, LIU W L, YUAN J J, et al. A novel method for preparing ultrafine molybdenum-rhenium alloy powders[J]. International Journal of Refractory Metals and Hard Materials, 2023, 117: 106429.
[7]SOBHANI A, SALIMI E. Low temperature preparation of diopside nanoparticles: in-vitro bioactivity and drug loading evaluation[J]. Scientific Reports, 2023, 13: 16330.
[8]王浩, 譚可, 崔凱, 等. 濕化學(xué)法制備先進(jìn)陶瓷粉體的研究現(xiàn)狀[J]. 現(xiàn)代技術(shù)陶瓷, 2023, 44(4): 303-315.
WANG H, TAN K, CUI K, et al. Research status of advanced ceramic powders prepared by wet chemical method[J]. Advanced Ceramics, 2023, 44(4): 303-315.
[9]EL MANSOURI A, GUETTE A, BERTRAND N, et al. Fluidized bed chemical vapor deposition of pyrocarbon on various types of powders: heat and mass transfer analyses and nanotexture characterization[J]. Chemical Engineering Journal, 2023, 468: 143544.
[10]GENG Y Q, ZHAO Y X, YUE F, et al. A novel method to synthesize pure-phase Si2N2O powders in a fluidized bed reactor[J]. Ceramics International, 2022, 48(22): 33066-33071.
[11]AZIMI B, TAHMASEBPOOR M, SANCHEZ-JIMENEZ E, et al. Multicycle CO2 capture activity and fluidizability of Al-based synthesized CaO sorbents[J]. Chemical Engineering Journal, 2019, 358: 679-690.
[12]RAO N T, OUMER A N, JAMALUDIN U K. State-of-the-art on flow and heat transfer characteristics of supercritical CO2 in various channels[J]. The Journal of Supercritical Fluids, 2016, 116: 132-147.
[13]TRK M. Particle synthesis by rapid expansion of supercritical solutions (RESS): current state, further perspectives and needs[J]. Journal of Aerosol Science, 2022, 161: 105950.
[14]GALLAGHER P M, COFFEY M P, KRUKONIS V J, et al. Gas anti-solvent recrystallization of RDX: formation of ultra-fine particles of a difficult-to-comminute explosive[J]. The Journal of Supercritical Fluids, 1992, 5(2): 130-142.
[15]PENG H H, WANG Z D, GUAN Y X, et al. Supercritical CO2 assisted preparation of chitosan-based nano-in-microparticles with potential for efficient pulmonary drug delivery[J]. Journal of CO2 Utilization, 2021, 46: 101486.
[16]ONO K, SAKAI H, TOKUNAGA S, et al. Encapsulation of lactoferrin for sustained release using particles from gas-saturated solutions[J]. Processes, 2020, 9(1): 73.
[17]RUIZ H K, SERRANO D R, CALVO L, et al. Current treatments for COVID-19: application of supercritical fluids in the manufacturing of oral and pulmonary formulations[J]. Pharmaceutics, 2022, 14(11): 2380.
[18]YUAN R, WEN H, ZENG L, et al. Supercritical CO2 assisted solvothermal preparation of CoO/graphene nanocomposites for high performance lithium-ion batteries[J]. Nanomaterials, 2021, 11(3): 694.
[19]李澤朕, 劉昊, 徐沛瑤, 等. 超臨界抗溶劑法制備金屬氧化物納米顆粒的研究進(jìn)展[J]. 材料導(dǎo)報(bào), 2022, 36(3): 125-130.
LI Z Z, LIU H, XU P Y, et al. Progress in development of metal oxide nanoparticles by supercritical anti-solvent method[J]. Materials Reports, 2022, 36(3): 125-130.
[20]JIANG N N, WANG Y W, LI D Y, et al. Carbon-doped metal oxide nanoparticles prepared from metal nitrates in supercritical CO2-enabled polymer nanoreactors[J]. Particle amp; Particle Systems Characterization, 2019, 36(9): 1900016.
[21]劉霖. 納米晶鈰鋯氧化物固溶體的SAS合成及機(jī)理研究[D]. 天津: 天津大學(xué), 2009.
LIU L. Synthesis and mechanism of nanocrystalline ceria-zirconia solid solution by SAS process[D]. Tianjin: Tianjin University, 2009.
[22]SAKABE J, UCHIDA H. Nanoparticle size control of theophylline using rapid expansion of supercritical solutions (RESS) technique[J]. Advanced Powder Technology, 2022, 33(1): 103413.
[23]FRANCO P, DE MARCO I. Nanoparticles and nanocrystals by supercritical CO2-assisted techniques for pharmaceutical applications: a review[J]. Applied Sciences, 2021, 11(4): 1476.
[24]SODEIFIAN G, SAJADIAN S A, DERAKHSHESHPOUR R. CO2 utilization as a supercritical solvent and supercritical antisolvent in production of sertraline hydrochloride nanoparticles[J]. Journal of CO2 Utilization, 2022, 55: 101799.
[25]M A V ,O. O P .Using supercritical fluid technologies to prepare micro- and nanoparticles[J]. Russian Journal of Physical Chemistry A, 2021, 95(3): 407-417.
[26]MATSON D W, FULTON J L, PETERSEN R C, et al. Rapid expansion of supercritical fluid solutions: solute formation of powders, thin films, and fibers[J]. Industrial amp; Engineering Chemistry Research, 1987, 26(11): 2298-2306.
[27]KARIMI M, RAOFIE F. Micronization of vincristine extracted from Catharanthus roseus by expansion of supercritical fluid solution[J]. The Journal of Supercritical Fluids, 2019, 146: 172-179.
[28]SODEIFIAN G, ALI SAJADIAN S, DANESHYAN S. Preparation of aprepitant nanoparticles (efficient drug for coping with the effects of cancer treatment) by rapid expansion of supercritical solution with solid cosolvent (RESS-SC) [J]. The Journal of Supercritical Fluids, 2018, 140: 72-84.
[29]HOSSEINPOUR M, VATANARA A, ZARGHAMI R. Formation and characterization of beclomethasone dipropionate nanoparticles using rapid expansion of supercritical solution[J]. Advanced Pharmaceutical Bulletin, 2015, 5(3): 343-349.
[30]KARIMI M, RAOFIE F. Preparation of withaferin a nanoparticles extracted from withania somnifera by the expansion of supercritical fluid solution[J]. Phytochemical Analysis: PCA, 2020, 31(6): 957-967.
[31]ROSTAMIAN H, LOTFOLLAHI M N. Production and characterization of ultrafine aspirin particles by rapid expansion of supercritical solution with solid co-solvent (RESS-SC): expansion parameters effects[J]. Particulate Science and Technology, 2020, 38(5): 617-625.
[32]HUANG Z, SUN G B, CHIEW Y C, et al. Formation of ultrafine aspirin particles through rapid expansion of supercritical solutions (RESS)[J]. Powder Technology, 2005, 160(2): 127-134.
[33]郝明潔. 超臨界流體藥物微細(xì)顆粒制備裝置研制及應(yīng)用[D]. 青島: 青島科技大學(xué), 2020.
HAO M J. Development and application of supercritical fluid pharmaceutical fine particle preparation device[D].Qingdao: Qingdao University of Science amp; Technology, 2020.
[34]KAYRAK D, AKMAN U, HORTASU . Micronization of ibuprofen by RESS[J]. The Journal of Supercritical Fluids, 2003, 26(1): 17-31.
[35]董超. 超臨界乳液萃取法制備載藥微囊工藝基礎(chǔ)研究[D]. 大連: 大連理工大學(xué), 2019.
DONG C. A fundamental study of preparing drug-loaded microcapsules by supercritical fluid extraction of emulsions[D]. Dalian: Dalian University of Technology, 2019.
[36]XIANG S T, CHEN B Q, KANKALA R K, et al. Solubility measurement and RESOLV-assisted nanonization of gambogic acid in supercritical carbon dioxide for cancer therapy[J]. The Journal of Supercritical Fluids, 2019, 150: 147-155.
[37]RAZMIMANESH F, SODEIFIAN G, ALI SAJADIAN S. An investigation into Sunitinib malate nanoparticle production by US- RESOLV method: effect of type of polymer on dissolution rate and particle size distribution[J]. The Journal of Supercritical Fluids, 2021, 170: 105163.
[38]SODEIFIAN G, ALI SAJADIAN S. Utilization of ultrasonic-assisted RESOLV (US-RESOLV) with polymeric stabilizers for production of amiodarone hydrochloride nanoparticles: optimization of the process parameters[J]. Chemical Engineering Research and Design, 2019, 142: 268-284.
[39]YEKEFALLAH M, RAOFIE F. Preparation of stable nanosuspensions from asplenium scolopendrium leaves via rapid expansion of supercritical solution into aqueous solutions (RESSAS)[J]. Journal of Drug Delivery Science and Technology, 2021, 64: 102566.
[40]PADRELA L, RODRIGUES M A, DUARTE A, et al. Supercritical carbon dioxide-based technologies for the production of drug nanoparticles/nanocrystals: a comprehensive review[J]. Advanced Drug Delivery Reviews, 2018, 131: 22-78.
[41]ESFANDIARI N, GHOREISHI S M. Ampicillin nanoparticles production via supercritical CO2 gas antisolvent process[J]. AAPS PharmSciTech, 2015, 16(6): 1263-1269.
[42]ULKER Z, ERKEY C. An advantageous technique to load drugs into aerogels: gas antisolvent crystallization inside the pores[J]. The Journal of Supercritical Fluids, 2017, 120: 310-319.
[43]LIU G J, LI J J, DENG S M. Applications of supercritical anti-solvent process in preparation of solid multicomponent systems[J]. Pharmaceutics, 2021, 13(4): 475.
[44]TEMELLI F. Perspectives on the use of supercritical particle formation technologies for food ingredients[J]. The Journal of Supercritical Fluids, 2018, 134: 244-251.
[45]YOON T J, SON W S, PARK H J, et al. Tetracycline nanoparticles precipitation using supercritical and liquid CO2 as antisolvents[J]. The Journal of Supercritical Fluids, 2016, 107: 51-60.
[46]JIN H Y, HEMINGWAY M, GUPTA R B, et al. Preparation of thalidomide nano-flakes by supercritical antisolvent with enhanced mass transfer[J]. Particuology, 2012, 10(1): 17-23.
[47]KHAIRUTDINOV V F, KHABRIEV I S, GUMEROV F M, et al. Dispersion of the thermodynamically immiscible polypropylene and ethylene-propylene triple synthetic rubber polymer blends using supercritical SEDS process: effect of operating parameters[J]. Energies, 2022, 15(17): 6432.
[48]KHAIRUTDINOV V F, KHABRIEV I S, GUMEROV F M, et al. Blending of the thermodynamically incompatible polyvinyl chloride and high-pressure polyethylene polymers using a supercritical fluid anti-solvent method (SEDS) dispersion process[J]. Polymers, 2023, 15(9): 1986.
[49]KAUSHIKA P, JAYMIN P, SHREERAJ S. Development of delayed release oral formulation comprising esomeprazole spray dried dispersion utilizing design of experiment as an optimization strategy[J]. AAPS PharmSciTech, 2023, 24(7): 186-186.
[50]BOEL E, KOEKOEKX R, DEDROOG S, et al. Unraveling particle formation: from single droplet drying to spray drying and electrospraying[J]. Pharmaceutics, 2020, 12(7): 625.
[51]WEIDNER E, STEINER R, KNEZ Z. Powder generation from polyethyleneglycols with compressible fluids[M]//High Pressure Chemical Engineering, Proceedings of the 3rd International Symposium on High Pressure Chemical Engineering. Amsterdam: Elsevier, 1996: 223-228.
[52]BANOIC' M, COLNIK M, KERGET M, et al. Formation and characterization of fucus virsoides J. agardh pigment-polyethylene glycol microparticles produced using PGSS process[J]. Applied Sciences, 2022, 12(22): 11496.
[53]KLETTENHAMMER S, FERRENTINO G, ZENDEHBAD H S, et al. Microencapsulation of linseed oil enriched with carrot pomace extracts using particles from gas saturated solutions (PGSS) process[J]. Journal of Food Engineering, 2022, 312: 110746.
[54]TANDYA A, DEHGHANI F, FOSTER N R. Micronization of cyclosporine using dense gas techniques[J]. The Journal of Supercritical Fluids, 2006, 37(3): 272-278.
[55]HOTCHKISS P J, WIXOM R R, TAPPAN A S, et al. Nanoparticle triaminotrinitrobenzene fabricated by carbon dioxide assisted nebulization with a bubble dryer[J]. Propellants, Explosives, Pyrotechnics, 2014, 39(3): 402-406.
[56]HUANG E T S, CHANG H Y, LIANG C D, et al. Fine particle pharmaceutical manufacturing using dense carbon dioxide mixed with aqueous or alcoholic solutions[M]//ACS Symposium Series. Washington, DC: American Chemical Society, 2003: 324-338.
[57]REVERCHON E, SPADA A. Erythromycin micro-particles produced by supercritical fluid atomization[J]. Powder Technology, 2004, 141(1/2): 100-108.
[58]WU H T, CHEN H C, LEE H K. Controlled release of theophylline-chitosan composite particles prepared using supercritical assisted atomization[J]. Brazilian Journal of Chemical Engineering, 2019, 36(2): 895-904.
[59]I Y Z, M A V, V A G, et al. Micronization of adipic acid via supercritical antisolvent precipitation[J]. Russian Journal of Physical Chemistry B, 2023, 16(7): 1242-1252.
[60]PENG H H, HONG D X, GUAN Y X, et al. Preparation of pH-responsive DOX-loaded chitosan nanoparticles using supercritical assisted atomization with an enhanced mixer[J]. International Journal of Pharmaceutics, 2019, 558: 82-90.
[61]REVERCHON E. Supercritical-assisted atomization to produce micro- and/or nanoparticles of controlled size and distribution[J]. Industrial amp; Engineering Chemistry Research, 2002, 41(10): 2405-2411.
[62]ADAMI R, LIPAROTI S, DI CAPUA A, et al. Production of PEA composite microparticles with polyvinylpyrrolidone and luteolin using supercritical assisted atomization[J]. The Journal of Supercritical Fluids, 2019, 143: 82-89.
[63]蔡美強(qiáng). 水力空化混合器強(qiáng)化超臨界流體輔助霧化制備超細(xì)微粒的研究[D]. 杭州: 浙江大學(xué), 2007.
CAI M Q. Supercritical fluid assisted atomization introduced by hydrodynamic cavitation mixer (SAA-HCM) for microparticles preparation[D]. Hangzhou: Zhejiang University, 2007.
[64]MARTN , WEIDNER E. PGSS-drying: mechanisms and modeling[J]. The Journal of Supercritical Fluids, 2010, 55(1): 271-281.
[65]AARON O, M K R, LUIS P. Amorphization versus cocrystallization of celecoxib-tramadol hydrochloride using CO2-assisted nano-spray drying[J]. Journal of CO2 Utilization, 2023, 73.
[66]CAMPARDELLI R, ADAMI R, DELLA PORTA G, et al. Nanoparticle precipitation by supercritical assisted injection in a liquid antisolvent[J]. Chemical Engineering Journal, 2012, 192: 246-251.
[67]TRUCILLO P, CAMPARDELLI R. Production of solid lipid nanoparticles with a supercritical fluid assisted process[J]. The Journal of Supercritical Fluids, 2019, 143: 16-23.
[68]PALAZZO I, CAMPARDELLI R, SCOGNAMIGLIO M, et al. Zein/luteolin microparticles formation using a supercritical fluids assisted technique[J]. Powder Technology, 2019, 356: 899-908.
[69]PALAZZO I, TRUCILLO P, CAMPARDELLI R, et al. Antioxidants entrapment in polycaprolactone microparticles using supercritical assisted injection in a liquid antisolvent[J]. Food and Bioproducts Processing, 2020, 123: 312-321.
[70]GIMENO M, VENTOSA N, SALA S, et al. Use of 1, 1, 1, 2-tetrafluoroethane (R-134a)-expanded liquids as solvent media for ecoefficient particle design with the DELOS crystallization process[J]. Crystal Growth amp; Design, 2006, 6(1): 23-25.
[71]MUNT M, VENTOSA N, SALA S, et al. Solubility behaviors of ibuprofen and naproxen drugs in liquid “CO2-organic solvent” mixtures[J]. The Journal of Supercritical Fluids, 2008, 47(2): 147-153.
Progress in preparation of ultrafine powder by supercritical carbon dioxide
GENG Kuifa1, WU Gongpeng1, MIAO Huaming2, CONG Rigang2, WEI Zhenwen3, HE Yan1
(1. College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China;
2. Dijia Pharmaceutical Group Company Limited , Weihai 264200, China;
3. Qingdao Doright Energy Saving Equipment Company Limited, Qingdao 266060, China)
Abstract
Significance The production of ultrafine powders from supercritical CO2 has generated considerable scientific and technological attention due to its eco-friendliness, safety, elevated product purity, and regulated particle morphology, thus, it presenting enormous potential for medicinal, chemical, and material science applications. Classic methods for producing ultrafine powders comprise spray drying, freeze drying, solvent evaporation, and granulation flow. However, traditional processes for obtaining ultrafine powders often produce powders with significant drawbacks, such as toxic solvent residues, irregular particle morphology, and a wide particle size distribution. Numerous studies have shown that supercritical fluid preparation of ultrafine powders can overcome the above shortcomings, and thus has become a research hotspot in the past decade.
Progress To date, the preparation of ultrafine powders using supercritical CO2 has evolved into various processes. The initial method, invented by Matson Dean in 1987, was the rapid expansion of supercritical solution (RESS). However, as the need for ultrafine powder preparation increased, various processes based on the RESS method, such as supercritical fluid antisolvent and gas-saturated solution, were gradually developed in 2015, Mohsen Hosseinpour et al. used RESS to successfully reduce the particle size of beclomethasone dipropionate, obtaining particles with an average particle size ranging from 64.1~294 nm and the shape of the processed particles was more regular. However, RESS was limited by the solubility of the prepared substance in supercritical CO2. Therefore, some other processes have been proposed and applied to preparing ultrafine powders.In order to prevent agglomeration of the wetted particles due to gravitational forces of various physicochemical properties including VDW(Van der Waals’ force) and surface tension of the liquid. In 2021, Razmimanesh et al used the US-RESOLV (ultrasonic-assisted rapid expansion of a supercritical CO2 solution) method by incorporating ultrasonic waves for the treatment of the suspension. High amplitude sound waves were generated by high power frequency ultrasound and propagated into the liquid medium to produce alternating high and low pressure cycles. In this process, the liquid medium because of the acoustic vibration generates small vacuum bubbles and continuously absorbs the energy in the acoustic wave until it can not be absorbed, then a small violent implosion will occur, the liquid jet generated by the implosion can effectively prevent the particles from agglomerating. In 2019 Renata Adam et al. used poly vinyl pyrrolidone (PVP) and lu teolin (LUT) to reduce the crystallisation tendency of palmitoyl ethanol amide (PEA) by supercritical assisted atomisation (SAA) co-precipitation under different process parameters and obtained particles with an average particle size of 400 nm and spherical particle morphology. So far, most of the powders prepared by researchers using the SAA process are submicron in size, and only a few documents have documented the production of drug nanoparticles using SAA. The method improves the mixing efficiency between supercritical CO2 and aqueous solutions. The main improvement is the use of specialized solution mixing kettles instead of solution mixing in a tiny volume, such as the CAN-BD, to achieve complete mixing between the solution and supercritical CO2. This allows for fuller atomization of the solution, as the decompression of CO2 from supercritical CO2-saturated droplets results in secondary atomization. Nina et al used solution-enhanced dispersion by supercritical CO2 (SEDS) for the preparation of well-defined and nitrate-loaded various C-doped metal oxide spherical nanoparticles with particle sizes ranging from 60 to 160 nm . Since the solvent is present in the autoclave from the beginning of the drying process until the start of collection, the process is very prone to produce over-crystallized particles. This can result in the production of drug particles that are too large in size and do not have high crystallization kinetics, and therefore are not conducive to controlling the morphology of the final product.
Conclusions and Prospects Supercritical CO2 can play a variety of specific roles in the production process of ultrafine powders (solvent, anti-solvent, auxiliary media), so the processes for the preparation of ultrafine powders with supercritical CO2 are essentially similar. Often the decision on which supercritical process to use depends more on the solubility of the target substance in supercritical CO2 and solvent and how the substance behaves under different process conditions. Disadvantages that are typical for one series of supercritical CO2-based processes can sometimes be used as advantages for another type of supercritical CO2 process (insolubility of a substance can often be translated into excellent solvent resistance in other processes). All supercritical processes are valid alternatives to conventional milling processes. The preparation of ultrafine powders using supercritical CO2 remains exploratory. Successful laboratory results are achieved for all processes above utilizing supercritical CO2. However, fundamental obstacles to the widespread adoption of this technology persist due to unresolved issues during actual production. These limitations stem from the qualitative analysis of factors affecting the final product through laboratory results, as well as the lack of a reliable and representative model to describe and predict the operation of technology. This includes phase equilibria, physical and chemical properties, fluid dynamics, crystallization, and growth processes. These challenges are pervasive in all nanotechnology processes and call for solutions through extensive research in related fields and cross-disciplinary cooperation.
Keywords: supercritical carbon dioxide; nanoparticle; ultrafine powder
(責(zé)任編輯:武秀娟)
收稿日期: 2023-10-09,修回日期:2023-12-25,上線(xiàn)日期:2024-01-17。
基金項(xiàng)目:國(guó)家自然科學(xué)基金項(xiàng)目,編號(hào):52336003;山東省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目,編號(hào):2022CXGC020504;山東省泰山學(xué)者特聘專(zhuān)家工程項(xiàng)目,編號(hào):ts20190937。
第一作者簡(jiǎn)介:耿奎發(fā)(1999—),男,碩士生,研究方向?yàn)榉垠w材料。E-mail: geng13046495227@163.com。
通信作者簡(jiǎn)介:何燕(1973—),女,教授,博士,泰山學(xué)者,博士生導(dǎo)師,研究方向?yàn)榧{米材料。E-mail: heyanqustjd@163.com。