• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      減水劑對再生微粉-礦渣-水泥基砂漿流變性能的影響

      2024-11-27 00:00:00朱濤馬亞鵬毛明杰楊秋寧張東生
      中國粉體技術(shù) 2024年6期
      關(guān)鍵詞:預(yù)測模型減水劑

      摘要:【目的】探究減水劑對再生微粉-礦渣-水泥基砂漿(regenerated micro-powder-slag-cement-based mortar,RSCM)流變性能的影響,通過添加減水劑有效利用再生微粉和礦渣粉等固廢材料,為解決固廢基砂漿在工作性能方面的不足提供方案?!痉椒ā渴褂?種不同減水劑(萘系、三聚氰胺系和聚羧酸系),研究在不同摻量下RSCM流變性能的變化規(guī)律,計算RSCM的觸變環(huán)面積、屈服應(yīng)力、塑性黏度和水膜層厚度,建立水膜層厚度對于漿體屈服應(yīng)力的預(yù)測模型?!窘Y(jié)果】隨著減水劑摻量的增加,RSCM的觸變環(huán)面積、屈服應(yīng)力和塑性黏度減小,而水膜層厚度增加;三聚氰胺系減水劑對流變性能的改善效果最明顯,在三聚氰胺系減水劑質(zhì)量分?jǐn)?shù)為0. 6%時,RSCM的觸變環(huán)面積為2660 Pa/s,屈服應(yīng)力達(dá)到74. 7 Pa、塑性黏度達(dá)到2. 79 Pa·s,水膜層厚度為0. 67 μm;若減水劑用量持續(xù)增加,RSCM將變得很稀,不能應(yīng)用于實(shí)際工程;RSCM的水膜層厚度與屈服應(yīng)力呈函數(shù)關(guān)系?!窘Y(jié)論】3種減水劑中,選擇三聚氰胺系減水劑是比較合適的;RSCM的水膜層厚度與屈服應(yīng)力的關(guān)系模型具有較高的精度和適用性。

      關(guān)鍵詞:再生微粉;減水劑;流變性能;預(yù)測模型

      中圖分類號:TB44;TU528文獻(xiàn)標(biāo)志碼:A

      引用格式:

      朱濤,馬亞鵬,毛明杰,等. 減水劑對再生微粉-礦渣-水泥基砂漿流變性能的影響[J]. 中國粉體技術(shù),2024,30(6):50-61.

      ZHU Tao,MA Yapeng,MAO Mingjie,et al. Effect of water reducing agent on rheological properties of regenerated micro-powder-slag-cement-based mortar[J]. China Powder Science and Technology,2024,30(6):50?61.

      在土木工程可持續(xù)性發(fā)展過程中,使用一些經(jīng)過處理后的建筑垃圾來替代水泥,不僅可以降低固廢對環(huán)境的負(fù)擔(dān),還可以減少膠凝材料對自然資源的依賴[1-2]。從建筑拆遷垃圾中破碎球磨得到的再生微粉,從煤炭與其他固體燃料中通過高溫熔化、再經(jīng)固化冷卻形成的粉煤灰,從煉鐵高爐中排出的熔融物、再經(jīng)淬冷成粒后粉磨得到的礦渣粉等已被廣泛研究并應(yīng)用于建筑領(lǐng)域[3-5]。再生微粉含有大量的硬化水泥石和未水化的水泥顆粒,具有較大的內(nèi)比表面積,而礦渣粉具有粒徑小、比表面積大、活性高、水化反應(yīng)速度快等特點(diǎn),使得含有再生微粉和礦渣粉的砂漿在工作性能方面表現(xiàn)較差[6-9]。Xiao等[10]研究發(fā)現(xiàn),水泥與再生微粉的質(zhì)量比為7∶3制成的混凝土,減水劑用量需要增加2.3倍才能達(dá)到與普通混凝土相似的坍落度。李泉良[11]研究發(fā)現(xiàn),礦渣粉質(zhì)量分?jǐn)?shù)在10%~90%時,隨著礦渣粉摻量的增加,漿體的凝結(jié)時間逐步延長。綜上,在水膠比不變的情況下,常采用減水劑來改善含有再生微粉、礦渣粉漿

      體的工作性能[12-13]。

      評價混凝土工作性能最常用、最簡單的方法是坍落度試驗(yàn),但坍落度試驗(yàn)是單點(diǎn)試驗(yàn),只能代表漿體的流動性。隨著高性能混凝土的發(fā)展,坍落度試驗(yàn)在大多數(shù)情況下已不再適用。目前,混凝土的流變測試被認(rèn)為是表征材料工作性能最有效的手段,故許多實(shí)驗(yàn)室開展了減水劑對漿體流變性能影響的研究[14-17]。Xiong 等[18]研究了萘系減水劑對粉煤灰、礦渣粉制備漿體的流變性能影響,發(fā)現(xiàn)萘系減水劑的加入可以改善漿體的流動性,提高其塑性黏度,降低其屈服應(yīng)力。Zhang等[19]研究了三聚氰胺系減水劑對粉煤灰漿體流變性能的影響,發(fā)現(xiàn)三聚氰胺系減水劑的加入,可以提供更多的吸附位點(diǎn)、減少基團(tuán)之間的相互作用,從而降低漿體的屈服應(yīng)力和塑性黏度。溫金保等[20]和關(guān)博文等[21]研究了聚羧酸減水劑對水泥漿體流變性能的影響,發(fā)現(xiàn)聚羧酸系減水劑的摻入可增加水泥漿體的流動度,降低漿體的屈服應(yīng)力和塑性黏度。以上研究多數(shù)是對減水劑作用下漿體的流變性能的常規(guī)分析,關(guān)于減水劑對砂漿水膜層厚度影響的研究較少,尤其對精準(zhǔn)預(yù)測屈服應(yīng)力、塑性黏度等方面的研究還不完善,導(dǎo)致在實(shí)際工程中無法準(zhǔn)確測得漿體的工作性能。

      本文中對不同類型減水劑及不同摻量下再生微粉-礦渣-水泥基砂漿(regenerated powder-slag powder-cement-based mortar,RSCM)的流變性能進(jìn)行全面研究,計算3種減水劑在不同摻量下RSCM的水膜層厚度,研究RSCM的水膜層厚度與屈服應(yīng)力的關(guān)系,證明水膜層厚度模型的適用性,最后,建立一種能夠充分反映絮凝體等原始變量引起的流變參數(shù)變化的預(yù)測模型,為實(shí)際工程中準(zhǔn)確測得漿體的工作性能提供一定參考。

      1材料與方法

      1.1試劑材料和儀器設(shè)備

      試劑材料:普通硅酸鹽水泥(寧夏銀川西夏建材城),標(biāo)號為P·O 42.5R,80 μm篩余質(zhì)量分?jǐn)?shù)為2. 1%,化學(xué)成分見表1。試驗(yàn)用再生微粉是先將廢棄路面混凝土進(jìn)行破碎,將破碎后的混凝土進(jìn)行篩分得到粒徑小于2.56 mm的粉體,再對粉體進(jìn)行烘干、球磨后得到,化學(xué)成分見表2。礦渣選用S95級粒化高爐礦渣粉(寧夏和億達(dá)建材公司),密度為2650 kg/m3,比表面積為525 m2/kg,化學(xué)成分見表3。減水劑分別為萘系減水劑(naphthalene superplasticizer,SNF)、三聚氰胺系減水劑(sulfonatedmelamine-formaldehyde resin,SMF)和聚羧酸系減水劑(polycarboxylate superplasticizer,PCE),具體參數(shù)見表4。細(xì)集料為中砂(寧夏銀川西夏建材城),細(xì)度模數(shù)為2.76。水全部采用銀川市自來水。

      儀器設(shè)備:TYC-LBM型流變儀(砼易測智能科技有限公司),JJ-5型水泥膠砂攪拌機(jī)(無錫錫儀建材儀器廠)。

      1.2RSCM的制備

      制備16種RSCM試樣。試樣中膠凝材料的質(zhì)量為450g(其中水泥、再生微粉、礦渣的質(zhì)量比為3∶1∶1),水的質(zhì)量為225 g,砂的質(zhì)量為1350 g,3種減水劑用量分別取膠凝材料質(zhì)量的0.2%、0.4%、0.6%、0.8%、1.0%,PC0為不加減水劑的基準(zhǔn)組,具體配合比見表5。

      1.3方法

      1.3.1流變參數(shù)測試

      漿體攪拌完成后,倒入流變儀測試器皿進(jìn)行試驗(yàn)。為了使顆粒充分分散,漿體達(dá)到相對均勻的狀態(tài),漿體以100 s-1的剪切速率預(yù)剪切30 s,然后靜置20 s;靜置結(jié)束后,在前60 s內(nèi),剪切速率由0梯級遞增到100 s-1,共5個階梯,每個階梯轉(zhuǎn)速持續(xù)10 s,在后60 s內(nèi)剪切速率由100 s-1梯級遞減到0,共5個階梯,每個階梯轉(zhuǎn)速持續(xù)10 s,整個流變試驗(yàn)過程持續(xù)150 s,具體過程如圖1所示。試驗(yàn)結(jié)束后,整理數(shù)據(jù)得到流變曲線,然后采用經(jīng)典的Bingham模型對曲線下降段進(jìn)行擬合,得到流變參數(shù)。

      τ=τ0+ηr,(1)

      式中:τ為剪應(yīng)力;r為剪切速率;τ0為屈服應(yīng)力;η為塑性黏度。

      1.3.2水膜層厚度測試

      為了確定漿體的水膜層厚度,首先需要測量漿體中固體顆粒的堆積密度。本文中采用Wong等[22]提出的濕堆積密度法來測量實(shí)際漿體的顆粒堆積密度。濕堆積密度法是通過調(diào)整漿體的水膠比(從較低的水膠比開始,然后依次增加),以獲得不同水膠比下漿體的顆粒濃度,其中顆粒濃度的最大值可視為此配比下漿體的顆粒堆積密度。水膜層厚度可由下式求得:

      式中:HWFT為漿體的水膜層厚度;u0為顆粒系統(tǒng)中多余水體積與固體體積之比;u1為總水體積與固體體積之比;u2為空隙體積與固體體積之比;ρbm為漿體的顆粒堆積密度;M和V分別為計量填料密度模具中漿體的質(zhì)量和體積;ρw、ρa(bǔ)、ρb、ρc、ρd分別為水、水泥、礦物摻合料、骨料的密度,Rw、Ra、Rb、Rc、Rd分別為水、水泥、礦物摻合料、骨料的體積與固體顆粒體積比值。

      2結(jié)果與分析

      2.1減水劑對流變特性的影響

      2.1.1RSCM的觸變性

      觸變性反映了漿體中各組分之間相互作用力的大小,上升和下降段曲線之間的封閉區(qū)域代表漿體的觸變環(huán),將上升段和下降段曲線形成的封閉區(qū)域進(jìn)行積分得到觸變環(huán)面積S,觸變環(huán)面積可以定性的評價砂漿的觸變性行為。圖2所示為RSCM的觸變性隨3種類型減水劑的變化。由圖可見,隨著3種減水劑質(zhì)量分?jǐn)?shù)的增加,漿體的觸變環(huán)面積均呈下降趨勢,SNF1.0、SMF1.0和PCE1.0組RSCM漿體的觸變環(huán)面積分別為1420、1360、1620 Pa/s,較基準(zhǔn)組分別下降了75. 1%、76. 1%、71.6%。這是因?yàn)?,減水劑可以減小水泥顆粒的表面張力,使粉體顆粒之間的相互作用減弱,從而降低了漿體的黏性,提高了流動性;同時減水劑分子中的親水基團(tuán)能夠與粉體顆粒表面形成親水性吸附,使粉體顆粒分散均勻,顆粒之間的團(tuán)聚作用減弱,從而減少了絮凝結(jié)構(gòu)的產(chǎn)生,使觸變環(huán)面積減小,且隨著減水劑用量的繼續(xù)增大,這種現(xiàn)象愈發(fā)明顯,說明過量的減水劑會給漿體帶來不利影響[23]。

      2.1.2RSCM的流變曲線

      本文中利用較為穩(wěn)定的下降段曲線數(shù)據(jù)來計算流變參數(shù)。采用Bingham模型擬合得到不同減水劑質(zhì)量分?jǐn)?shù)下漿體的屈服應(yīng)力和塑性黏度,擬合曲線如圖3所示。由圖可見,剪應(yīng)力與剪切速率呈線性關(guān)系,減水劑用量增大時,減緩了漿體的水化速率,減少了水化產(chǎn)物的數(shù)量,漿體的凝結(jié)時間增加,宏觀上表現(xiàn)出剪應(yīng)力變小。從圖中可以看出,測試點(diǎn)均在擬合曲線附近,說明Bingham模型擬合度較高,Bingham模型可以很好的描述漿體的流變特性。

      2.1.3RSCM的屈服應(yīng)力和塑性黏度

      漿體的屈服應(yīng)力是由粉體顆粒間的黏合力和摩擦力共同產(chǎn)生的,粉體顆粒在開始流動之前承受一定的應(yīng)力;而塑性黏度是指漿體內(nèi)部結(jié)構(gòu)阻礙其流動的難易程度。圖4所示為RSCM的屈服應(yīng)力、塑性黏度隨3種類型減水劑及摻量的變化。由圖可見,SNF質(zhì)量分?jǐn)?shù)在0~1.0%時,漿體的屈服應(yīng)力從781.2 Pa減小到123.3 Pa,塑性黏度從4.53 Pa·s減小到3.16 Pa·s;SMF質(zhì)量分?jǐn)?shù)在0~1.0%時,漿體的屈服應(yīng)力從781.2 Pa減小到21.4 Pa,塑性黏度從4.53 Pa·s減小到1.90 Pa·s;PCE質(zhì)量分?jǐn)?shù)在0~1.0%時,漿體的屈服應(yīng)力從781.2 Pa減小到448.6 Pa,塑性黏度從4.53 Pa·s減小到3.72 Pa·s。流變參數(shù)均隨減水劑用量的增加下降,減水劑的加入釋放了絮凝結(jié)構(gòu)中的自由水,減少了顆粒之間的摩擦,因此降低漿體的屈服應(yīng)力和塑性黏度。同時減水劑用量的增大會導(dǎo)致羧基側(cè)鏈密度的增加,引起位阻的增加,導(dǎo)致漿體的屈服應(yīng)力和塑性黏度值降低[24]。摻入SMF系列減水劑漿體的屈服應(yīng)力和塑性黏度下降最明顯,用量過大會減緩漿體水化的速率和進(jìn)程,使得絮凝結(jié)構(gòu)數(shù)量減少,漿體中自由水增多,而水又可以起到潤滑的作用,降低了漿體流動的摩擦阻力,從而大大降低了漿體的屈服應(yīng)力和塑性黏度。

      2.1.4RSCM的水膜層厚度

      水膜層厚度可反映漿體堆積密實(shí)度、用水量和表面積等信息。有學(xué)者已將水膜層厚度概念應(yīng)用到水泥凈漿、砂漿和混凝土拌合物中,并提出平均水膜層厚度是控制漿體流動性和改變漿體流變行為的主要參數(shù)[25]。圖5展現(xiàn)了RSCM的水膜層厚度隨不同減水劑及摻量的變化。由圖可見,隨著減水劑用量的增加,水膜層厚度呈上升趨勢,從PC0組RSCM漿體到SNF1.0組RSCM漿體,水膜層厚度從0.33 μm增大到0.61 μm,增加了84.8%;PC0組RSCM漿體到SMF1.0組RSCM漿體,水膜層厚度從0.33 μm增大到0.92 μm,增加了178.8%;PC0組RSCM漿體到PCE1.0組RSCM漿體,水膜層厚度從0.33 μm增大到0.52 μm,增加了57.6%。這是因?yàn)?,減水劑用量的增加,減少了固體顆粒之間的摩擦,增加了顆粒之間接觸的距離,使得固體顆粒表面的水膜層厚度增加,同時減水劑的摻入可以破碎絮凝體并釋放絮凝體中所困的水,從而導(dǎo)致水膜層厚度增加。SMF0.6組RSCM漿體的水膜層厚度比SNF1.0、PCE1.0組RSCM漿體的水膜層厚度還要大,說明三聚氰胺系減水劑會使RSCM中自由水激增,水化速率明顯減慢,導(dǎo)致絮凝結(jié)構(gòu)數(shù)量出現(xiàn)斷崖式減少,導(dǎo)致RSCM漿體可以在更少的SMF用量下具有理想的流動性能,從而節(jié)約能耗和成本[26]。

      2.2水膜層厚度與屈服應(yīng)力的關(guān)系

      圖6所示為摻加3種減水劑的RSCM的屈服應(yīng)力與水膜層厚度的關(guān)系,并進(jìn)行了非線性擬合。由圖可見,RSCM的屈服應(yīng)力試驗(yàn)值隨著水膜層厚度的增大而減小,這是因?yàn)樗雍穸鹊脑龃髮?dǎo)致顆粒間距增大,相互作用顆粒數(shù)量減少。不同減水劑的水膜層厚度與屈服應(yīng)力之間的擬合相關(guān)系數(shù)較高,表明水膜層厚度是砂漿流變特性的重要決定因素。

      水膜層厚度模型不僅提供了對砂漿屈服應(yīng)力的相對準(zhǔn)確的估計,更重要的是進(jìn)一步解釋了流變行為的機(jī)制。具體而言,固體含量、粉體粒度分布和膠凝材料用量是影響漿體流變性能最常見的因素。而影響水膜層厚度的主要因素是RSCM的含水量、堆積密度和固體顆粒比表面積,這是影響漿體流變性能的最常見因素的具體表現(xiàn),因此,這些因素的影響機(jī)制可以用水膜層厚度的大小來解釋。

      2.3漿體流變模型的預(yù)測

      在工業(yè)應(yīng)用中需要將漿體的流變參數(shù)調(diào)整到滿足實(shí)際需要,同時為了準(zhǔn)確預(yù)測漿體的流變參數(shù),需要尋找一種可靠的測試方法來表征漿體的流變參數(shù)??紤]到水膜層厚度和顆粒絮凝的影響,以下采用堆積密度預(yù)測漿體的屈服應(yīng)力。

      本文中的屈服應(yīng)力預(yù)測模型是基于Frankel等[27]提出的細(xì)胞立方排列模型建立的。在已有研究中,細(xì)胞法被廣泛用于表征懸浮液的屈服應(yīng)力,包裹在顆粒表面的水膜層厚度不隨顆粒大小而變化,粒子半徑與細(xì)胞半徑之比可根據(jù)Frankel等[27]提出的公式計算

      式中:c為漿體的顆粒濃度;ρbm為漿體的顆粒堆積密度。

      另外,式(6)中沒有考慮絮凝體,本研究中需要考慮絮凝體的存在,因此需要對式(6)進(jìn)行修正。Wu等[28]提出絮凝體由粉末顆粒Vp、空隙填充水Vi和絮凝體內(nèi)部水Vr組成,Vp、Vi和Vr之間的關(guān)系式為

      β Vp=Vi+Vr,(7)

      式中,β為基本需水量比。

      絮凝體的體積V的計算公式為

      V=Vi+Vr+Vp=(1+β)Vp,(8)

      因此,絮凝體濃度可修改為

      式中,ce為絮凝體的濃度。

      基于Zholkovskiy等[29]為消除胞體邊界條件影響而提出的模型,將屈服應(yīng)力預(yù)測模型修改為

      式中:f'(c)為f(c)的修正形式;τ0y為RSCM屈服應(yīng)力的預(yù)測值;τi為RSCM屈服應(yīng)力的試驗(yàn)值;ms和mw分別為混合物中固體顆粒和水的質(zhì)量;Cp為擬合參數(shù)。

      表6給出了RSCM漿體的屈服應(yīng)力試驗(yàn)值和由式(7)—(12)計算得到的RSCM漿體的屈服應(yīng)力預(yù)測值。由表可知,RSCM漿體的屈服應(yīng)力試驗(yàn)值與預(yù)測值比較接近,它們的比值也在1附近,說明RSCM屈服應(yīng)力的試驗(yàn)值與預(yù)測值之間沒有系統(tǒng)偏差。對RSCM屈服應(yīng)力的試驗(yàn)值和預(yù)測值進(jìn)行擬合,擬合結(jié)果如圖7所示。由圖可見,無論減水劑用量如何變化,試驗(yàn)值與預(yù)測值都是理想的線性關(guān)系,屈服應(yīng)力試驗(yàn)值與屈服應(yīng)力預(yù)測值之間的擬合相關(guān)系數(shù)較大,表明數(shù)據(jù)集具有良好的正相關(guān)性,通過此模型可以很好的預(yù)測漿體的屈服應(yīng)力。

      3結(jié)論

      本文中研究了不同類型減水劑對RSCM流變性能的影響,建立了水膜層厚度與屈服應(yīng)力之間的關(guān)系,并建立了漿體屈服應(yīng)力的預(yù)測模型。

      1)在減水劑質(zhì)量分?jǐn)?shù)相同的情況下,SMF類減水劑對砂漿的作用效果較其余2種明顯,SMF質(zhì)量分?jǐn)?shù)為0.6%時既可達(dá)到其余2種減水劑在質(zhì)摻量為1.0%下對漿體流變性能改善的效果,即可以用更小的用量得到指定條件下最適用的漿體,這樣可以節(jié)約成本。

      2)隨著減水劑質(zhì)量分?jǐn)?shù)的增加,會導(dǎo)致RSCM的觸變環(huán)面積變小,屈服應(yīng)力、塑性黏度下降,水膜層厚度增加,在SNF、SMF和PCE質(zhì)量分?jǐn)?shù)為1.0%時,RSCM的觸變環(huán)面積較基準(zhǔn)組下降了75. 1%、76. 1%和71.6%,水膜層厚度較基準(zhǔn)組增加了84.8%、178.8%、57.6%。適當(dāng)?shù)臏p水劑用量可以改善漿體的狀態(tài),但用量過大時,會導(dǎo)致漿體中自由水增多,會使RSCM不具備工作性能。

      3)不論減水劑質(zhì)量分?jǐn)?shù)如何,屈服應(yīng)力隨水膜層厚度的增大而減小,水膜層厚度與流變性參數(shù)的擬合值遠(yuǎn)大于0.88,說明水膜層厚度是決定砂漿流變性能的重要因素。

      4)水膜層厚度雖然能在一定程度上反映砂漿的流變性能;但沒有考慮絮凝體的存在,因此,建立了一個能夠充分反映絮凝體等原始變量引起的流變參數(shù)變化的預(yù)測模型,在一定程度上為實(shí)際工程中無法準(zhǔn)確測得漿體的工作性能提供參考。

      利益沖突聲明(Conflict of Interests)

      所有作者聲明不存在利益沖突。

      All authors disclareno relevant conflict of interests.

      作者貢獻(xiàn)(Authors’Contributions)

      朱濤、毛明杰、楊秋寧和張東生進(jìn)行了方案設(shè)計,朱濤、馬亞鵬、毛明杰和張東生參與了論文的寫作和修改,毛明杰、楊秋寧和張東生對試驗(yàn)及經(jīng)費(fèi)進(jìn)行了幫助。所有作者均閱讀并同意了最終稿件的提交。ThestudywasdesignedbyZHUTao,MAOMingjie,YANGQiuningandZHANGDongsheng. Themanuscript was written and revised by ZHU Tao,MA Yapeng,MAO Mingjie and ZHANG Dongsheng. MAOMingjie,YANG Qiuning and ZHANG Dongsheng provided assistance with the experiment and funding. Allauthors have read the final version of paper and consented to its submission.

      參考文獻(xiàn)(References)

      [1]姜靜波. C市建筑垃圾資源化再利用存在的問題及應(yīng)對策略[D]. 長春:吉林大學(xué),2024.

      JIANG JB. Problems and countermeasures of recycling construction waste in Ccity[D]. Changchun:Jilin University,2024. [2]LETELIERV,TARELAE,MORICONIG. Mechanical propertiesof concretes with recycled aggregates and waste brick

      powder as cement replacement[J]. Procedia Engineering,2017,171:627-632

      [3]熊志文,柯國軍,陶望,等. 廢玻璃粉對水泥基材料流動性能的影響[J]. 中國粉體技術(shù),2021,27(1):80-89.

      XIONG ZW,KE GJ,TAO W,et al. Effect of waste glass powderonflowabilityofcement-basedmaterials[J]. China Powder Science and Technology,2021,27(1):80-89.

      [4]周文娟,張晨,胡牛濤. 再生微粉材料性能表征及其對混凝土性能的影響[J]. 中國粉體技術(shù),2022,28(5):64-72. ZHOU WJ,ZHANG C,HU NT. Properties and properties of recycled micro-powder materials and their effects on concrete properties[J]. China Powder Science and Technology,2022,28(5):64-72.

      [5]孫萌萌,武立波,楊秋寧,等. 煤矸石改良黃土的力學(xué)和抗凍融性能[J]. 中國粉體技術(shù),2024,30(2):24-35.

      SUN MM,WUL B,YANGQN,etal. Mechanical and freeze-thaw resistance of coal gangue modified loess[J]. China Powder Science and Technology,2024,30(2):24-35.

      [6]LIN YK,HE TS,DA YQ,et al. Effects of recycled micro-powders mixing methods on the properties of recycled concrete[J]. Journal of Building Engineering,2023,80:107994.

      [7]YANG ZX,SHI P,ZHANG Y,et al. Influence of liquid-binder ratio on the performance of alkali-activated slag mortar with superabsorbent polymer[J]. Journal of Building Engineering,2022,48:103934.

      [8]HE J,ZHU MM,SANG GC,et al. Effect of PVA latex powder and PP fiber on property of self-compacting alkali-activated slag repair mortar[J]. Construction and Building Materials,2023,408:133703.

      [9]WANG CQ,CHENG LX,YING Y,et al. Utilization of all components of waste concrete:recycled aggregate strengthening,recycled fine powder activity,composite recycled concrete andlifecycle assessment[J]. JournalofBuilding Engineering,2024,82:108255.

      [10]XIAO JZ,MA ZM,SUI TB,et al. Mechanical properties of concrete mixed with recycled powder produced from con?

      struction and demolition waste[J]. Journal of Cleaner Production,2018,188:720-731.

      [11]李泉良. 大摻量高性能礦渣微粉對水泥基材料性能影響的研究[D]. 武漢:武漢理工大學(xué),2015.

      LIQ L. Study on the influence of high performance slag powder with large dosage on the properties of cement-based materi-als[D]. Wuhan:Wuhan University of Technology,2015

      [12]ZENGL,ZHU JY,YE JX,et al. Study on the influence mechanismof water reducingagent on the properties of anhydrite-based self-leveling mortar[J]. Case Studies in Construction Materials,2023,19:e02308.

      [13]ZHOU BB,MA YH,SHA SN,et al. Synthesis,performance and mechanism of shrinkage-reducing agents with water-

      reducing function for cement-based materials[J]. Construction and Building Materials,2024,425:135994. [14]RUBIO-HERANDEZ FJ. Rheological behavior of fresh cement pastes[J]. Fluids,2018,3(4):106.

      [15]JUNIOR LU DT,DOS SANTOS LIMA GT,SILVESTRO L,et al. Influence of polycarboxylate superplasticizer and cal?cium sulfoaluminate cement on the rheology,hydration kinetics,and porosity of portland cement pastes[J]. Journal of Building Engineering,2023,68:106120.

      [16]LIU JZ,WANG KJ,ZHANG QQ,et al. Influence of superplasticizer dosage on the viscosity of cement paste with low water-binder ratio[J]. Construction and Building Materials,2017,149:359-366.

      [17]FANG YC,WANG XG,JIA LT,et al. Synergistic effect of polycarboxylate superplasticizer and silica fume on earlyproperties of early high strength grouting material for semi-flexible pavement[J]. Construction and Building Materials,2022,319:126065.

      [18]XIONG GY,GUO XL. Effects and mechanism of superplasticizers and precursor proportions on the fresh properties of fly ash-slag powder based geopolymers[J]. Construction and Building Materials,2022,350:128734.

      [19]ZHANG DW,SUN XM,XU ZY,et al. Stability of superplasticizer on NaOH activators and influence on the rheology of alkali-activated fly ash fresh pastes[J]. Construction and Building Materials,2022,341:127864.

      [20]溫金保,杜志芹,唐修生,等. 聚羧酸減水劑和含泥量對水泥漿體流變性能的影響[J]. 混凝土與水泥制品,2022(4):1-5.

      WEN JB,DU ZQ,TANG XS,et al. Effectofpolycarboxylicacidsuperplasticizerandmudcontentonrheological properties of cement slurry[J]. Concrete and Cement Products,2022(4):1-5.

      [21]關(guān)博文,薛興杰,張金保,等. 聚羧酸減水劑(PCE)對氯氧鎂水泥流變特性和耐水性能的影響[J]. 材料科學(xué)與工程學(xué)報,2022,40(5):796-802.

      GUAN BW,XUE XJ,ZHANG JB,etal. Effects of polycarboxylic acid superplasticizer(PCE)on rheological propertiesandwaterresistanceofmagnesium oxychloride cement[J]. JournalofMaterials Scienceamp;Engineering,2022,40(5):796-802.

      [22]WONG HH C,KWAN AK. H. Packing density of cementitious materials:part1. measurement using awet packing method[J]. Materials and Structures,2008,41(4):689-701.

      [23]GUO ZB,SUN XG,ZHANG XW,et al. Effect of superplasticizer on rheology and thixotropy of superfine-tailings cemented paste backfill:experiment and modelling[J]. Construction and Building Materials,2022,316:125693.

      [24]MAIDANI-AGHABAGLOU A,TUYAN M,YILMAZ G,et al. Effect of different types of superplasticizer on fresh,rheo?logical and strength properties of self-consolidating concrete[J]. Construction and Building Materials,2013,47:1020-1025.

      [25]張宇. 3D打印水泥基材料的設(shè)計、制備與性能研究[D]. 南京:東南大學(xué),2021.

      ZHANG Y. Design,preparation and properties of 3D printed cement-based materials[D]. Nanjing:Southeast University,2021.

      [26]LI LG,KWAN AK H. Effects of superplasticizer type on packing density,water film thickness and flowability of cementi?tious paste[J]. Construction and Building Materials,2015,86:113-119.

      [27]FRANKEL NA,ACRIVOS A. On the viscosity of aconcentrated suspension of solid spheres[J]. Chemical Engineering Science,1967,22(6):847-853.

      [28]WU Q,AN XH,LIU CN. Effect of polycarboxylate-type superplasticizer on the paste fluidity based on the water film thickness offlocs[J]. Science China(Technological Sciences),2014,57(8):1522-1531.

      [29]ZHOLKOVSKIY EK,ADEYINKA OB,MASLIYAH JH. Spherical cell approach for the effective viscosity of suspensions[J]. The Journal of Physical Chemistry B,2006,110(39):19726-19734.

      Effect of water reducing agent on rheological properties of regenerated micro-powder-slag-cement-based mortar ZHU Tao1,MA Yapeng1a,MAO Mingjie1a,YANG Qiuning1a,ZHANG Dongsheng1a,2

      1a. School of Civil and Hydraulic Engineering,1b. Key Laboratory of the Internet of Water and Digital Water

      Governance of the Yellow River in Ningxia,Ningxia University,Yinchuan 750021,China;

      2. Department of Civil Engineering,KU Leuven,Campus Bruges,Bruges 8200,Belgium

      Abstract

      ObjectiveIn terms of sustainability incivil engineering,a large amount of construction waste is treated to replace cement in order to conserve natural resources and reduce carbon emissions. However,the mortar containing recycled micro-powder and slag powder often shows poor performance. Therefore,when aspecific water-binder ratio is maintained,water-reducing agents are often used to improve the performance of slurries containing recycled micro-powder and slag. At present,rheology is consid?ered to be the most effective method to characterize the workability of gellable materials. Hence,the influence of different types of water-reducing agents on the rheological properties of the slurry was studied,especially the relationship between the rheologi?cal properties and the thickness of the water film. This study aims to provide areference for the working performance of slurries that cannot be accurately measured in practical engineering.

      MethodsIn view of the above problems,this paper comprehensively studied the rheological properties of different types of water-reducing agents and RSCM. The water film thickness of RSCM with different dosages of three water-reducing agents was determined based on volumetric density. The relationship between the water film thickness andrheological parameters was stud?ied,validating the applicability of the water film thickness model. Subsequently,a prediction model was established to accu?rately reflect the changes of rheological parameters caused by the original variables such as flocs. The specific test methods are

      described as follows:After the slurry was stirred,it was poured into therheometer test vessel. After the test was completed,the rheological curve was obtained by analyzing the data. The classical Bingham model was applied to fit the descending section of the curve to obtain the desired rheological parameters. In order to determine the water film thickness of the slurry,the packing density of the solid particles must be measured first. In this paper,the wet packing density method was used to measure the par?ticle packing density of the actual slurry.

      Results and DiscussionWith the increase in the dosage of water-reducing agents,the thixotropic loop area,yield stress,and plastic viscosity of RSCM decreased,while the thickness of the water film layer increased. Among them,the melamine-based water-reducingagenthad themostsignificantimprovementeffectonrheological properties. When themass fractionof the melamine-based water-reducing agent was 0. 6%,the thixotropic loop area of RSCM was 2660 Pa/s,the yield stress reached 74. 7 Pa,the plastic viscosity reached 2. 79 Pa·s,and the thickness of the water film layer was 0. 67 μm. If the dosage contin?ued to increase,the RSCM became very thin and could not be applied to practical engineering. In this study the thickness of the water film layer of RSCM was functionally related to the yield stress.

      ConclusionAmong the three types of water reducing agents studied,SMF proved to be more appropriate. The proposed water film thickness model demonstrated high accuracy and applicability in predicting rheological parameters of RSCM,providing valuable insights for the design and application of RSCM in engineering. In fact,the hydration effect of the cementing material was considered when the wet filler method was used to determine the density of the filler,but the hydration effect of the cement?ing material was not considered in the derivation. For ease of calculation,this study only considered free water conditions caused by flocs,excluding the effects of changes in flocculant size on rheological properties.

      Keywords:regenerated powder;water reducing agent;rheological property;prediction model

      (責(zé)任編輯:趙雁)

      猜你喜歡
      預(yù)測模型減水劑
      基于凈漿擴(kuò)展度的減水劑與水泥相容性分析
      攪拌對聚羧酸減水劑分散性的影響
      減水劑對陶?;炷撂涠燃皵U(kuò)展度的影響
      基于矩陣?yán)碚撓碌母咝=處熑藛T流動趨勢預(yù)測
      東方教育(2016年9期)2017-01-17 21:04:14
      基于支持向量回歸的臺灣旅游短期客流量預(yù)測模型研究
      基于神經(jīng)網(wǎng)絡(luò)的北京市房價預(yù)測研究
      商情(2016年43期)2016-12-23 14:23:13
      中國石化J分公司油氣開發(fā)投資分析與預(yù)測模型研究
      基于IOWHA法的物流需求組合改善與預(yù)測模型構(gòu)建
      基于預(yù)測模型加擾動控制的最大功率點(diǎn)跟蹤研究
      科技視界(2016年1期)2016-03-30 13:37:45
      聚合物納米粒子型減水劑的合成與性能
      黄浦区| 炉霍县| 迁西县| 东至县| 塘沽区| 邵武市| 安康市| 瑞安市| 汉中市| 铁岭市| 巩义市| 和田县| 广东省| 万州区| 夏河县| 育儿| 扬州市| 惠来县| 汝城县| 监利县| 顺昌县| 武陟县| 德清县| 青田县| 泰顺县| 那坡县| 桐乡市| 彭州市| 汉川市| 镇沅| 天镇县| 贺兰县| 双流县| 新营市| 商洛市| 峨山| 潮安县| 逊克县| 河北区| 手游| 大方县|