• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      表面修飾提升CsPbBr3鈣鈦礦納米晶的穩(wěn)定性

      2024-09-29 00:00:00徐天成李金凱劉宗明
      中國(guó)粉體技術(shù) 2024年5期
      關(guān)鍵詞:天冬氨酸鈣鈦礦

      摘要:【目的】分析不同配體添加量對(duì)CsPbBr3鈣鈦礦納米晶表面修飾后的光學(xué)性能影響,實(shí)現(xiàn)納米晶穩(wěn)定性和光學(xué)性能提升。【方法】通過(guò)水相合成方法合成CsPbBr3鈣鈦礦納米晶,制備過(guò)程原位引入短碳鏈的L-天冬氨酸(L-aspartate,L-Asp)和油胺(oleylamine,OAm)配體對(duì)納米晶的表面進(jìn)行修飾,并研究Cs4PbBr6向CsPbBr3的晶相轉(zhuǎn)變機(jī)制?!窘Y(jié)果】L-Asp和OAm配體均勻吸附于納米晶表面,使納米晶在水中具有優(yōu)異的分散性,且結(jié)晶性良好;CsPbBr3鈣鈦礦納米晶的最大發(fā)射波長(zhǎng)為517 nm處,半峰寬為17 nm,分散在水中11 h后依舊能夠具有綠色發(fā)射且發(fā)射峰位沒(méi)有明顯移動(dòng)?!窘Y(jié)論】經(jīng)L-Asp和OAm配體修飾的CsPbBr3鈣鈦礦納米晶在保持優(yōu)異光學(xué)性能的同時(shí)還具有良好的溶液穩(wěn)定性。

      關(guān)鍵詞:鈣鈦礦;納米晶;表面修飾;光學(xué)性能;L-天冬氨酸;油胺

      中圖分類號(hào):TN384;TB4文獻(xiàn)標(biāo)志碼:A

      引用格式:

      徐天成,李金凱,劉宗明.表面修飾提升CsPbBr3鈣鈦礦納米晶的穩(wěn)定性[J].中國(guó)粉體技術(shù),2024,30(5):1-8.

      XU Tiancheng,LI Jinkai,LIU Zongming.Surface modification strategy improves stability of CsPbBr3 perovskite nanocrystals[J].China Powder Science and Technology,2024,30(5):1?8.

      近年來(lái),全無(wú)機(jī)鹵化物鈣鈦礦(CsPbX3,X=Cl,Br,I)納米晶作為一種納米級(jí)復(fù)合材料引起了廣大材料科學(xué)家的關(guān)注。CsPbX3具有高光致發(fā)光量子產(chǎn)率、極窄的半峰寬、整個(gè)可見(jiàn)光區(qū)域的可調(diào)諧發(fā)射和高載流子遷移率,迅速成為光電子器件中最有前途的材料之一[1-7]。鈣鈦礦的缺陷以淺缺陷態(tài)能級(jí)為主,具有優(yōu)異的缺陷容忍度,導(dǎo)致輻射復(fù)合比例較高[8]。與傳統(tǒng)的Ⅲ-Ⅴ族納米晶相比,CsPbX3納米晶具有更高的光致發(fā)光量子產(chǎn)率(photoluminescence quantum yield,PLQY),是一種非常有前景的照明和顯示發(fā)光材料[9]。

      由于鈣鈦礦材料獨(dú)特的性質(zhì),在水溶液中的穩(wěn)定性較低,因此通常需要在非極性有機(jī)溶劑中進(jìn)行合成,以避免其分解。同時(shí),為了改善穩(wěn)定性,需要對(duì)鈣鈦礦材料的表面進(jìn)行疏水基團(tuán)的修飾,大大制約了鈣鈦礦納米晶在水相環(huán)境中的應(yīng)用。為了克服這些缺點(diǎn),研究人員不斷探索綠色、簡(jiǎn)便的水相合成方法,以期直接合成具有特定功能的鈣鈦礦納米晶。傳統(tǒng)的合成方法通常會(huì)努力避免水的存在,以確保不對(duì)鈣鈦礦納米晶的結(jié)構(gòu)和性能產(chǎn)生不良影響,因?yàn)殁}鈦礦納米晶對(duì)水非常敏感。最近的研究顯示,水的存在并非總是不利的。例如,Zhang等[10]的研究發(fā)現(xiàn),運(yùn)用配體輔助再沉淀法合成CsPbBr3納米晶時(shí),加入少量水不僅能夠獲得穩(wěn)定的產(chǎn)物,還能夠提高產(chǎn)物的結(jié)晶度和光致發(fā)光量子產(chǎn)率。隨后的研究顯示,水的引入可能會(huì)改變納米晶的表面性質(zhì)和結(jié)晶環(huán)境,例如表面配體密度、前驅(qū)體(precurser)含量和生長(zhǎng)取向等,進(jìn)而誘導(dǎo)形成不同尺寸和形貌的鈣鈦礦納米晶,并有效調(diào)控其發(fā)射波長(zhǎng)。這一發(fā)現(xiàn)為開(kāi)發(fā)水相合成鈣鈦礦納米晶提供了新的思路和可能性。Jana等[11]研究發(fā)現(xiàn)了一種在酸性和堿性介質(zhì)中利用水相合成法制備多種混合和全無(wú)機(jī)鹵化物鈣鈦礦的方法。Liu等[12]在pH=9的二甲基甲酰胺(dimethylformamide,DMF)溶劑中,溶解PbBr2和CH3NH3Br(MABr)的混合物,制備CH3NH3PbBr3(MAPbBr3)鈣鈦礦,隨后經(jīng)過(guò)水誘導(dǎo)得到MAPbBr3@PbBr(OH)復(fù)合體材料。令人驚訝的是,即使將該復(fù)合材料在水中浸泡1 a,其PLQY仍保持在初始值的90%。Zhu等[13]開(kāi)發(fā)了一種在純水中制備單分散全無(wú)機(jī)鈣鈦礦納米晶的方法,在合成過(guò)程中,證實(shí)了4-溴丁酸和油胺(oleylamine,OAm)共同作用可有效實(shí)現(xiàn)CsPbBr3鈣鈦礦納米晶在水中的原位鈍化,并保持高效發(fā)光性能和穩(wěn)定性。經(jīng)過(guò)96 h的水相分散后,納米晶的熒光特性依然穩(wěn)定。這一方法成功地解決了鈣鈦礦納米晶在極性溶劑中易分解的問(wèn)題。制備過(guò)程簡(jiǎn)單、溫和、環(huán)保,無(wú)需復(fù)雜的后處理修飾,為獲得超高水穩(wěn)定性的鈣鈦礦納米晶提供了新思路。本研究中通過(guò)引入L-天冬氨酸(L-aspartate,L-Asp)配體取代油酸(oleic acid,OA)配體來(lái)提高CsPbBr3鈣鈦礦納米晶的穩(wěn)定性和光學(xué)性能。

      1材料與方法

      1.1試劑材料和儀器設(shè)備

      試劑材料:溴化銫(CsBr,質(zhì)量分?jǐn)?shù)為99.9%)、溴化鉛(PbBr2,質(zhì)量分?jǐn)?shù)為99.99%)、L-天冬氨酸(質(zhì)量分?jǐn)?shù)為99%)(上海麥克林生化科技有限公司);油酸(分析純)、油胺(質(zhì)量分?jǐn)?shù)為80%~90%)、N,N-二甲基乙酰胺(質(zhì)量分?jǐn)?shù)為99.0%)(上海阿拉丁試劑有限公司)。

      儀器設(shè)備:BSA224S型分析天平(賽多利斯科學(xué)儀器(北京)有限公司);DF-101型集熱式恒溫加熱磁力攪拌器(鞏義市予華儀器有限責(zé)任公司);TGL-16C型臺(tái)式高速離心機(jī)(上海安亭科學(xué)儀器廠);KH-1000DB型數(shù)控超聲波清洗器(昆山禾創(chuàng)超聲儀器有限公司);SmartLab 9KW型X射線衍射儀(XRD,日本理學(xué)公司);JEM 2100型透射電子顯微鏡(TEM,日本JEOL公司);FP-6500型熒光分光光度計(jì)(日本JASCO公司);UV-3600型紫外-可見(jiàn)分光光度計(jì)(UV,日本島津公司);Nicolet iS10型傅里葉變換紅外光譜儀(FTIR,美國(guó)Thermo公司);FLS1000型熒光壽命探測(cè)儀(英國(guó)愛(ài)丁堡儀器有限公司)。

      1.2 CsPbBr3鈣鈦礦納米晶的制備

      1.2.1樣品合成

      樣品的合成過(guò)程是在空氣中通過(guò)重結(jié)晶過(guò)程完成的,不使用任何的惰性氣體保護(hù),制備過(guò)程如圖1。將物質(zhì)的量為0.4 mmol的CsBr和0.4 mmol的PbBr2溶解到10 mL的DMA溶液(solution)中,加熱至50℃,磁力攪拌,保持45 min,使其完全溶解。隨后,加入800μL的OAm,在這一過(guò)程中,溶液由無(wú)色透明逐漸轉(zhuǎn)變?yōu)榘咨珳啙?,即為前?qū)體,記為Cs4PbBr6 NCs。繼續(xù)攪拌(stirring)15 min后,取1 mL的白色前軀體溶液加入到溶解有L-Asp的去離子水中,反應(yīng)10 s,得到混合物。將混合物離心分離,制備得到樣品,記為CsPbBr3-L-Asp。

      1.2.2樣品的表征

      分別采用X射線衍射儀、透射電子顯微鏡、能量色散譜儀、熒光分光光度計(jì)、分光光度計(jì)、傅里葉變換紅外光譜儀等對(duì)樣品的物相、形貌、表面官能團(tuán)及熒光性能進(jìn)行表征。

      2結(jié)果與分析

      2.1物相、形貌及官能團(tuán)分析

      對(duì)前驅(qū)體粉末進(jìn)行X射線衍射分析和紫外-可見(jiàn)吸收光譜分析,結(jié)果見(jiàn)圖2。將測(cè)試得到的圖譜(spectra)與Cs4PbBr6標(biāo)準(zhǔn)卡片(standard card,JCPDS:73-2478)進(jìn)行比對(duì)(見(jiàn)圖2(a)),衍射峰與標(biāo)準(zhǔn)卡片基本一致,因此,確定白色前驅(qū)體為具有六方晶體結(jié)構(gòu)的Cs4PbBr6。測(cè)得的衍射峰較窄,說(shuō)明制備的樣品具有較高的結(jié)晶度。從圖2(b)中可以看出,波長(zhǎng)(wavelength)為313 nm處左右存在1個(gè)吸收峰,屬于典型的Cs4PbBr6的吸收峰,與文獻(xiàn)[14]中報(bào)道的一致。在實(shí)驗(yàn)過(guò)程中發(fā)現(xiàn),白色的Cs4PbBr6前驅(qū)體在靜置一段時(shí)間后,會(huì)變成淡綠色。此外,在波長(zhǎng)為365 nm處、手持紫外燈照射下,底部會(huì)產(chǎn)生微弱的綠色熒光,與之相比,白色前驅(qū)體則沒(méi)有綠色熒光產(chǎn)生。對(duì)于Cs4PbBr6 NCs中觀察到的綠色發(fā)射是起源于本征點(diǎn)缺陷還是僅僅來(lái)自嵌入透明寬帶隙半導(dǎo)體中的高發(fā)光CsPbBr3納米晶還存在爭(zhēng)議[15]。

      在劇烈攪拌時(shí),將Cs4PbBr6加入到溶解有L-Asp的去離子水中,加入瞬間溶液變?yōu)橥该骶G色,且在波長(zhǎng)為365 nm處、手提式紫外燈照射下有明亮綠光產(chǎn)生。

      圖3所示為鈣鈦礦納米晶微觀表征結(jié)果,其中圖3(a)是CsPbBr3 NCs的TEM圖像。從圖中可以明顯的觀察到,鈣鈦礦納米晶在水中分散性良好,呈現(xiàn)單分散狀態(tài)。與在甲苯中制備的納米晶相比,同樣具有良好的結(jié)晶度。圖3(b)所示為鈣鈦礦納米晶的高分辨TEM圖像。從圖中可以看出,納米晶的晶格條紋(lattice stripe)清晰。經(jīng)測(cè)量,可以確定晶格間距為2.08?,對(duì)應(yīng)CsPbBr3 NCs的(-202)晶面。為了進(jìn)一步確認(rèn)制備樣品的晶體結(jié)構(gòu),進(jìn)行XRD分析,結(jié)果如圖3(c)所示。將實(shí)驗(yàn)得到的衍射峰圖譜與CsPbBr3的標(biāo)準(zhǔn)卡片(JCPDS:18-0364)進(jìn)行比對(duì),可以觀察到,納米晶的衍射峰的位置與標(biāo)準(zhǔn)卡片基本一致。根據(jù)TEM及XRD結(jié)果分析發(fā)現(xiàn),含有L-天冬氨酸的水溶液誘導(dǎo)Cs4PbBr6前驅(qū)體轉(zhuǎn)變?yōu)榱⒎较嗟腃sPbBr3,并且在水中保持穩(wěn)定的熒光發(fā)射。為了研究表面配體與納米晶之間的作用關(guān)系來(lái)確定其穩(wěn)定性提高的原因,對(duì)其進(jìn)行FTIR測(cè)試,結(jié)果如圖3(d)所示。從圖中可以看出,在波數(shù)分別為2 923、2 845 cm-1處有C—H的對(duì)稱及非對(duì)稱拉伸振動(dòng)[16],屬于含烴基團(tuán)物質(zhì)典型吸收峰,均來(lái)自于L-Asp、OAm的烴鏈。波數(shù)為1 628 cm-1處的強(qiáng)吸收峰可歸因于不對(duì)稱NH4+變形[17]。波數(shù)為1 058 cm-1處的振動(dòng)來(lái)源于羧基,從而確定納米晶表面負(fù)載有L-Asp。綜合以上結(jié)果初步表明,得益于L-Asp、OAm對(duì)CsPbBr3 NCs表面的雙重鈍化,保證其在水中具有良好的分散及發(fā)光性能。

      2.2光學(xué)性能分析

      為了分析去離子水中不同L-Asp添加量(addition amounts)對(duì)CsPbBr3 NCs發(fā)光性能的影響,并確定最佳合成方案,進(jìn)行了熒光測(cè)試,結(jié)果如圖4所示。從圖中可以看出,在10 mL去離子水中,按梯度添加物質(zhì)的量為0.05~0.3 mmol的L-Asp,制備樣品的光致發(fā)光(photoluminescence,PL)強(qiáng)度整體上呈先升高后降低的趨勢(shì),發(fā)射峰位穩(wěn)定在波長(zhǎng)為517 nm處,沒(méi)有發(fā)生明顯移動(dòng)。半峰寬為17 nm,具有較高的色純度。確定最佳添加量為0.15 mmol時(shí)合成的CsPbBr3 NCs具有最佳的PL強(qiáng)度。不同L-Asp添加量制備的CsPbBr3 NCs在波長(zhǎng)為365 nm、手提式紫外燈下的數(shù)碼照片(digital photos)如圖4(c)所示。

      對(duì)去離子水中前驅(qū)體加入前、后的pH進(jìn)行測(cè)定,pH變化見(jiàn)表1。隨著去離子水中L-Asp添加量的不斷減少,pH逐漸增加。當(dāng)L-Asp添加量為0.05 mmol時(shí),前驅(qū)體加入后,pH由原來(lái)的3.27增加到5.69,且制備的CsPbBr3 NCs在幾秒內(nèi)便完全失去熒光,表明,溶液較高的pH條件下不利于納米晶的制備及保存。

      為了進(jìn)一步研究去離子水中不同L-Asp添加量制得的CsPbBr3 NCs的光學(xué)性質(zhì),進(jìn)行紫外-可見(jiàn)吸收測(cè)試,結(jié)果見(jiàn)圖5。由圖5(a)可知,除了添加量最少的一組沒(méi)有吸收峰外,其余組均在波長(zhǎng)為513 nm處有一明顯的吸收峰,對(duì)應(yīng)于CsPbBr3 NCs的第一激子吸收峰。為了得到不同組分制得樣品的熒光壽命,繪制波長(zhǎng)為517 nm處的時(shí)間分辨PL(TRPL)衰減曲線,如圖5(b)所示。熒光衰減曲線可由雙指數(shù)函數(shù)進(jìn)行擬合,見(jiàn)式(1),揭示了輻射過(guò)程中的2種可能路徑。

      y=A 1 exp(-xτ1)+A2 exp(-xτ2)+y0,(1)

      式中:x為時(shí)間;y為與時(shí)間x對(duì)應(yīng)的熒光強(qiáng)度;y0為常數(shù)項(xiàng),表示非熒光背景信號(hào)的基線;τ1為快速衰減的短壽命分量,表示缺陷能級(jí)的非輻射復(fù)合過(guò)程;τ2為緩慢衰減的長(zhǎng)壽命分量,代表本征激子的輻射復(fù)合;A1和A2分別代表2個(gè)分量在整個(gè)輻射過(guò)程中的比例。

      平均壽命τavg則由式(2)計(jì)算得到:

      τavg=(A 1τ1(2)+A2τ2(2))(A 1τ1+A2τ2)。(2)

      擬合過(guò)程中各種具體參數(shù)和擬合結(jié)果見(jiàn)表2。從表中可以清楚的看到,當(dāng)去離子水中的L-Asp添加量為0.15 mmol時(shí),制備的CsPbBr3 NCs具有最長(zhǎng)的熒光壽命,達(dá)到了49.45 ns。確定的最佳添加量與最佳光致發(fā)光強(qiáng)度時(shí)的添加量相對(duì)應(yīng)。此時(shí)納米晶具有最高的輻射躍遷速率及更低的激子非輻射復(fù)合,表明L-Asp和OAm對(duì)CsPbBr3 NCs表面進(jìn)行了有效鈍化。

      鈣鈦礦納米晶由于本身具有離子性質(zhì),在極性環(huán)境中容易發(fā)生降解??紤]到這種情況,要實(shí)現(xiàn)鈣鈦礦納米晶的大規(guī)模應(yīng)用,確保其結(jié)構(gòu)的穩(wěn)定成為關(guān)鍵因素,為此,對(duì)CsPbBr3 NCs進(jìn)行水穩(wěn)定性測(cè)試。圖6所示為CsPbBr3 NCs在水溶液中隨時(shí)間變化的熒光光譜圖和熒光強(qiáng)度圖,其中圖6(a)所示為納米晶在水溶液中浸泡11 h后,隨時(shí)間變化的PL光譜圖。從圖中可以明顯的看到,整個(gè)測(cè)試過(guò)程中,發(fā)射峰都保持原始形狀,且沒(méi)有發(fā)生明顯移動(dòng)。圖6(b)所示為歸一化PL強(qiáng)度(Normalize PL intensity)隨時(shí)間(times)變化柱狀圖。從中可以得出,熒光強(qiáng)度在1 h之內(nèi)下降緩慢,能夠保持在初始值的95%左右。隨后,納米晶在水中連續(xù)浸泡11 h后,在紫外燈下還具有微弱的綠色熒光。

      3結(jié)論

      1)采用水相合成法先合成、再修飾,成功制備了CsPbBr3-L-Asp鈣鈦礦納米晶。

      2)CsPbBr3-L-Asp結(jié)晶性良好,最大發(fā)射峰為517 nm,半峰寬為17 nm,熒光壽命為49.45 ns。

      3)L-Asp和OAm能夠協(xié)同對(duì)納米晶表面進(jìn)行修飾,使其在水中分散11 h后依舊能夠發(fā)出綠色發(fā)射,且發(fā)射峰位沒(méi)有發(fā)生明顯變化。

      利益沖突聲明(Conflict of Interests)

      所有作者聲明不存在利益沖突。

      All authors disclose no relevant conflict of interests.

      作者貢獻(xiàn)(Authors’Contributions)

      徐天成和李金凱進(jìn)行了方案設(shè)計(jì),徐天成,李金凱和劉宗明參與了論文的寫(xiě)作和修改。所有作者均閱讀并同意了最終稿件的提交。

      XU Tiancheng and LI Jinkai carried out the scheme design.XUTiancheng,LI Jinkai,and LIU Zongming participated in the writing and revision of the paper.All authors have read and agreed to the submission of the final manuscript.

      參考文獻(xiàn)(References)

      [1]ZHANG H,LV Y,CHANG Y,et al.Ultra-small-size,highly efficient and stable CsPbBr3 quantum dots synthesized by using a cesium-dodecyl benzene sulfonic acid solution[J].Chemical Engineering Journal,2023,473:145213.

      [2]ZENG Z,MENG Y,YANG Z,et al.Efficient CsPbBr3 perovskite light-emitting diodes via novel multi-step ligand exchange strategy based on zwitterionic molecules[J].ACS Applied Materialsamp;Interfaces,2024,16(8):10389-10397.

      [3]LU H,TAN X,HUANG G,et al.Green synthesis of highly stable CsPbBr3 perovskite nanocrystals using natural deep eutectic solvents as solvents and surface ligands[J].Nanoscale,2022,14(46):17222-17229.

      [4]YU H,YAN B,SONG Y,et al.Aluminium acetylacetonate ligand passivation for CsPbBr3 nanocrystals with improved stability and photoluminescence[J].Journal of Materials Chemistry C,2023,11(32):10957-10964.

      [5]MOHAPATRA A,KUMAR S,ACHYARA T K,et al.Highly stable multi-encapsulated red-emitting cesium lead halide nano-ocrystals for efficient copper ion detection and imaging in live cells[J].Journal of Alloys and Compounds,2023,947:169453.

      [6]PROTESECEU L,YAKUNIN S,BODNARCHUK M I,et al.Nanocrystals of cesium lead halide perovskites(CsPbX3,X=Cl,Br,and I):novel optoelectronic materials showing bright emission with wide color gamut[J].Nano Letters,2015,15(6):3692-3696.

      [7]ZHENG C,WANG W,XU L,et al.Boosting the carrier lifetime and optical activity of CsPbX3 nanocrystals through aromatic ligand passivation[J].The Journal of Physical Chemistry Letters,2024,15(17):4633-4639.

      [8]OGA H,SAEKI A,OGOMI Y,et al.Improved understanding of the electronic and energetic landscapes of perovskite solar cells:high local charge carrier mobility,reduced recombination,and extremely shallow traps[J].Journal of the American Chemical Society,2014,136(39):13818-13825.

      [9]AKKERMAM Q A,RAINO G,KOVAENKO M V,et al.Genesis,challenges and opportunities for colloidal lead halide per-ovskite nanocrystals[J].Nature Materials,2018,17(5):394-405.

      [10]ZHANG X,BAI X,WU H,et al.Water?assisted size and shape control of CsPbBr3 perovskite nanocrystals[J].Ange?wandteChemie:International Edition,2018,57(13):3337-3342.

      [11]JANA A,KIM K S.Water-stable,fluorescent organic-inorganic hybrid and fully inorganic perovskites[J].ACS Energy Letters,2018,3(9):2120-2126.

      [12]LIU K K,LIU Q,YANG D W,et al.Water-induced MAPbBr3@PbBr(OH)with enhanced luminescence and stability[J].Light:Scienceamp;Applications,2020,9(1):44.

      [13]ZHU H,PAN Y,PENG C,et al.4?Bromo?butyric acid?assisted in situ passivation strategy for superstableall?inorganic halide perovskite CsPbX3 quantum dots in polar media[J].AngewandteChemie:International Edition,2022,61(22):e202116702.

      [14]LIU Z,BEKENSTEIN Y,YE X,et al.Ligand mediated transformation of cesium lead bromide perovskite nanocrystals to lead depleted Cs4PbBr6 nanocrystals[J].Journal of the American Chemical Society,2017,139(15):5309-5312.

      [15]BAO J,HADJIEV V G.Origin of luminescent centers and edge states in low-dimensional lead halide perovskites:contro?versies,challenges and instructive approaches[J].Nano-Micro Letters,2019,11(1):26.

      [16]LU X,TUAN H Y,CHEN J,et al.Mechanistic studies on the galvanic replacement reaction between multiply twinned particles of Ag and HAuCl4 in an organic medium[J].Journal of the American Chemical Society,2007,129(6):1733-1742.

      [17]HUANG H Y,YANG R T,CHINN D,et al.Amine-grafted MCM-48 and silica xerogel as superiorsorbents for acidic gas removal from natural gas[J].Industrialamp;Engineering Chemistry Research,2003,42(12):2427-2433.

      Surface modification strategy improves stability of CsPbBr3 perovskite nanocrystals

      XU Tiancheng,LIJinkai,LIU Zongming

      School of Material Science and Engineering,University of Jinan,Jinan 250022,China

      Abstract

      Objective In recent years,all-inorganic lead halide perovskite(CsPbX3,X=Cl,Br,I)nanocrystals,a type of nanoscale com?posite material,have attracted significant attention from materials scientists.With a high photoluminescent quantum yield,an extremely narrow full width at half maximum(FWHM),tunable emission across the visible spectrum,and high carrier mobility,CsPbX3 is rapidly becoming one of the most promising materials for optoelectronic devices.However,due to their unique proper?ties,perovskite materials exhibit low stability in aqueous solutions and typically need to be synthesized in non-polar organic sol?vents to prevent decomposition.To enhance stability,it is necessary to modify their surface with hydrophobic groups,which greatly restricts their application in aqueous environments.To overcome these challenges,researchers are exploring green,simple,aqueous-phase synthesis methods to directly synthesize perovskite nanocrystals with specific functions.Traditionalsyn?thesis methods typically avoid water to prevent adverse effects on the structure and properties of the highly water-sensitive perovskite nanocrystals.Nonetheless,recent research has shown that the presence of water is not always a disadvantage.In this study,the stability and optical properties of CsPbBr3 perovskite nanocrystals were improved by introducing L-aspartate ligands instead of OA ligands.

      Methods The entire synthesis process was conducted in air without inert gas protection,as shown in Fig.1.CsBr(0.4 mmol)and PbBr2(0.4 mmol)were dissolved in 10 mL of N,N-dimethylacetamide(DMA)solution,heated to 50 oC,and magnetically stirred for 45 min until completely dissolved.Subsequently,800μL of OAm was added,during which the solution gradually changed from colorless to white turbid.The precursor was recorded as Cs4PbBr6 NCs.After 15 min of continued stirring,1 mL of the white precursor solution was added into deionized water containing L-aspartate.After 10 s of reaction,the resulting mix?ture was centrifuged for subsequent characterization.The produced sample was recorded as CsPbBr3-L-Asp.

      Results and Discussion With the gradual addition of aspartic acid from 0.05 mmol to 0.3 mmol in 10 mL of deionized water,the PL intensity of the prepared samples first increased and then decreased,while the emission peak remained stable at 517 nm without significant shifts.The full width at half maximum of 17 nm had a high color purity.The CsPbBr3 NCs synthesized with an optimal addition of 0.15 mmol of aspartic acid exhibited the best PL intensity.Digital photos of CsPbBr3 NCs prepared with different L-aspartate amounts under a 365 nm portable UV lamp were shown in Fig.3(c).Perovskite nanocrystals are prone to degradation in polar environments due to their ionic properties.Fig.6(a)showed the PL spectra of nanocrystals soaked in aque?ous solution for 11 h with changes over time,illustrating that the emission peak maintained its original shape without signifi?cantly shifts during the whole test process.Fig.6(b)showed the fluorescence intensity changes over time,indicating a slow decrease within 1 h,retaining about 95%of the initial value.After 11 h of continuous soaking,the nanocrystals still showed weak green fluorescence under ultraviolet light.

      Conclusion CsPbBr3-L-Asp perovskite nanocrystals were successfully prepared using water phase synthesis method.CsPbBr3-L-Asp exhibits good crystallization with a maximum emission peak at 517 nm,F(xiàn)HWM of 17 nm,and fluorescence lifetime of 49.45 ns.Surface modification with L-aspartic acid and OAm allows the nanocrystals to emit green light after 11 h soaking in water without significant changes to the emission peak.

      Keywords:perovskite;nanocrystal;surface modification;optical property;L-aspartate;oleylamine

      (責(zé)任編輯:吳敬濤)

      猜你喜歡
      天冬氨酸鈣鈦礦
      天冬氨酸酶的催化特性及應(yīng)用進(jìn)展
      NaBr界面修飾SnO2基鈣鈦礦太陽(yáng)能電池的研究
      不同金屬離子對(duì)天冬氨酸酶基因工程菌活性影響的研究
      山東化工(2017年22期)2017-12-20 02:43:37
      綠色水處理劑聚天冬氨酸的研究進(jìn)展
      當(dāng)鈣鈦礦八面體成為孤寡老人
      幾種新型鈣鈦礦太陽(yáng)電池的概述
      失神經(jīng)支配環(huán)杓后肌形態(tài)及半胱氨酸天冬氨酸蛋白酶-3表達(dá)的研究
      鈣鈦礦型多晶薄膜太陽(yáng)電池(4)
      鈣鈦礦型多晶薄膜太陽(yáng)電池(2)
      異氰酸酯為交聯(lián)劑制備交聯(lián)聚天冬氨酸樹(shù)脂
      诸城市| 缙云县| 天长市| 什邡市| 秦皇岛市| 顺昌县| 阿拉善左旗| 齐齐哈尔市| 五寨县| 惠州市| 灵寿县| 台江县| 城市| 遵化市| 穆棱市| 富蕴县| 吉林省| 大化| 景德镇市| 马龙县| 石家庄市| 来凤县| 马公市| 彩票| 曲阜市| 海南省| 防城港市| 康保县| 陆河县| 咸丰县| 宁国市| 成都市| 项城市| 漳平市| 灌南县| 彭阳县| 仁寿县| 江门市| 颍上县| 九寨沟县| 封丘县|