··
(廣東省深圳市南山外國語學(xué)校(集團(tuán))華僑城中學(xué) 518000)
(廣東省深圳市寶安區(qū)上星學(xué)校 518000)
【摘要】本文旨在探討“雙減”背景下初中數(shù)學(xué)長周期作業(yè)的實踐與研究.通過分析設(shè)計原則與類型,結(jié)合以學(xué)校秋季運動會為背景的“一元一次方程”實踐案例,闡述長周期作業(yè)對學(xué)生數(shù)學(xué)思維、實踐能力和綜合素質(zhì)培養(yǎng)的重要作用.希望本文能為初中數(shù)學(xué)教學(xué)提供有益參考,未來我們應(yīng)進(jìn)一步優(yōu)化作業(yè)設(shè)計與實施,促進(jìn)學(xué)生全面發(fā)展.
【關(guān)鍵詞】“雙減”;初中數(shù)學(xué):作業(yè)設(shè)計
“雙減”政策的實施對初中數(shù)學(xué)教學(xué)中的作業(yè)設(shè)計提出了新的要求.長周期作業(yè)作為一種創(chuàng)新的作業(yè)形式,在培養(yǎng)學(xué)生的數(shù)學(xué)思維、實踐能力和綜合素質(zhì)方面具有重要作用.本文旨在探討“雙減”背景下初中數(shù)學(xué)長周期作業(yè)的實踐與研究,通過分析其設(shè)計原則與類型,結(jié)合實踐案例,總結(jié)學(xué)生的完成情況和成果展示,以及教師的評價與反饋,以期為初中數(shù)學(xué)教學(xué)提供有益的參考.
1 “雙減”政策下初中數(shù)學(xué)長周期作業(yè)的設(shè)計原則與類型
1.1 設(shè)計原則
1.1.1 目標(biāo)性原則
目標(biāo)性原則要求作業(yè)設(shè)計緊密圍繞教學(xué)目標(biāo),明確作業(yè)的目的和預(yù)期效果.通過具有目標(biāo)性的作業(yè),讓學(xué)生能夠更好地鞏固知識、提升技能,實現(xiàn)數(shù)學(xué)學(xué)習(xí)的目標(biāo).
1.1.2 趣味性原則
趣味性原則強調(diào)在初中數(shù)學(xué)長周期作業(yè)設(shè)計中,教師應(yīng)注重增強作業(yè)的趣味性,通過引入有趣的情境、游戲或?qū)嶋H問題,激發(fā)學(xué)生的學(xué)習(xí)興趣和積極性.
1.1.3 分層性原則
分層性原則指的是在初中數(shù)學(xué)長周期作業(yè)設(shè)計中,要根據(jù)學(xué)生的學(xué)習(xí)能力、知識水平和個性特點,將作業(yè)分為不同層次.通過分層學(xué)習(xí)來滿足不同層次學(xué)生的需求,使每個學(xué)生都能在自己的能力范圍內(nèi)得到充分的發(fā)展.
1.1.4 綜合性原則
綜合性原則要求初中數(shù)學(xué)長周期作業(yè)的設(shè)計注重知識的綜合運用.要將不同的數(shù)學(xué)知識點、數(shù)學(xué)與其他學(xué)科的知識以及實際生活中的問題相結(jié)合,讓學(xué)生在完成作業(yè)的過程中,能夠提高綜合分析和解決問題的能力.
1.1.5 開放性原則
開放性原則主張初中數(shù)學(xué)長周期作業(yè)的設(shè)計應(yīng)具有開放性,即作業(yè)的答案不唯一,要鼓勵學(xué)生從不同角度思考問題,提出多樣化的解決方案.這樣能激發(fā)學(xué)生的創(chuàng)造力和想象力,培養(yǎng)學(xué)生的創(chuàng)新思維和發(fā)散思維能力,使學(xué)生在開放性的學(xué)習(xí)中獲得更廣闊的發(fā)展空間.
1.2 作業(yè)類型
1.2.1 探究性作業(yè)
初中數(shù)學(xué)長周期作業(yè)中的探究性作業(yè)旨在引導(dǎo)學(xué)生通過自主探究、實驗或調(diào)查等方式,深入理解數(shù)學(xué)知識,培養(yǎng)解決問題的能力和創(chuàng)新思維.例如,讓學(xué)生探究某個數(shù)學(xué)定理的證明過程或?qū)嶋H應(yīng)用,激發(fā)他們的學(xué)習(xí)興趣和主動性.
1.2.2 實踐性作業(yè)
初中數(shù)學(xué)長周期作業(yè)中的實踐性作業(yè)強調(diào)學(xué)生將數(shù)學(xué)知識應(yīng)用于實際生活中,通過實際操作、實驗或觀察等活動,加深對數(shù)學(xué)概念的理解和掌握.例如,讓學(xué)生測量物體的尺寸、計算面積或體積,從而提高他們的實踐能力和解決實際問題的能力.
1.2.3 綜合性作業(yè)
初中數(shù)學(xué)長周期作業(yè)中的綜合性作業(yè)融合了多個數(shù)學(xué)知識點以及其他學(xué)科的知識.通過完成綜合性作業(yè),學(xué)生能夠?qū)W會整合不同領(lǐng)域的知識,提高綜合運用能力和解決復(fù)雜問題的能力.例如,設(shè)計一個與物理、數(shù)學(xué)相關(guān)的實驗項目,讓學(xué)生在實踐中感受學(xué)科之間的聯(lián)系.
1.2.4 跨學(xué)科作業(yè)
初中數(shù)學(xué)長周期作業(yè)中的跨學(xué)科作業(yè)旨在打破學(xué)科界限,將數(shù)學(xué)與其他學(xué)科知識有機結(jié)合.例如,讓學(xué)生通過數(shù)學(xué)建模解決物理或化學(xué)中的實際問題,這樣能培養(yǎng)學(xué)生的跨學(xué)科思維和綜合運用知識的能力,提升學(xué)生的綜合素質(zhì).
1.2.5 個性化作業(yè)
個性化作業(yè)是根據(jù)學(xué)生的個體差異和興趣特點而設(shè)計的初中數(shù)學(xué)長周期作業(yè).它能夠滿足不同學(xué)生的學(xué)習(xí)需求,激發(fā)學(xué)生的學(xué)習(xí)積極性.例如,教師為學(xué)生提供不同難度層次或主題的作業(yè)選擇,讓學(xué)生根據(jù)自己的能力和興趣完成,從而實現(xiàn)個性化發(fā)展.
2 初中數(shù)學(xué)長周期作業(yè)的實踐案例分析
2.1 案例背景
在初一上學(xué)期的數(shù)學(xué)教學(xué)中,“一元一次方程”是一個重要的知識點.學(xué)生在之前的學(xué)習(xí)中已經(jīng)接觸過簡單的方程,但對于一元一次方程的概念、解法和應(yīng)用還是剛開始進(jìn)行正式的學(xué)習(xí).為了幫助學(xué)生更好地掌握這一知識點,提高他們運用方程解決實際問題的能力而設(shè)計了一個關(guān)于一元一次方程的長周期作業(yè)教學(xué)案例.
在這個案例中,考慮到學(xué)生的實際生活情境,決定以學(xué)校組織的秋季運動會為背景.學(xué)生需要在運動會期間參與各種比賽項目,同時也會遇到一些與數(shù)學(xué)相關(guān)的問題.將這些實際問題與一元一次方程的教學(xué)相結(jié)合,讓學(xué)生在解決問題的過程中,感受方程的實用性和重要性.班里的有些學(xué)生對于方程的理解較快,能夠熟練運用;而有些學(xué)生則需要更多的時間和練習(xí)來掌握.因此,在設(shè)計作業(yè)時充分考慮了分層性和個性化原則,為學(xué)生提供不同難度層次和類型的任務(wù),讓每個學(xué)生都能在自己的能力范圍內(nèi)得到有效的鍛煉和提高.
2.2 作業(yè)設(shè)計與實施
結(jié)合學(xué)校秋季運動會對初一上學(xué)期“一元一次方程”的作業(yè)進(jìn)行了精心設(shè)計與實施,該設(shè)計分為三個層次,以滿足不同學(xué)生的需求.
設(shè)計的基礎(chǔ)層次的作業(yè)是讓學(xué)生根據(jù)運動會中購買運動裝備的實際情況,列出一元一次方程并求解;設(shè)計的提高層次的作業(yè)是讓學(xué)生分析運動會比賽成績的數(shù)據(jù),運用一元一次方程解決相關(guān)問題;設(shè)計的拓展層次的作業(yè)是讓學(xué)生自己設(shè)計一個與運動會相關(guān)的情境,并用一元一次方程解決其中的問題.學(xué)生需要自主思考、創(chuàng)新,將數(shù)學(xué)知識與實際情境緊密結(jié)合.表1為部分學(xué)生自己設(shè)計的相關(guān)問題.
A
學(xué)校運動會的入場式上,彩旗隊要排列成一個長方形方陣.如果每行排 12 人,則少 4 人;如果每行排 10 人,則多 8 人.請問彩旗隊一共有多少人?設(shè)彩旗隊的行數(shù)為 x,列出一元一次方程并求解.
B
學(xué)校運動會的籌備過程中,購買a品牌運動器材花費了1200元,比購買b品牌運動器材少花費200元.已知購買b品牌運動器材的數(shù)量比a品牌少10件,且a品牌器材的單價是x元,求a品牌運動器材的單價是多少?
在實施過程中給予學(xué)生充分的時間去完成作業(yè),并鼓勵他們小組合作、討論,并要求學(xué)生記錄自己的解題思路和過程,以便于后續(xù)的反思和總結(jié).通過這樣的作業(yè)設(shè)計與實施,學(xué)生能夠在實際情境中深入理解一元一次方程的應(yīng)用,提高解決問題的能力,同時也培養(yǎng)了他們的合作精神和創(chuàng)新思維.
2.3 學(xué)生完成情況及成果展示
在本次關(guān)于“一元一次方程”的長周期作業(yè)中,學(xué)生們的完成情況總體良好.大部分學(xué)生能夠認(rèn)真對待作業(yè),積極參與到運動會相關(guān)問題的解決中.
在基礎(chǔ)層次的作業(yè)中,許多學(xué)生能夠準(zhǔn)確地列出方程并求解,顯示出他們對一元一次方程基本概念和解法的掌握情況良好.通過購買運動裝備的實際問題,他們學(xué)會了將數(shù)學(xué)知識應(yīng)用到生活中,理解了方程在解決實際數(shù)量關(guān)系中的作用.在提高層次的作業(yè)中,學(xué)生表現(xiàn)出了較強的分析和解決問題的能力.他們能夠仔細(xì)分析比賽成績的數(shù)據(jù),運用一元一次方程找出其中的規(guī)律和關(guān)系.一些學(xué)生還能夠提出多種解題方法,展示了他們思維的靈活性和創(chuàng)新性.在拓展層次的作業(yè)中,學(xué)生的成果展示令人驚喜.
通過這次作業(yè),學(xué)生們不僅提高了數(shù)學(xué)應(yīng)用能力,還增強了對數(shù)學(xué)的興趣和自信心.他們的成果展示也為其他同學(xué)提供了學(xué)習(xí)和借鑒的榜樣,促進(jìn)了班級內(nèi)的學(xué)習(xí)交流和共同進(jìn)步.表2為部分學(xué)生的成果展示.
3 教師評價與反饋
教師對學(xué)生的成果展示進(jìn)行了全面的評價與反饋.在評價過程中,依據(jù)成果展示表格中的評價維度,對學(xué)生的作業(yè)完成情況進(jìn)行了細(xì)致的分析.對于在基礎(chǔ)層次作業(yè)中表現(xiàn)出色的學(xué)生,教師肯定了他們對概念的理解和解題的準(zhǔn)確性,鼓勵他們繼續(xù)鞏固基礎(chǔ)知識;對于在提高層次作業(yè)中有突出表現(xiàn)的學(xué)生,贊揚了他們的分析能力和思維靈活性,同時建議他們進(jìn)一步挑戰(zhàn)更高難度的問題;對于在拓展層次作業(yè)中展現(xiàn)出創(chuàng)新能力和應(yīng)用能力的學(xué)生,給予了高度的評價,并鼓勵他們分享自己的思路和經(jīng)驗.此外,還針對學(xué)生的不足之處提出了具體的改進(jìn)建議,幫助學(xué)生明確努力的方向.通過及時地評價與反饋,希望能夠激勵學(xué)生不斷進(jìn)步,提高他們的數(shù)學(xué)學(xué)習(xí)能力和綜合素質(zhì).
4 結(jié)語
本研究通過對“雙減”背景下初中數(shù)學(xué)長周期作業(yè)的實踐與研究,明確了其設(shè)計原則和類型,并通過案例分析展示了學(xué)生在完成長周期作業(yè)過程中取得的良好效果,教師的評價與反饋也有助于促進(jìn)學(xué)生的進(jìn)一步發(fā)展.未來,教師應(yīng)進(jìn)一步深入研究長周期作業(yè)在初中數(shù)學(xué)教學(xué)中的應(yīng)用,不斷優(yōu)化作業(yè)設(shè)計,提高教師對長周期作業(yè)的指導(dǎo)能力,以促進(jìn)學(xué)生的全面發(fā)展.
參考文獻(xiàn):
[1]黃悅軍.初中數(shù)學(xué)長周期作業(yè)設(shè)計與實踐[J].初中數(shù)學(xué)教與學(xué),2024(11):7-10.
[2]徐峰.初中數(shù)學(xué)活動課長作業(yè)設(shè)計及實踐與思考[J].生活教育,2024(04):76-79.
[3]孟歆.初中數(shù)學(xué)單元整體教學(xué)作業(yè)設(shè)計研究[D].重慶:西南大學(xué),2023.
[4]盧芳芳.“雙減”下的作業(yè)“加法”——以初中數(shù)學(xué)長周期作業(yè)設(shè)計為例[J].中學(xué)數(shù)學(xué)月刊,2023(06):47-49+67.
[5]陳榮.“雙減”背景下小學(xué)數(shù)學(xué)長周期作業(yè)設(shè)計優(yōu)化研究[D].天津:天津師范大學(xué),2023.
[6]吳睿.初中數(shù)學(xué)作業(yè)個性化分層設(shè)計的實踐研究[D].長春:長春師范大學(xué),2022.