• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      檸檬酸鈉輔助三水碳酸鎂合成無(wú)水碳酸鎂晶體及其機(jī)制

      2024-11-27 00:00:00張一帆王余蓮孫浩然李紀(jì)勛關(guān)蕊鄧?guó)P李孟強(qiáng)
      中國(guó)粉體技術(shù) 2024年6期
      關(guān)鍵詞:檸檬酸鈉碳酸鎂水熱法

      摘要:【目的】探究檸檬酸鈉在三水碳酸鎂合成無(wú)水碳酸鎂晶體過(guò)程中的影響?!痉椒ā恳暂p燒氧化鎂為初始原料,通過(guò)水化碳化法獲得長(zhǎng)徑比為30的棒狀三水碳酸鎂。以此為前驅(qū)體,檸檬酸鈉為添加劑,采用水熱法制備無(wú)水碳酸鎂,探究水熱溫度、水熱時(shí)間、添加劑含量對(duì)產(chǎn)物物相組成和微觀形貌的影響及其形成機(jī)制?!窘Y(jié)果】水熱溫度為190℃,水熱時(shí)間為13 h,檸檬酸鈉添加量(質(zhì)量分?jǐn)?shù))為10%~30%,可獲得物相均一、表面光滑、形狀均勻、平均直徑為3~5 μm的棱柱狀無(wú)水碳酸鎂晶體;在水熱反應(yīng)中,檸檬酸根離子對(duì)鎂離子具有較強(qiáng)的絡(luò)合作用,鈉離子較鎂離子擁有更高的水合能力,導(dǎo)致堿式碳酸鎂的形成受到抑制,得到另一種中間產(chǎn)物碳酸氧化鎂,無(wú)水碳酸鎂晶體的生長(zhǎng)方式與形貌發(fā)生改變?!窘Y(jié)論】三水碳酸鎂在檸檬酸鈉的影響下制備得到棱柱狀無(wú)水碳酸鎂。

      關(guān)鍵詞:碳酸鎂;水熱法;檸檬酸鈉;生長(zhǎng)機(jī)制

      中圖分類號(hào):TQ32.2;TB4文獻(xiàn)標(biāo)志碼:A

      引用格式:

      張一帆,王余蓮,孫浩然,等. 檸檬酸鈉輔助三水碳酸鎂合成無(wú)水碳酸鎂晶體及其機(jī)制[J]. 中國(guó)粉體技術(shù),2024,30

      (6):41-49.

      ZHANG Yifan,WANG Yulian,SUN Haoran,et al. Sodium citrate-assisted synthesis of anhydrous magnesium carbonate crys?tals from magnesium carbonate trihydrate and its mechanismZHANG Yifan1,WANG Yulian1,SUN Haoran1,LI Jixun1,GUAN Rui1,DENG Feng1,LIMengqiang2[J]. China Powder Science and Technology,2024,30(6):41?49.

      無(wú)水碳酸鎂(MgCO3)晶體是一種白色顆粒狀粉末,根據(jù)其純度的不同具有不同的用途。菱鎂礦直接粉碎得到的MgCO3純度最低,一般作為水泥填充料用于建筑行業(yè)[1]。在工業(yè)生產(chǎn)中,MgCO3憑借其熱分解溫度高、吸熱量大、分解產(chǎn)物無(wú)毒無(wú)害等優(yōu)點(diǎn),在耐火、阻燃、絕熱材料等領(lǐng)域具有重大的應(yīng)用前景[2-3]。普通等級(jí)的MgCO3常被用作功能陶瓷的助燒結(jié)劑[4]、高聚物材料的增強(qiáng)填充劑[5]、鎂基復(fù)合材料吸附劑[6]、鎂合金的細(xì)化劑[7]等。高純度的MgCO3作為藥物的優(yōu)良載體[8-9]應(yīng)用于藥品、食品行業(yè)。

      目前,國(guó)內(nèi)外學(xué)者通常以鎂鹽作為鎂源,采用水熱法制備MgCO3。Xing等[10]將氫氧化鎂(Mg(OH)2)、氯化鎂(MgCl2)、硫酸鎂(MgSO4)等作為鎂源,尿素作為沉淀劑,水熱反應(yīng)30 h制備得到無(wú)水碳酸鎂。Li等[11]以氯化鎂-尿素共晶溶劑為前驅(qū)體,探究發(fā)現(xiàn)立方狀無(wú)水碳酸鎂晶體以螺旋位錯(cuò)方式生長(zhǎng)。Dong等[12]以Mg(OH)2與檸檬酸鉀為原料制備MgCO3,其中間產(chǎn)物Mg(H2O)6向MgCO3的相轉(zhuǎn)化溫度降低。Chun等[5]將硫酸鎂和尿素作為原料,酒石酸作為晶型調(diào)控劑,得到直徑為25 μm的球狀無(wú)水碳酸鎂。崔萬(wàn)順等[13-14]將不同種類的有機(jī)酸作為晶型控制劑,以氯化鎂和碳酸鈉為原料,反應(yīng)溫度為120℃,得到粒徑為5 μm的紡錘狀無(wú)水碳酸鎂。Lu等[15]以氯化鎂和硫酸鎂為原料,抗壞血酸和氫氧化鈉作為添加劑,在pH為13.5的條件下得到粒徑為0.5 μm的球狀無(wú)水碳酸鎂。Bi等[16]將尿素作為碳源,在 pH 為 12 時(shí)制備得到粒徑為5 μm的立方狀無(wú)水碳酸鎂,并填充至聚氯乙烯(PVC)中,大幅提高了復(fù)合材料的強(qiáng)度。

      在現(xiàn)階段制備無(wú)水碳酸鎂的研究中,原料多為可溶性鎂鹽,且晶型控制劑對(duì)晶體生長(zhǎng)的影響均在純液相中進(jìn)行[17],而對(duì)于固相轉(zhuǎn)化制備無(wú)水碳酸鎂的研究較少。近年來(lái),部分學(xué)者使用三水碳酸鎂[18-19]、氧化鎂[20]、草酸鎂[21]等固相前驅(qū)體制備無(wú)水碳酸鎂,實(shí)驗(yàn)條件和設(shè)備要求較高,實(shí)用性較差。本文中以輕燒氧化鎂為原料制備三水碳酸鎂,并以此合成無(wú)水碳酸鎂,探究檸檬酸鈉濃度、檸檬酸濃度、水熱溫度、水熱時(shí)間等條件對(duì)產(chǎn)物微觀形貌和物相組成的影響,并探究檸檬酸鈉-三水碳酸鎂體系下棱柱狀無(wú)水碳酸鎂的形成機(jī)制。

      1材料與方法

      1.1試劑材料和儀器設(shè)備

      試劑材料:輕燒氧化鎂粉(MgO,質(zhì)量分?jǐn)?shù)為99%,遼寧菱鎂礦煅燒所得);CO2氣體(工業(yè)純,吉林盛泰氣體制造有限公司);檸檬酸鈉(分析純,天津大茂化學(xué)試劑廠)。

      儀器設(shè)備:UltimaIV型X射線衍射儀(日本Rigaku公司);S-3400N型掃描電子顯微鏡(日本日立公司)。

      1.2前驅(qū)體三水碳酸鎂與無(wú)水碳酸鎂的制備

      輕燒氧化鎂與水按質(zhì)量比1∶30混合,在溫度為90℃的水浴中水化反應(yīng)2 h,獲得氫氧化鎂懸濁液。以固定速率通入1 h的二氧化碳?xì)怏w,得到重鎂水(Mg(HCO3)2)。將所得重鎂水于溫度為55℃條件下熱解2 h,抽濾后使濾餅于溫度為50℃條件下烘干20 h,得到白色粉末三水碳酸鎂(MgCO3·3H2O)。

      將MgCO3·3H2O與去離子水以質(zhì)量比1∶30混合,檸檬酸鈉添加量(質(zhì)量分?jǐn)?shù),下同)為5%~50%,攪拌均勻后置于不銹鋼反應(yīng)釜內(nèi)置的聚四氟乙烯內(nèi)膽中,在溫度為110~190℃的條件下反應(yīng)3~13 h,得到MgCO3。

      2結(jié)果與分析

      2.1三水碳酸鎂的表征分析

      圖1所示為自制三水碳酸鎂XRD譜圖與微觀圖。由圖1(a)可知,自制三水碳酸鎂的衍射峰與三水碳酸鎂(JCPDS#70-1433)標(biāo)準(zhǔn)特征峰對(duì)應(yīng)。由圖1(b)可知,三水碳酸鎂形貌呈晶須狀,長(zhǎng)徑比為20~30,直徑約為3 μm。

      2.2反應(yīng)條件對(duì)無(wú)水碳酸鎂制備的影響

      2.2.1反應(yīng)時(shí)間的影響

      圖2所示為三水碳酸鎂-檸檬酸鈉體系不同水熱時(shí)間所得產(chǎn)物的XRD譜圖。在水熱時(shí)間為3~5 h時(shí),產(chǎn)物中2θ=14.4°、25.2°和42.4°處的衍射峰與碳酸氧化鎂(Mg3O(CO3)2,JCPDS#31-0804)標(biāo)準(zhǔn)特征峰對(duì)應(yīng),表明所得產(chǎn)物中存在中間產(chǎn)物碳酸氧化鎂,與文獻(xiàn)[22]結(jié)果一致。

      水熱時(shí)間繼續(xù)延長(zhǎng)至7~11 h,產(chǎn)物衍射峰中同時(shí)存在碳酸氧化鎂與無(wú)水碳酸鎂的特征峰,且碳酸氧化鎂衍射峰強(qiáng)度不斷減弱,無(wú)水碳酸鎂衍射峰強(qiáng)逐漸增強(qiáng),表明碳酸氧化鎂逐漸向無(wú)水碳酸鎂轉(zhuǎn)變。在反應(yīng)時(shí)間為13 h時(shí),中間產(chǎn)物完全轉(zhuǎn)變?yōu)闊o(wú)水碳酸鎂(MgCO3,JCPDS#08-0479)。

      圖3所示為三水碳酸鎂-檸檬酸鈉體系不同水熱時(shí)間所得產(chǎn)物的微觀圖。根據(jù)圖3(a)、(b),并結(jié)合圖2,在水熱時(shí)間為3~5 h時(shí),產(chǎn)物主要為長(zhǎng)短不均、長(zhǎng)度約為5 μm的碳酸氧化鎂晶體,形貌類似于棒狀三水碳酸鎂被橫向剖開(kāi)后剩下的中空棒狀。水熱時(shí)間為7~11 h,產(chǎn)物的形貌由不規(guī)則的形態(tài)轉(zhuǎn)變?yōu)橐?guī)則的短棒狀。結(jié)合圖2可知,隨著水熱時(shí)間的延長(zhǎng),產(chǎn)物中無(wú)水碳酸鎂的含量增多,產(chǎn)物的形貌也逐步固定(圖3(c)—(e))。當(dāng)水熱時(shí)間延長(zhǎng)至13 h(圖3(f)),產(chǎn)物均為表面光滑、分散良好、平均直徑為2 μm的棱柱狀無(wú)水碳酸鎂晶體。

      2.2.2水熱溫度的影響

      圖4所示為三水碳酸鎂-檸檬酸鈉體系不同水熱溫度所得產(chǎn)物XRD譜圖。水熱溫度為110~170℃時(shí),所得產(chǎn)物圖譜中均存在碳酸氧化鎂和無(wú)水碳酸鎂2種物質(zhì)的衍射峰,表明該溫度區(qū)間內(nèi),所得物質(zhì)為碳酸氧化鎂和無(wú)水碳酸鎂的混合物。水熱溫度為190℃時(shí),產(chǎn)物為物相單一且結(jié)晶良好的無(wú)水碳酸鎂晶體。

      圖5所示為三水碳酸鎂-檸檬酸鈉體系不同水熱溫度所得產(chǎn)物的SEM圖像。在水熱溫度為110~170℃時(shí),產(chǎn)物均為無(wú)規(guī)則形貌(圖5(a)—(d))。水熱溫度升高至190℃,產(chǎn)物為形貌均一、尺寸均勻、平均粒徑為3~5 μm的棱柱狀無(wú)水碳酸鎂晶體(圖5(e))。

      2.2.3檸檬酸鈉的影響

      由上述結(jié)果可知,無(wú)水碳酸鎂的最佳反應(yīng)條件為:反應(yīng)溫度為190℃,反應(yīng)時(shí)間為13 h。圖6所示為不同檸檬酸鈉添加量時(shí)所得產(chǎn)物的XRD譜圖。產(chǎn)物的衍射峰均為無(wú)水碳酸鎂特征峰,而檸檬酸鈉添加量為5%對(duì)應(yīng)的衍射峰較高,檸檬酸鈉添加量為10%~50%的衍射峰峰高幾乎相同,部分晶面的衍射峰趨于消失。

      圖7所示為不同檸檬酸鈉添加量所得產(chǎn)物的SEM圖像。在檸檬酸鈉添加量為5%時(shí),所得產(chǎn)物為平均粒徑約5 μm、團(tuán)聚生長(zhǎng)的棱柱狀無(wú)水碳酸鎂晶體,見(jiàn)圖7(a)。檸檬酸鈉添加量為10%~30%,產(chǎn)物具有較好的分散性,晶體粒徑變化較小,均在3~5 μm。添加量增大至50%,晶體團(tuán)聚生長(zhǎng),但晶體粒徑減小,長(zhǎng)度約為3 μm,見(jiàn)圖7(e)。上述結(jié)果表明,隨著檸檬酸鈉添加量增加,所得無(wú)水碳酸鎂晶體粒徑減小。

      2.3反應(yīng)機(jī)制

      在水熱反應(yīng)的過(guò)程中,由于水分子與多數(shù)金屬離子均具有強(qiáng)烈的靜電相互作用,可以在離子周圍形成屏障,并形成水合金屬離子,如反應(yīng)方程式(1)所示。水分子容易融入碳酸鹽結(jié)構(gòu)[23],當(dāng)碳酸根離子與鎂離子結(jié)合時(shí),鎂離子周圍的水分子層仍然存在,導(dǎo)致常溫下總是獲得含結(jié)晶水的碳酸鎂鹽化合物,如水合碳酸鎂(MgCO3·3H2O)、堿式碳酸鎂(4MgCO3·Mg(OH)2·4H2O)。

      Mg2++6H2O→[Mg(H2O)6]2+。(1)

      堿土金屬離子中,鎂離子與水分子間的相互作用幾乎是最強(qiáng)的,導(dǎo)致了較多水熱體系的中間產(chǎn)物為堿式碳酸鎂。當(dāng)向水熱體系中引入檸檬酸鈉,一方面,檸檬酸根離子與Mg2+具有強(qiáng)絡(luò)合作用,反應(yīng)方程式(3)—(5)代表了檸檬酸根與Mg2+發(fā)生的不同程度的絡(luò)合,減弱了Mg2+和水分子的結(jié)合作用,抑制了中間產(chǎn)物堿式碳酸鎂的形成;另一方面,Na+的離子半徑大于Mg2+,故Na+的水化能小于Mg2+的水化能,進(jìn)一步減緩了Mg2+的水合作用,形成了新的中間產(chǎn)物碳酸氧化鎂Mg3O(CO3)2,如化學(xué)方程式(6)所示。三水碳酸鎂-檸檬酸鈉體系水熱法制備無(wú)水碳酸鎂晶體的反應(yīng)主要包括三水碳酸鎂—碳酸氧化鎂(Mg3O(CO3)2)—無(wú)水碳酸鎂的固相轉(zhuǎn)變過(guò)程,主要反應(yīng)方程式為

      C6H5O7Na3→[C6H5O7]3-+3Na+,(2)

      Mg2++[C6H5O7]3-→[MgC6H5O7]-,(3)

      2Mg2++[C6H5O7]3-→[Mg2C6H5O7]+,(4)

      3Mg2++[C6H5O7]3-→[Mg3C6H5O7]3+,(5)

      [Mg3C6H5O7]3++2CO32-+2OH-→Mg3O(CO3)2+[C6H5O7]3-+H2O,(6)

      Mg3O(CO3)2+CO2→3MgCO3,(7)

      4MgCO3?Mg(OH)2?4H2O→Mg3O(CO3)2+2MgO+2CO2+5H2O。(8)

      秦志揚(yáng)等[24]通過(guò)對(duì)堿式碳酸鎂熱分解得到中間產(chǎn)物Mg3O(CO3)2,方程如式(8)。Mg3O(CO3)2晶胞為體心立方結(jié)構(gòu),主要表現(xiàn)為無(wú)定型,而堿式碳酸鎂晶胞是單斜結(jié)構(gòu)(P21/C),主要形貌為片狀,由于中間產(chǎn)物不同的晶體結(jié)構(gòu),無(wú)水碳酸鎂晶體也表現(xiàn)出不同的形貌,如圖8所示。當(dāng)中間相為堿式碳酸鎂時(shí),無(wú)水碳酸鎂晶粒在片狀平面上進(jìn)行堆積,呈臺(tái)階式生長(zhǎng);在檸檬酸鈉的影響下,鎂離子被檸檬酸根離子絡(luò)合,形成了立方結(jié)構(gòu)的碳酸氧化鎂,由于沒(méi)有類似于堿式碳酸鎂的平面作為支撐,而以原有的立方結(jié)構(gòu)為基體向固定晶向生長(zhǎng),表現(xiàn)為棱柱狀晶體。

      3結(jié)論

      1)三水碳酸鎂-檸檬酸鈉水熱體系中,水熱溫度為190℃,水熱時(shí)間為13 h,檸檬酸鈉添加量為10%~30%,可獲得物相均一、形狀均勻、平均粒徑為3~5 μm的棱柱狀無(wú)水碳酸鎂晶體。

      2)水熱反應(yīng)中,檸檬酸根離子對(duì)鎂離子的絡(luò)合作用,以及鈉離子的強(qiáng)水合作用,導(dǎo)致鎂離子水合能力受到抑制,中間產(chǎn)物由片狀的堿式碳酸鎂晶體轉(zhuǎn)變?yōu)閴K狀的碳酸氧化鎂。中間產(chǎn)物的不同形貌對(duì)應(yīng)著不同的生長(zhǎng)方式,由堆砌式二維生長(zhǎng)轉(zhuǎn)變?yōu)榕_(tái)階式三維生長(zhǎng),最終產(chǎn)物的形貌由立方體狀轉(zhuǎn)為棱柱狀。

      利益沖突聲明(Conflict of Interests)

      所有作者聲明不存在利益沖突。

      All authors disclose no relevant conflict of interests.

      作者貢獻(xiàn)(Authors’Contributions)

      張一帆進(jìn)行了方案設(shè)計(jì),張一帆和王余蓮參與了論文的寫作,王余蓮、孫浩然、李孟強(qiáng)、李紀(jì)勛、關(guān)蕊與鄧?guó)P參與了論文的修改。所有作者均閱讀并同意了最終稿件的提交。

      The study was designed by ZHANG Yifan. The manuscript was written by ZHANG Yifan and WANG Yulian,and revised by WANG Yulian,SUN Haoran,LI Mengqiang,LI Jixun,GUAN Rui,and DENG Feng. Allauthors have read the final version of the paper and consented to its submission.

      參考文獻(xiàn)(References)

      [1]溫永欽,盧金山,王祿彤,等. 菱鎂礦尾礦粉對(duì)水泥砂漿力學(xué)與收縮性能研究[J]. 新型建筑材料,2024,51(2):59-62.

      WENYQ,LUJS,WANG LT,et al. Study on the mechanical and shrinkage properties of magnesite tailingson cement mortar[J]. New Building Materials,2024,51(2):59-62.

      [2]王晶,惠香,田丁,等. 花型無(wú)水碳酸鎂制備及其熱分解動(dòng)力學(xué)[J]. 人工晶體學(xué)報(bào),2014,43(7):1700-1704,1717. WANGJ,HUI X,TIAN D,et al. Preparation and thermal decomposition kinetics of flowerlike anhydrous magnesium carb-onate[J]. Journal of Synthetic Crystals,2014,43(7):1700-1704,1717.

      [3]趙航毅,王余蓮,時(shí)天驕,等. 氯化銨輔助三水碳酸鎂水熱法合成無(wú)水碳酸鎂及其形成機(jī)理[J]. 中國(guó)粉體技術(shù),2022,28(6):49-57.

      ZHAO HY,WANG YL,SHI TJ,etal. Synthesis and formation mechanism of anhydrous magnesium carbonate by hydro-thermal methodofnesquehonite with assistance of ammonium chloride[J]. China PowderScienceand Technology,2022,28(6):49-57.

      [4]BHOSALE D,DEVIKAR A,SASIKUMAR S,et al. Foaming Mg alloy and composite using MgCO3blowing agent[J]. Metal-lurgical and Materials Transactions B,2021,52(2):1-13.

      [5]CHUN YZ,YUN HL,XU HZ,et al. Synthesis of MgCO3particles with different morphologies and their effects on theme-chanical properties of rigid polyvinyl chloride composites[J]. Polymer-Plastics Technology and Materials,2021,60(3):316-326.

      [6]NGULUBE T,GUMBO J,MASINDI V,et al. Preparation and characterisation of high performing magnesite-halloysite nano-composite and its application in the removal of methylene blue dye[J]. Journal of Molecular Structure,2019,1184:389-399.

      [7]HU S,YE G,CHEN L,et al. Effect of micro-sized MgCO3addition on properties of MgAl2O4spinel containing castables[J]. Ceramics International,2017,43(13):9891-9895.

      [8]ZHANG P,TORRE LD GZ T,WELCH K,et al. Supersaturation of poorly soluble drugs induced by mesoporous magnesium carbonate[J]. European Journal of Pharmaceutical Sciences,2016,93:468-474.

      [9]YANG J,ALVEBRATT C,LU X,et al. Amorphous magnesium carbonate nanoparticles with strong stabilizing capability for amorphous ibuprofen[J]. International Journal of Pharmaceutics,2018,548(1):515-521.

      [10]XING Z,HAO Q,JU Z,et al. Synthesis of MgCO3microcrystals at 160℃starting from various magnesium sources[J]. Materials Letters,2010,64(12):1401-1403.

      [11]LI N,CHANG Z,ZHAN Y,et al. Growth of cubic anhydrous magnesium carbonate single crystal in deep eutectic solvent[J]. Journal of Solid State Chemistry,2020,292:121684.

      [12]DONG W,LIU R,ZHAO H,et al. Preparation and characterization of anhydrous magnesium carbonate under the present of potassium ions solution[J]. Powder Technology,2020,360:741-746.

      [13]崔萬(wàn)順. 鈣鎂碳酸鹽仿生合成及機(jī)理研究[D]. 淄博:山東理工大學(xué),2023.

      CUI WS. Study on biomimetic mineralization of calcium and magnesium carbonate[D]. Zibo:Shandong University of Tec-hnology,2023.

      [14]崔萬(wàn)順,文偉翔,閆平科,等. 氨基酸調(diào)控?zé)o水碳酸鎂晶體結(jié)晶試驗(yàn)研究[J]. 硅酸鹽通報(bào),2022,41(8):2904-2909,2962.

      CUI WS,WEN WX,YAN PK,et al. Experimental study on crystallization of anhydrous magnesium carbonate crystals regulated by amino acids[J]. Bulletin of the Chinese Ceramic Society,2022,41(8):2904-2909,2962.

      [15]LU Y,BI Q,ZHANG Q,et al. Anhydrous MgCO3:controllable synthesis of various morphology based on hydrothermal carbonization[J]. Materials Research Express,2023,10(3):035005.

      [16]BI Q,LU Y,ZHAO C,et al. A facile approach to prepare anhydrous MgCO3and its effect on the mechanical and flame-retardant properties of PVC composites[J]. Journal of Applied Polymer Science,2021,138(45):51349.

      [17]TOROZ D,SONG F,UDDIN A,et al. A database of solution additives promoting Mg2+dehydrationand the onset of MgCO3nucleation[J]. Crystal Growthamp;Design,2022,22(5):3080-3089.

      [18]LIANG W,YIN Y,WANG L,et al. A new method of preparing anhydrous magnesium carbonate(MgCO3)under high pressure and its thermal property[J]. Journal of Alloys and Compounds,2017,702:346-351.

      [19]YAMAMOTO G,KYONO A,OKADA S. Structural variations of amorphous magnesium carbonate during nucleation,crys?

      tallization,and decomposition of nesquehonite MgCO3·3H2O[J]. Physics and Chemistry of Minerals,2023,50(1):5.

      [20]BORK AH,ACKERL N,REUTELER J,et al. Model structures of molten salt-promoted MgO to probe the mechanism ofMgCO3formation during CO2capture at asolid-liquid interface[J]. Journal of Materials Chemistry A,2022,10(32):16803-16812.

      [21]梁文,李澤明,王璐穎,等. 基于二水草酸鎂(MgC2O4·2H2O)的無(wú)水碳酸鎂(MgCO3)的高壓制備和表征[J]. 物理學(xué)報(bào),2017,66(3):129-135.

      LIANG W,LI ZM,WANG LY,et al. High pressure synthesis of anhydrous magnesium carbonate(MgCO3)from magnesium oxalate dihydrate(MgC2O4·2H2O)and its characterization[J]. Acta Physica Sinica,2017,66(3):129-135.

      [22]SUTRADHAR N,SINHAMAHAPATRA A,PAHARI KS. Controlled synthesis of different morphologies of MgO and their use as solid base catalysts[J]. The Journal of Physical Chemistry C,2011,115(25):12308-12316.

      [23]H?NCHEN M,PRIGIOBBE V,BACIOCCHI R,et al. Precipitation in the Mg-carbonate system-effects of temperature and CO2pressure[J]. Chemical Engineering Science,2008,63(4):1012-1028.

      [24]秦志揚(yáng),秦麟卿,張聯(lián)盟,等. XRD,TG,DSC和FTIR法研究堿式碳酸鎂的熱分解[J]. 非金屬礦,2012,35(4):52-53.

      QIN ZY,QIN LQ,ZHANG LM,et al. Study on the thermal decomposition of basic magnesium carbonate by XRD,TG,DSC and FTIR[J]. Non-metallic Mines,2012,35(4):52-53.

      Sodium citrate-assisted synthesis of anhydrous magnesium carbonate crystals from magnesium carbonate trihydrate and its mechanism

      ZHANG Yifan1,WANG Yulian1,SUN Haoran1,LIJixun1,GUAN Rui1,DENG Feng1,LIMengqiang2

      1. Shcool of Materials Science and Engineering,Shenyang Ligong University,Shenyang 110159,China;

      2. China Magnesiteamp;Material Association,Beijing 100036,China

      Abstract

      ObjectiveResearchers typically use solid precursors such as nesquehonite,magnesium oxide,and magnesium oxalate to pre?pare MgCO3. However,these methods require stringent experimental conditions and specialized equipment,limiting their practi?cality. This paper investigated the preparation of nesquehonite from lightly burned magnesium oxide and the subsequent synthe?sis of anhydrous magnesium carbonate. The effects of sodium citrate concentration,citric acid concentration,hydrothermal tem?perature,and hydrothermal time on the microscopic morphology and phase composition of the product were discussed. The for?mation mechanism of prismatic anhydrous magnesium carbonate in asodium citrate-magnesium trihydrate system was explored. MethodsLightly burned magnesium oxide was first mixed with water at amass ratio of1∶30 and hydrated in awater bath at 90℃for 2 h to obtain Mg(OH)2. Carbon dioxide gas was then introduced at afixed rate for1h to produce heavy magnesium water(Mg(HCO3)2). The obtained water was subsequently pyrolyzed at 55℃for 2 h. After suction filtration,the filter cake was dried at 50℃for 20 h to obtain white powder nesquehonite(MgCO3·3H2O). Finally,MgCO3·3H2O was mixed with deionized water at amass ratio of 1∶30,and sodium citrate was added at concentrations ranging from 5%~50%. The mixture was stirred evenly,placed in apolytetrafluoroethylene liner,and reacted at temperatures within 110~190℃for 3~13 h to obtain MgCO3.

      Results and DiscussionWhen the hydrothermal time was extended to 13 h,prismatic anhydrous magnesium carbonate crystalswith smooth surface,good dispersion,and an average diameter of 2 μm were produced. Increasing the hydrothermal tempera?ture to 190℃resulted in diamond-shaped anhydrous magnesium carbonate crystals with uniform morphology,consistent size,and average particle sizes of 3~5 μm. With the increase of sodium citrate concentration,the particle size of the obtained anhy?drous magnesium carbonate decreased. With ahydrothermal temperature of 190℃,hydrothermal timeof 13 h,and sodiumcitrate concentration of 10%~30%,diamond-shaped anhydrous magnesium carbonate crystals with uniform phase,shape,andaverage particle sizes of 3~5 μm could be obtained.

      During the hydrothermal reaction,strong electrostatic interactions between water molecules and metal ions created abarrieraround the ions,forming hydrated metal ions. Water molecules easily integrated into the carbonate structure. Therefore,whencarbonate ions combined with magnesium ions,the layer of water molecules around the magnesium ions remained. Under thiscondition,magnesiumcarbonatecompoundscontainingcrystalline water,suchashydratedmagnesiumcarbonate(MgCO3·3H2O)and basic magnesium carbonate(4MgCO3·Mg(OH)2·4H2O),could be formed at room temperature. Among alkalineearth metal ions,the interaction between magnesium ions and water molecules was nearly the strongest,leading to basic magne?sium carbonate often being an intermediate product in most hydrothermal systems. When sodium citrate was introduced into thehydrothermal system,the strong complexation reactions of citrate ions with Mg2+weakened the binding effect of Mg2+and H2O,inhibiting the formation of basic magnesium carbonate. Additionally,since the ionic radius of Na+was greater than that of Mg2+,the ionic hydration energy of Na+was less than that of Mg2+,which further slowed down the hydration of Mg2+and formed anewintermediate product,magnesium carbonate oxide(Mg3O(CO3)2).

      The Mg3O(CO3)2unit cell is abody-centered cubic structure with amorphous morphology,while the basic magnesium carbonate unit cell is amonoclinic structure(P21/C)with alamellar morphology. When the intermediate phase was basic magnesium car?bonate,the anhydrous magnesium carbonate grains stacked on the sheet-like planes,growing in astepped manner. Under the influence of sodium citrate,magnesium ions were complexed by citrate ions,forming acubic structure of magnesium carbonate oxide. Without aplane similar to basic magnesium carbonate for support,the original cubic structure served as the matrix,grow?ing in the fixed crystal directions,forming prismatic crystals.

      ConclusionIn the magnesium carbonate trihydrate-sodium citrate hydrothermal system,with ahydrothermal temperature of190℃,hydrothermal time of 13 h,and sodium citrate concentration of 10%~30%,prismatic anhydrous magnesium carbonatecrystals with uniform phase,shape,and average particle sizes of 3~5 μm can be obtained. During the hydrothermal reaction,the complexation of magnesium ions by citrate ions and the strong hydration of sodium ions inhibit the hydration ability of magne?sium ions. This results in the intermediate product changing from flake-like basic magnesium carbonate crystals to bulk magne?sium carbonate oxide. The different morphologies of the intermediate products correspond to different growth modes,transition?ing from“stacked”two-dimensional growth to“stepped”three-dimensional growth,which causes the changes in morphology ofthe final product.

      Keywords:magnesium carbonate;hydrothermal method;sodium citrate;growth mechanism

      (責(zé)任編輯:王雅靜)

      猜你喜歡
      檸檬酸鈉碳酸鎂水熱法
      混合有機(jī)配位劑對(duì)DTSPAM去除水中Cd2+性能的影響
      水熱法原位合成β-AgVO3/BiVO4復(fù)合光催化劑及其催化性能
      正交試驗(yàn)法研究廢鉛膏在檸檬酸鈉水溶液中的溶解行為
      蓄電池(2016年5期)2016-10-19 05:05:21
      檸檬酸鈉在藻鈣膠凝材料中的應(yīng)用研究
      真空碳熱還原堿式碳酸鎂制鎂實(shí)驗(yàn)
      鋁碳酸鎂咀嚼片聯(lián)合奧美拉唑?qū)ξ笣兊闹委焹r(jià)值分析
      水熱法制備NaSm(MoO4)2-x(WO4)x固溶體微晶及其發(fā)光性能
      水熱法制備BiVO4及其光催化性能研究
      埃索美拉唑聯(lián)合鋁碳酸鎂片和黛力新治療胃食管反流病70例
      鋁碳酸鎂片聯(lián)合埃索美拉唑、莫沙必利治療胃食管反流病63例
      404 Not Found

      404 Not Found


      nginx
      南京市| 衡东县| 天峨县| 剑川县| 丰宁| 金湖县| 祁阳县| 阿合奇县| 页游| 双桥区| 伊通| 岳西县| 会理县| 古蔺县| 都匀市| 堆龙德庆县| 承德市| 青阳县| 织金县| 惠东县| 环江| 吴桥县| 鄂尔多斯市| 虞城县| 沅陵县| 海宁市| 玉环县| 民县| 金寨县| 淮南市| 抚松县| 孝义市| 城市| 巴楚县| 桑日县| 保定市| 开远市| 肥西县| 化德县| 内丘县| 漾濞|