• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      文采報(bào)春苣苔PwDREB2s基因的克隆與表達(dá)分析

      2025-03-29 00:00:00劉寶駿付傳明蘇江冼康華何金祥黃寧珍
      廣西植物 2025年3期
      關(guān)鍵詞:干旱

      摘 要:" 脫水響應(yīng)元件結(jié)合蛋白2(dehydration responsive element binding protein 2, DREB2)是一種轉(zhuǎn)錄因子,在模式植物應(yīng)答干旱、高鹽和熱激脅迫中起調(diào)控作用。然而,在適應(yīng)喀斯特干熱石山環(huán)境的文采報(bào)春苣苔(Primulina wentsaii)中,這些基因的功能尚不清楚。篩選對(duì)干熱雙重脅迫聯(lián)合響應(yīng)的文采報(bào)春苣苔DREB2同源基因,可為苦苣苔抗逆種質(zhì)的創(chuàng)制提供新的基因儲(chǔ)備。該研究首先根據(jù)文采報(bào)春苣苔轉(zhuǎn)錄組的序列信息設(shè)計(jì)特異引物,以gDNA和cDNA為模板分離PwDREB2s基因,然后通過生物信息學(xué)方法,對(duì)氨基酸序列、系統(tǒng)進(jìn)化關(guān)系及保守基序進(jìn)行分析,再使用半定量RT-PCR(sqRT-PCR)分析PwDREB2s基因在低溫、熱激、模擬干旱(滲透)、高鹽、外源ABA及氧化等單一脅迫下的表達(dá)模式,最后選擇能同時(shí)應(yīng)答模擬干旱與熱激的成員,利用實(shí)時(shí)熒光定量PCR(qRT-PCR)檢測(cè)其在單一和復(fù)合干熱處理中的轉(zhuǎn)錄本水平。結(jié)果表明:(1)分離獲得了8條缺少內(nèi)含子的PwDREB2s基因,編碼198~386個(gè)氨基酸,擁有AP2/ERF結(jié)構(gòu)域、核定位信號(hào)或轉(zhuǎn)錄激活域等典型特征序列;(2)PwDREB2A/2AL1/2AL2、PwDREB2D/2DL和PwDREB2F轉(zhuǎn)錄因子被分別歸入A-2亞組的亞型1、亞型2和亞型3,PwDREB2EL1/2EL2轉(zhuǎn)錄因子則被歸入A-6亞組;(3)SqRT-PCR分析表明PwDREB2s基因表達(dá)受多種單一脅迫的誘導(dǎo),其中PwDREB2A/2AL1/2AL2/2D基因能同時(shí)應(yīng)答模擬干旱與熱激脅迫;(4)qRT-PCR結(jié)果揭示了在液體培養(yǎng)條件下,PwDREB2D基因?qū)Ω蔁崽幚淼膽?yīng)答具有組織特異性,僅能在根狀莖中被強(qiáng)烈誘導(dǎo)。在土壤栽培條件下,與對(duì)照相比時(shí),除PwDREB2D基因以外,PwDREB2A/2AL1/2AL2基因在自然干旱-熱激復(fù)合脅迫中的轉(zhuǎn)錄反應(yīng)顯著增強(qiáng)。與單一的自然干旱和高溫處理相比時(shí),PwDREB2AL1/2AL2基因在自然干旱-熱激復(fù)合脅迫中的表達(dá)水平顯著升高。由此可見,PwDREB2AL1/2AL2基因在文采報(bào)春苣苔干熱復(fù)合脅迫應(yīng)答中可能發(fā)揮了重要的調(diào)控作用。

      關(guān)鍵詞: 文采報(bào)春苣苔, DREB2轉(zhuǎn)錄因子, 肉質(zhì)葉, 干旱-熱激復(fù)合脅迫, 表達(dá)模式

      中圖分類號(hào):" Q943

      文獻(xiàn)標(biāo)識(shí)碼:" A

      文章編號(hào):" 1000-3142(2025)03-0542-13

      Cloning and expression analysis of PwDREB2s genes in Primulina wentsaii

      LIU Baojun, FU Chuanming, SU Jiang, XIAN Kanghua,HE Jinxiang, HUANG Ningzhen*

      ( Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, Guangxi, China )

      Abstract:" Dehydration responsive element binding protein 2 (DREB2) is a transcription factor, which plays a regulatory role to drought, high salinity and high temperature responding in model plants. However, it is still unclear for the function of DREB2 genes in Primulina wentsaii, which is adapted to limestone karst habitats with drought-high temperature environment. DREB2 homologous genes responding to dual stresses of drought and high temperature, were screened in P. wentsaii. It could provide a new gene pool for the creation of resistant germplasm in Gesneriaceae. In this study, specific primers were designed based on transcriptome sequences of P. wentsaii firstly, gDNA and cDNA were used as templates to isolate PwDREB2 genes. Then, amino acid sequences, phylogenetic relationships and consensus motifs were analyzed by bioinformatics methods. As well, the expression patterns of PwDREB2s genes were analyzed by semi-quantitative reverse transcription PCR (sqRT-PCR) with single stress, such as low temperature, heat shock, simulated drought (osmosis), high salinity, exogenous ABA and oxidation, respectively. Finally, the transcript levels of designated members, which could respond to single stresses and" drought-heat shock combined stresses, were detected with different drought-heat shock patterns by quantitative real-time PCR (qRT-PCR). The results were as follows: (1) Eight intron-lacking PwDREB2s genes were isolated, they could encode 198-386 amino acids, which contained several typical characteristic regions such as AP2/ERF domain, nuclear localization signal or transcriptional activation domain, respectively; (2) Transcription factors, such as PwDREB2A/2AL1/2AL2, PwDREB2D/2DL and PwDREB2F were classified into subtype 1, subtype 2 and subtype 3 of A-2 subgroup, respectively, while PwDREB2EL1/2EL2 were classified into A-6 subgroup; (3) Semi-quantitative RT-PCR analysis showed that the transcript levels of PwDREB2s genes were induced by a series of single stresses, among which PwDREB2A/2AL1/2AL2/2D genes could simultaneously respond to simulated drought and heat shock; (4) qRT-PCR results revealed that the PwDREB2D gene, which was responding to drought-heat shock combined stresses, was tissue-specific, it could only be strongly induced in rhizomes. Compared with mock group, the transcriptional responses of PwDREB2A/2AL1/2AL2 genes were significantly enhanced under natural drought-heat shock combined stresses with soil matrix, except for PwDREB2D gene. However, when it was compared with the single stress of natural drought and heat shock, the expression levels of PwDREB2AL1/2AL2 genes were significantly higher in natural drought-heat shock combined stresses. In conclusion, PwDREB2AL1/2AL2 genes may play the important regulatory role in response to dual stresses of natural drought and high temperature in P. wentsaii.

      Key words:" Primulina wentsaii, DREB2 transcription factor, fleshy leaf, drought-heat shock combined stresses, expression pattern

      隨著全球沙漠化、氣候變暖進(jìn)程的加快,干旱與高溫對(duì)植物生長(zhǎng)發(fā)育造成的不利影響日益顯著。許多植物進(jìn)化出了一系列適應(yīng)干熱脅迫的特定機(jī)制,以在惡劣的環(huán)境中生存和維持生長(zhǎng)(Cramer et al., 2011),揭示植物適應(yīng)干熱環(huán)境的遺傳基礎(chǔ),對(duì)增強(qiáng)植物抗性與制定種質(zhì)資源保護(hù)策略至關(guān)重要。目前,與單獨(dú)干旱或高溫脅迫應(yīng)答相關(guān)的分子機(jī)制已有大量報(bào)道,但對(duì)干旱和高溫脅迫聯(lián)合響應(yīng)的研究則相對(duì)較少。DREB(dehydration responsive element binding protein)轉(zhuǎn)錄因子隸屬于AP2/ERF家族DREB亞族,被認(rèn)為能夠廣泛參與植物對(duì)非生物脅迫的應(yīng)答調(diào)控,其典型結(jié)構(gòu)特征包含DNA結(jié)合結(jié)構(gòu)域、轉(zhuǎn)錄調(diào)控區(qū)、寡聚化位點(diǎn)及核定位信號(hào)(nuclear localization signal, NLS)等(Lata amp; Prasad, 2011)?;贏P2/ERF結(jié)構(gòu)域的相似性,DREB轉(zhuǎn)錄因子可進(jìn)一步分為6個(gè)亞組,分別命名為A1-A6。其中,A1與A2亞組成員能在ABA不依賴途徑中發(fā)揮作用,而A3-A6亞組成員脅迫應(yīng)答受ABA依賴途徑的調(diào)控(Sakuma et al., 2002)。A-1與A-4亞組、A-2與A-3亞組分別享有共同的保守結(jié)構(gòu)域,表明它們可能有共同的起源(Nakano et al., 2006)。A-2亞組成員又稱DREB2轉(zhuǎn)錄因子,在響應(yīng)脫水與熱脅迫中尤為重要(Xu et al., 2011)。該亞組又包含3個(gè)亞型,其中亞型1代表受脅迫誘導(dǎo)的成員,擬南芥(Arabidopsis thaliana)AtDREB2A/2B/2C/2E/2H以及水稻(Oryza sativa)OsDREB2A/2B均屬此類,它們都能強(qiáng)烈地響應(yīng)干熱脅迫,而亞型2(如AtDREB2D/2G和OsDREB2C)與亞型3(如AtDREB2F和OsDREB2E)中的成員幾乎不受脅迫誘導(dǎo)(Matsukura et al., 2010)。近十幾年來(lái),多種水果(Arroyo-Herrera et al., 2016;Li et al., 2017;Chaudhari et al., 2022)、蔬菜(Hichri et al., 2016)、作物(Li et al., 2005;Chen et al., 2016;Akbudak et al., 2018)、花卉(Wu et al., 2018)及草坪草(可祥等,2016)中的DREB2轉(zhuǎn)錄因子被鑒定,其在提高植物對(duì)干旱、高鹽和高溫的耐受性方面具有巨大的潛力(Ito et al., 2006;Yang et al., 2010;Osakabe et al., 2011)。在模式植物擬南芥中,AtDREB2A基因既可以分別受單一的干旱或熱激脅迫誘導(dǎo),也可以被兩者交叉誘導(dǎo)(Sakuma et al., 2006b),并且超量表達(dá)AtDREB2A基因比轉(zhuǎn)入單個(gè)抗性基因在抗性改良上更為有效(Gujjar et al., 2014),這說明AtDREB2A基因在干熱復(fù)合脅迫應(yīng)答途徑中發(fā)揮了重要的調(diào)控作用。

      文采報(bào)春苣苔(2n=36)(Kang et al., 2014)隸屬于苦苣苔科(Gesneriaceae)報(bào)春苣苔屬(Primulina)(Wang YZ et al., 2011),是屬內(nèi)唯一葉片特化為肉質(zhì)的類群之一(邢全等,2005),主要分布于廣西崇左市龍州縣和寧明縣,原生于裸露石灰?guī)r矮石山上的深巖縫中,具有木質(zhì)根狀莖和肉質(zhì)葉片,這些形態(tài)特征暗示其對(duì)干熱環(huán)境具有較強(qiáng)的耐受能力(王莉芳等,2012)。高溫與干旱脅迫在文采報(bào)春苣苔原生境中常伴隨出現(xiàn),但其應(yīng)答干熱復(fù)合脅迫的遺傳基礎(chǔ)尚未見報(bào)道。因此,本研究依據(jù)文采報(bào)春苣苔干熱脅迫下的轉(zhuǎn)錄組數(shù)據(jù),采用同源克隆法,通過PCR擴(kuò)增從文采報(bào)春苣苔中分離PwDREB2s基因,并對(duì)其序列結(jié)構(gòu)與表達(dá)模式進(jìn)行分析,擬探討以下問題:(1)文采報(bào)春苣苔PwDREB2s同源基因是否具有數(shù)個(gè)不同的成員;(2)與單一干旱和高溫脅迫相比,哪些PwDREB2s成員在干熱復(fù)合脅迫下的表達(dá)水平顯著較高。這對(duì)于篩選應(yīng)答干旱與高溫雙重脅迫的PwDREB2s基因,深入理解干熱信號(hào)調(diào)控文采報(bào)春苣苔幼苗的環(huán)境適應(yīng)性具有重要意義,并可為報(bào)春苣苔抗逆種質(zhì)的創(chuàng)制提供新的基因儲(chǔ)備。

      1 材料與方法

      1.1 材料

      由于短期內(nèi)難以通過有性繁殖獲得足夠的種苗(附圖1),因此選擇了長(zhǎng)勢(shì)基本一致的文采報(bào)春苣苔組培苗為實(shí)驗(yàn)材料。組培苗保存于廣西壯族自治區(qū)中國(guó)科學(xué)院植物研究所組培室(24 ℃/24 ℃,12 h/12 h),繼代培養(yǎng)(培養(yǎng)基為MS+0.5 mg·L-1 6-BA+0.5 mg·L-1 NAA)60 d后(冼康華等,2014),將植株轉(zhuǎn)移到生根培養(yǎng)基上(MS+0.1 mg·L-1 IBA)(附圖2)。30 d后進(jìn)行煉苗,移栽于含混合基質(zhì)(草炭土∶蛭石∶珍珠巖=1∶1∶1)的穴盤中,隨后置于人工氣候箱中(生長(zhǎng)參數(shù)設(shè)置為25 ℃/23 ℃,16 h/8 h)再生長(zhǎng)30 d,采集上述幼苗葉片作為半定量RT-PCR(semi-quantitative reverse transcription PCR, sqRT-PCR)分析的樣品。此外,采集苗齡兩年左右(存在半木質(zhì)化的較短根狀莖)的組織樣品用于基因克隆與實(shí)時(shí)熒光定量PCR(quantitative real-time PCR, qRT-PCR)分析,樣品采集后立即用液氮速凍保存于-80 ℃冰箱中,采樣零點(diǎn)均設(shè)在上午10點(diǎn)左右。

      1.2 方法

      1.2.1 非生物脅迫處理 半定量RT-PCR分析的樣品采集需要將幼苗根部洗凈,并從土壤基質(zhì)轉(zhuǎn)移至1/2改良Hoagland營(yíng)養(yǎng)液中(10 mmol·L-1 MES,pH調(diào)至5.7),于人工氣候箱中適應(yīng)1~2 d,再分別進(jìn)行以下單一脅迫處理:低溫(4 ℃)、熱激(40 ℃)、滲透(400 mmol·L-1甘露醇)、高鹽(300 mmol·L-1 NaCl)、外源脫落酸(100 μmol·L-1 ABA)和氧化(3% H2O2)(Xin et al., 2010)。處理節(jié)點(diǎn)分別為0、0.5、1、3、6、12、24 h。

      實(shí)時(shí)熒光定量PCR分析的樣品采集需要將所有植株置于兩種生長(zhǎng)條件下,第一種為液體培養(yǎng),分別采用25 ℃正常條件(CK1)、400 mmol·L-1甘露醇處理2 h(D1)、40 ℃處理2 h(H1)和400 mmol·L-1甘露醇+40 ℃復(fù)合處理2 h(DH1);第二種為土壤栽培,分別采用25 ℃正常條件(CK2)、缺水處理14 d(D2)、40 ℃處理2 h(H2)和缺水處理14 d+40 ℃復(fù)合處理2 h(DH2)。于同一天采集3~4株植物上的肉質(zhì)葉或根狀莖,混合作為1個(gè)生物學(xué)重復(fù),每個(gè)處理節(jié)點(diǎn)取3個(gè)生物學(xué)重復(fù)。

      1.2.2 RNA提取與cDNA合成 使用EASY spin植物RNA快速提取試劑盒(RN09,艾德萊生物科技有限公司,中國(guó)北京)提取總RNA,NanoDrop 2000c分光光度計(jì)和1.0%瓊脂糖(1×TBE)凝膠電泳檢測(cè)RNA濃度、純度和完整性,cDNA第一鏈合成采用PrimeScript RT reagent試劑盒(DRR047A, TaKaRa, Japan),反應(yīng)體系見附表1,cDNA于-20 ℃冰箱保存。

      1.2.3 PwDREB2s基因的擴(kuò)增 課題組前期構(gòu)建了干熱復(fù)合脅迫下文采報(bào)春苣苔的cDNA文庫(kù),并通過二代轉(zhuǎn)錄組測(cè)序技術(shù)獲得了從頭組裝的序列信息?;贏PG Ⅳ被子植物系統(tǒng)進(jìn)化分析結(jié)果(Theodor et al., 2019),從NCBI網(wǎng)站(http://www.ncbi.nlm.nih.gov)基因組數(shù)據(jù)庫(kù)中獲取報(bào)春苣苔屬植物的DREB2同源基因,包括懷集報(bào)春苣苔(Primulina huaijiensis)、牛耳朵(P. eburnean)和報(bào)春苣苔(P. tabacum)(Feng et al., 2020b;Ke et al., 2022;Yi et al., 2022),再將其作為查詢序列,在文采報(bào)春苣苔轉(zhuǎn)錄組數(shù)據(jù)中進(jìn)行本地BLAST,結(jié)合功能注釋信息,對(duì)PwDREB2s基因進(jìn)行篩選與分析。根據(jù)推測(cè)的起始密碼子和終止密碼子,確定每個(gè)基因的編碼區(qū)(coding sequence, CDS)長(zhǎng)度,所獲得的序列信息見附表2。對(duì)于轉(zhuǎn)錄組中序列信息不完整的基因,采用改良的交錯(cuò)式熱不對(duì)稱PCR(thermal asymmetric interlaced polymerase chain reaction, tail-PCR)來(lái)獲取缺少的側(cè)翼序列(Wang Z et al., 2011)。以文采報(bào)春苣苔葉片cDNA和gDNA為模板,利用特異引物和Pfu酶進(jìn)行PCR擴(kuò)增,反應(yīng)體系見附表3,引物設(shè)計(jì)使用Primer Premier 5.0,引物序列詳見附表4。模板cDNA使用6種單一脅迫下的cDNA等量混合,模板gDNA提取參照改良CTAB法(Zhang et al., 2011)。為提高PCR產(chǎn)物的特異性,采用降落PCR(touch down PCR)進(jìn)行擴(kuò)增,反應(yīng)條件:94 ℃預(yù)變性3 min;94 ℃變性30 s,(Tm+10 ℃)退火30 s,72 ℃延伸1 min,以后每個(gè)循環(huán)依次降低1 ℃,直到(Tm-5 ℃),共15個(gè)循環(huán);94 ℃變性30 s,(Tm-5 ℃)退火30 s,72 ℃延伸1 min,共20個(gè)循環(huán);72 ℃延伸10 min。最終擴(kuò)增產(chǎn)物在1.5%瓊脂糖(1×TAE)凝膠上進(jìn)行檢測(cè)(Korbie amp; Mattick, 2008)。使用DNA凝膠回收試劑盒(B110092,Diamond,中國(guó)上海)純化擴(kuò)增產(chǎn)物,連接到pMDTM18-T克隆載體上,將含有重組質(zhì)粒的陽(yáng)性菌落送至生工生物工程(上海)股份有限公司進(jìn)行DNA測(cè)序。

      1.2.4 系統(tǒng)進(jìn)化與保守基序分析 利用ClustalX和Genedoc軟件進(jìn)行氨基酸序列比對(duì)?;谇叭藢?duì)DREB亞族和A-2亞組不同亞型的聚類結(jié)果(Sakuma et al., 2002;Nakano et al., 2006;Mizoi et al., 2013;Li et al., 2014),選取25條典型的DREB亞族轉(zhuǎn)錄因子的全長(zhǎng)序列和15條A-2亞組轉(zhuǎn)錄因子的AP2/ERF保守域及側(cè)翼序列(另選取DREB1/CBF亞組與ERF亞族成員各1條),使用MEGA 5.0軟件,通過鄰接法(neighbor joining, NJ)構(gòu)建系統(tǒng)進(jìn)化樹,設(shè)定1 000次重復(fù)進(jìn)行自展值(bootstrap)檢驗(yàn),氨基酸序列Genbank注冊(cè)號(hào)見附表5。使用在線工具M(jìn)EME(http://meme-suite.org/tools/meme)進(jìn)行保守基序預(yù)測(cè),參數(shù)設(shè)置:每條序列中單個(gè)基序出現(xiàn)的次數(shù)為0或1,基序?qū)挾确秶鸀?~50個(gè)氨基酸殘基,基序最大數(shù)目為15。利用Tomtom工具對(duì)預(yù)測(cè)的保守基序進(jìn)行motif comparison,數(shù)據(jù)庫(kù)選擇PROSITE fixed-length motifs。

      1.2.5 半定量RT-PCR表達(dá)分析 基于近緣種石蝴蝶屬(Petrocosmea spp.)與鐘冠報(bào)春苣苔(Primulina swinglei)的qRT-PCR研究,選擇PsACT作為文采報(bào)春苣苔的看家基因(Yang et al., 2015;Feng et al., 2020a),引物序列詳見附表6。反應(yīng)程序:95 ℃ 3 min;(95 ℃ 30 s,60 ℃ 30 s,72 ℃ 30 s)×(27/32)個(gè)循環(huán);72 ℃ 10 min。其中,內(nèi)參PsACT的PCR循環(huán)數(shù)設(shè)定為27,目的基因PwDREB2s的PCR循環(huán)數(shù)設(shè)定為32。

      1.2.6 實(shí)時(shí)熒光定量PCR表達(dá)分析 為揭示在液體培養(yǎng)條件下不同組織中的候選基因在4個(gè)處理組之間是否存在差異表達(dá),分別采集了CK1、D1、H1和DH1組的根狀莖與肉質(zhì)葉樣品。此外,為探究在土壤基質(zhì)栽培條件下候選基因在4個(gè)處理組之間是否存在差異表達(dá),分別采集了CK2、D2、H2和DH2組的肉質(zhì)葉樣品。所有cDNA樣品用RNase-free水稀釋5倍后作模板,引物序列詳見附表6,采用Line Gene 9600熒光定量PCR檢測(cè)系統(tǒng)(FQD-96A,博日科技有限公司,中國(guó)杭州),反應(yīng)程序:95 ℃ 2 min;(95 ℃ 5 s,60 ℃ 34 s)×40個(gè)循環(huán);95 ℃ 15 s,60 ℃ 60 s,95 ℃ 15 s,反應(yīng)體系見附表7。以PsACT為內(nèi)參,相對(duì)表達(dá)量的計(jì)算公式為2-ΔΔCt(Livak amp; Schmittgen, 2001),將CK組根狀莖或肉質(zhì)葉樣品的表達(dá)量設(shè)定為1,相對(duì)表達(dá)量轉(zhuǎn)換為柱形圖數(shù)據(jù)的軟件為Graphpad Prism 7(Berkman et al., 2019)。

      1.2.7 數(shù)據(jù)分析 采用Microsoft Excel和SAS軟件(Version 9.2)進(jìn)行統(tǒng)計(jì)學(xué)分析。所有數(shù)據(jù)采用單因素方差分析(one-way ANOVA),Duncan新復(fù)極差法進(jìn)行多重比較(Plt;0.01)。數(shù)據(jù)顯示為至少3個(gè)生物學(xué)重復(fù)的平均值±標(biāo)準(zhǔn)誤差,所用圖像處理軟件為Adobe Photoshop CS6。

      2 結(jié)果與分析

      2.1 文采報(bào)春苣苔PwDREB2s基因的獲得

      針對(duì)轉(zhuǎn)錄組中序列信息不完整的PwDREB2DL和PwDREB2F基因,通過改良tail-PCR技術(shù)獲取了缺少的側(cè)翼序列。利用PCR擴(kuò)增獲得了8個(gè)PwDREB2s基因的gDNA和cDNA全長(zhǎng),經(jīng)比對(duì)后發(fā)現(xiàn)其CDS區(qū)均無(wú)內(nèi)含子存在(附表2)。為與模式植物中該基因的命名保持一致,經(jīng)序列比對(duì)后,將上述8個(gè)基因分別命名為PwDREB2A、PwDREB2AL1、PwDREB2AL2、PwDREB2D、PwDREB2DL、PwDREB2EL1、PwDREB2EL2和PwDREB2F。開放閱讀框(open reading frame, ORF)分別編碼198~386個(gè)氨基酸,預(yù)測(cè)分子量范圍為21.4~43.6 kDa,理論等電點(diǎn)范圍為4.79~7.73。其編碼蛋白均含由58個(gè)氨基酸組成的AP2/ERF結(jié)合結(jié)構(gòu)域,以及保守的纈氨酸(V14)與谷氨酸(E19)位點(diǎn)(PwDREB2EL1/2除外,第19位由E突變?yōu)镈)。其中,PwDREB2A/2AL1/2AL2/2D轉(zhuǎn)錄因子AP2/ERF保守域的左翼,還包含預(yù)測(cè)的NLS序列(圖1:A)。

      2.2 PwDREB2s轉(zhuǎn)錄因子的系統(tǒng)進(jìn)化分析

      系統(tǒng)進(jìn)化分析結(jié)果表明,PwDREB2A/2AL1/2AL2、PwDREB2D/2DL和PwDREB2F轉(zhuǎn)錄因子隸屬于A-2亞組,PwDREB2EL1/2EL2則被歸入A-6亞組(圖2:A)。其中,PwDREB2A/2AL1/2AL2轉(zhuǎn)錄因子被進(jìn)一步歸入A-2亞組亞型1,表明它們可能為脅迫應(yīng)答型蛋白。PwDREB2D/2DL轉(zhuǎn)錄因子被進(jìn)一步歸入A-2亞組亞型2,PwDREB2F轉(zhuǎn)錄因子被進(jìn)一步歸入A-2亞組亞型3,說明它們對(duì)脅迫的敏感性可能較低。PwDREB2EL1/2EL2轉(zhuǎn)錄因子則形成了一個(gè)獨(dú)立的外類群,未被歸入A-2亞組的任一亞型,暗示其與ERF亞族、A-1亞組及A-2亞組其他成員的功能可能存在差異(圖1:B,圖2:B)。

      2.3 PwDREB2s轉(zhuǎn)錄因子保守基序的功能預(yù)測(cè)

      PwDREB2s轉(zhuǎn)錄因子保守基序的分布見圖3,保守基序的功能預(yù)測(cè)見附表8。其中,MEME-1/2/4共同構(gòu)成了AP2/ERF結(jié)合結(jié)構(gòu)域(包含3個(gè)β-折疊鏈和1個(gè)α-螺旋)及其側(cè)翼序列。MEME-11與MEME-12共同構(gòu)成了潛在的負(fù)調(diào)控區(qū)域(negative regulatory domain, NRD)。大多數(shù)PwDREB2s轉(zhuǎn)錄因子擁有A-2亞組的典型保守基序(附表9),如PwDREB2AL1/2AL2含有CMIV-1/2/3組分,PwDREB2A含有CMIV-1/2組分,PwDREB2D/2DL/2F僅含CMIV-1組分,PwDREB2EL1/2EL2僅含CMIV-3組分。CMIV-1組分由8個(gè)保守的氨基酸( [K/R]GKGGPxN)定義,為DREB亞族成員共同的保守基序。CMIV-2組分由29個(gè)氨基酸(KKRKRRGGRDVAEILKKWK

      EYNEQVEADS)定義,通常包含NLS序列。CMIV-3組分由11個(gè)保守的氨基酸(FDINELLGDLN)定義,一般為轉(zhuǎn)錄激活區(qū)域。由此可見,PwDREB2A/2AL1/2AL2/2D包含NLS基序,表明它們可在細(xì)胞核內(nèi)發(fā)揮作用。PwDREB2AL1/2AL2/2D/2DL/2EL1/2EL2擁有轉(zhuǎn)錄激活域,推測(cè)它們能參與蛋白間的相互作用。PwDREB2EL1/2EL2存在非典型富含絲氨酸/蘇氨酸殘基的多肽(NRD),暗示它們可能參與了包括去穩(wěn)定化在內(nèi)的翻譯后調(diào)控。

      2.4 PwDREB2s基因響應(yīng)單一脅迫的表達(dá)模式

      在6種單一脅迫下,利用sqRT-PCR分析了PwDREB2s基因在文采報(bào)春苣苔葉片中轉(zhuǎn)錄本的積累情況(圖4)。其中,PwDREB2A基因能強(qiáng)烈響應(yīng)低溫、高鹽及氧化脅迫,中度響應(yīng)熱激、滲透及外源ABA處理;PwDREB2AL1基因受低溫脅迫強(qiáng)烈誘導(dǎo),受熱激、滲透、高鹽及氧化脅迫中度誘導(dǎo),同時(shí)受外源ABA處理輕度誘導(dǎo);PwDREB2AL2基因能強(qiáng)烈應(yīng)答熱激脅迫,中度應(yīng)答低溫、滲透、高鹽、外源ABA處理及氧化脅迫;PwDREB2D基因能強(qiáng)烈響應(yīng)低溫及氧化脅迫,中度或輕度響應(yīng)熱激、滲透、高鹽及外源ABA處理;PwDREB2DL基因受低溫脅迫輕度誘導(dǎo),受熱激、滲透、高鹽、外源ABA處理及氧化脅迫微弱誘導(dǎo);PwDREB2F基因能輕度應(yīng)答低溫和熱激脅迫,微弱應(yīng)答滲透、高鹽和外源ABA處理,但不應(yīng)答氧化脅迫;PwDREB2EL1/2EL2基因幾乎不受上述脅迫的誘導(dǎo),僅在滲透脅迫下,PwDREB2EL2基因有極微弱的應(yīng)答。

      2.5 PwDREB2s候選基因響應(yīng)干熱復(fù)合脅迫的表達(dá)模式

      基于sqRT-PCR分析結(jié)果,選擇了同時(shí)受滲透與熱激雙重誘導(dǎo)的PwDREB2A/2AL1/2AL2/2D基因,利用qRT-PCR進(jìn)一步分析了其在對(duì)照、單一干旱、單一熱激和干旱-熱激復(fù)合脅迫處理中的轉(zhuǎn)錄調(diào)控情況。結(jié)果表明,在液體培養(yǎng)的根狀莖樣品中,與對(duì)照組(CK1)相比,PwDREB2A/2AL1/2AL2/2D基因在模擬干旱組(D1)、熱激組(H1)及模擬干旱-熱激復(fù)合組(DH1)的表達(dá)量顯著較高,4個(gè)候選基因分別在DH1組(3.3倍)、D1組(15.3倍)、H1組(6.6倍)與D1組(4.0倍)中的表達(dá)量水平最高;然而在相同培養(yǎng)條件下的肉質(zhì)葉樣品中,與CK1組相比,PwDREB2AL2基因在D1組(2.4倍)、H1組(11.2倍)與DH1組(14.3倍)中的表達(dá)量顯著升高,PwDREB2A/2AL1基因在H1組(3.1倍/5.5倍)與DH1組(3.4倍/7.9倍)中表達(dá)量顯著升高,PwDREB2D基因在4組中的表達(dá)量無(wú)顯著性差異(圖5:A)。在土壤栽培的肉質(zhì)葉樣品中,與對(duì)照組(CK2)相比,除PwDREB2D基因無(wú)顯著性差異以外,PwDREB2A/2AL1/2AL2基因在自然干旱組(D2)、熱激組(H2)與自然干旱-熱激復(fù)合組(DH2)中的表達(dá)量均顯著升高,并且上述3個(gè)基因分別在H2組(6.9倍)、DH2組(206.0倍)與DH2組(161.6倍)中的表達(dá)量最高(圖5:B)。綜上所述,液體培養(yǎng)的根狀莖及土壤栽培的肉質(zhì)葉樣品中,與對(duì)照組相比,PwDREB2A/2AL1/2AL2基因在單一干旱和熱激處理下的表達(dá)量均顯著升高,表明上述3個(gè)基因可能具有干旱與高溫應(yīng)答的雙重功能,而PwDREB2D基因?qū)Ω蔁崦{迫的應(yīng)答具有組織特異性,可能僅在根狀莖中發(fā)揮調(diào)控作用。尤為重要的是,在土壤栽培條件下,PwDREB2AL1/2AL2基因在DH2組中的表達(dá)量上調(diào)倍數(shù)顯著高于D2組及H2組,說明PwDREB2AL1/2AL2基因既可以分別受自然干旱和熱激脅迫的單獨(dú)誘導(dǎo),也可以受到其交叉誘導(dǎo)。

      3 討論與結(jié)論

      3.1 苦苣苔亞科植物中DREB2s轉(zhuǎn)錄因子的進(jìn)化特征

      在擬南芥、大豆以及水稻基因組數(shù)據(jù)庫(kù)中分別鑒定到了8個(gè)、21個(gè)和5個(gè)DREB2轉(zhuǎn)錄因子成員(Mizoi et al., 2013)。在不同物種中,同一家族基因的拷貝數(shù)通常存在差異,并隨著基因復(fù)制過程表現(xiàn)出新功能化和亞功能化(Rashid et al., 2012)。植物進(jìn)化過程中常發(fā)生多倍化事件,如楊樹(Populus tomentosa)曾經(jīng)歷了全基因組復(fù)制事件,伴隨多個(gè)染色體的節(jié)段性復(fù)制、串聯(lián)重復(fù)及轉(zhuǎn)座事件,其中PtrDREBs基因在串聯(lián)或多節(jié)段性復(fù)制后會(huì)被優(yōu)先保留(Chen et al., 2013)。針對(duì)NCBI網(wǎng)站已公布的3種報(bào)春苣苔屬植物的基因組數(shù)據(jù)庫(kù),在懷集報(bào)春苣苔、牛耳朵及報(bào)春苣苔中均發(fā)現(xiàn)9個(gè)DREB2s基因。其中,DREB2A與DREB2AL2基因、DREB2AL1與DREB2DL基因分別位于同一染色體上的不同位置,說明DREB2s基因在進(jìn)化過程中可能經(jīng)歷了多個(gè)染色體的節(jié)段性復(fù)制事件。文采報(bào)春苣苔尚無(wú)基因組的報(bào)道,本研究基于干熱脅迫的轉(zhuǎn)錄組數(shù)據(jù),通過PCR擴(kuò)增獲得了8個(gè)PwDREB2s基因,經(jīng)序列比對(duì)和聚類分析,推測(cè)文采報(bào)春苣苔中的PwDREB2A與PwDREB2AL2基因、PwDREB2AL1與PwDREB2DL基因可能也分別來(lái)源于多個(gè)染色體的節(jié)段性復(fù)制事件。

      3.2 PwDREB2s轉(zhuǎn)錄因子不同成員之間保守基序的差異

      A-2亞組亞型1的所有成員中均存在CMIV-1組分和CMIV-2組分,并且部分成員如AtDREB2A/2C、OsDREB2B和ZmDREB2A等在C端還存在CMIV-3組分(Sakuma et al., 2006a)。PwDREB2A/2AL1/2AL2轉(zhuǎn)錄因子被歸入亞型1,其CMIV-1組分的左翼序列和CMIV-2組分均含NLS基序,能夠強(qiáng)烈或中度應(yīng)答低溫、熱激、滲透、高鹽及氧化脅迫處理。序列長(zhǎng)度較短的亞型2成員,如AtDREB2E/2H,通常C端轉(zhuǎn)錄激活域也較短,有報(bào)道表明它們或者不響應(yīng)脅迫,或者對(duì)脅迫應(yīng)答但沒有轉(zhuǎn)錄激活活性(Sakuma et al., 2002;Matsukura et al., 2010)。與之類似,PwDREB2D/2DL可能是被縮短的蛋白,僅含CMIV-1組分,缺乏CMIV-3組分。PwDREB2D的N端也包含1個(gè)非典型NLS基序,能被脅迫中度或輕度誘導(dǎo)。亞型3成員PwDREB2F僅含CMIV-1組分,但只能輕微或不應(yīng)答逆境脅迫。PwDREB2EL1/2EL2僅含CMIV-3組分,與RAP2.4同處于A-6亞組。擬南芥RAP2.4a/b的表達(dá)受高溫、高鹽與干旱脅迫的上調(diào),并能激活下游基因的表達(dá)(Lin et al., 2008;Rae, 2010)。構(gòu)樹BpDREB2基因的編碼蛋白也屬于A-6亞組, 能被干旱和高鹽脅迫強(qiáng)烈誘導(dǎo),但在低溫和ABA處理下無(wú)明顯變化(Sun et al., 2014)。文采報(bào)春苣苔中PwDREB2EL2基因僅能微弱應(yīng)答滲透脅迫,PwDREB2EL1基因幾乎不響應(yīng)任何脅迫,這與擬南芥RAP2.4和構(gòu)樹BpDREB2基因的表達(dá)模式明顯不同。這些結(jié)果暗示了不同物種中的DREB2基因,可能具有不同的轉(zhuǎn)錄激活機(jī)制,并在非生物脅迫應(yīng)答中發(fā)揮不同的作用。

      3.3 DREB2s基因受干熱脅迫誘導(dǎo)表達(dá)的持續(xù)時(shí)間與抗性維持有關(guān)

      大多數(shù)DREB2基因受脫水和熱激(Nakashima et al., 2009;Lata amp; Prasad, 2011)的共同誘導(dǎo),但不同物種中DREB2s基因在干熱脅迫下的表達(dá)趨勢(shì)存在差異。例如,擬南芥AtDREB2A/2B基因響應(yīng)脫水、高鹽和熱激,在干旱與高鹽脅迫下,隨著脅迫時(shí)間的延長(zhǎng), 其表達(dá)量持續(xù)提升,但在熱激脅迫下1 h后即達(dá)到峰值;AtDREB2C基因應(yīng)答高溫的時(shí)間節(jié)點(diǎn)則較為滯后;AtDREB2C/2D/2F基因僅輕微應(yīng)答高鹽;AtDREB2E基因只受ABA誘導(dǎo)。AtDREB2A/2B、CAP2和OsDREB2A基因都缺乏對(duì)低溫的應(yīng)答(Liu et al., 1998;Shukla et al., 2006;Matsukura et al., 2010)。與GmDREB2A(Mizoi et al.,2013)、ZmDREB2A(Qin et al., 2007)和OsDREB2B(Matsukura et al., 2010)基因相似,文采報(bào)春苣苔PwDREB2A/2AL1/2AL2/2D基因能同時(shí)應(yīng)答脫水、高鹽、熱激及低溫脅迫,并且在干旱或熱激處理24 h后仍能檢測(cè)到上述大部分成員的表達(dá),說明文采報(bào)春苣苔干熱抗性的維持可能與內(nèi)源DREB2基因受干熱脅迫誘導(dǎo)表達(dá)后的持續(xù)時(shí)間正相關(guān)。

      3.4 干熱復(fù)合脅迫對(duì)PwDREB2s基因轉(zhuǎn)錄本水平的影響

      目前,有關(guān)DREB2基因應(yīng)答干熱復(fù)合脅迫的報(bào)道較少,研究熱點(diǎn)大多集中在單一的干旱和高溫脅迫上。在裸露石山環(huán)境下,文采報(bào)春苣苔通常會(huì)遭受兩種或兩種以上(如干旱、高溫、高鹽堿及季節(jié)性淹水等)的組合脅迫。與單一脅迫相比,復(fù)合脅迫對(duì)其生長(zhǎng)發(fā)育的損傷可能更為嚴(yán)重。從PwDREB2s候選基因的qRT-PCR分析結(jié)果來(lái)看,在液體培養(yǎng)條件下,與單獨(dú)的模擬干旱和熱激脅迫相比,模擬干旱-熱激復(fù)合脅迫中PwDREB2A/2AL1/2AL2/2D基因的轉(zhuǎn)錄本水平并未全部顯著積累。然而,在土壤栽培的肉質(zhì)葉樣品中,與對(duì)照組(CK2)相比,單一自然干旱(D2)、單一熱激(H2)及自然干旱-熱激復(fù)合脅迫(DH2)會(huì)引起PwDREB2A/2AL1/2AL2基因轉(zhuǎn)錄反應(yīng)的增強(qiáng),但無(wú)法誘導(dǎo)PwDREB2D基因的表達(dá)。其中,PwDREB2AL1/2AL2基因在DH2組中的表達(dá)量上調(diào)倍數(shù)顯著高于D2及H2組,表明PwDREB2AL1/2AL2基因與AtDREB2A基因的表達(dá)模式類似,既可以分別受干旱和熱激脅迫的單獨(dú)誘導(dǎo),又可以受到其交叉誘導(dǎo)(Sakuma et al., 2006b),進(jìn)而在文采報(bào)春苣苔自然干旱-高溫復(fù)合脅迫應(yīng)答中發(fā)揮重要的調(diào)控作用。

      3.5 結(jié)論

      在適應(yīng)喀斯特干熱石山環(huán)境的文采報(bào)春苣苔植株中,克隆獲得了8個(gè)缺少內(nèi)含子的PwDREB2s基因,編碼198~386個(gè)氨基酸,擁有AP2/ERF保守域、核定位信號(hào)或轉(zhuǎn)錄激活域等典型特征序列,其中核定位信號(hào)僅在PwDREB2A/2AL1/2AL2/2D轉(zhuǎn)錄因子中被預(yù)測(cè)。系統(tǒng)進(jìn)化分析結(jié)果表明PwDREB2A/2AL1/2AL2/2D/2DL/2F轉(zhuǎn)錄因子處于A-2亞組,PwDREB2EL1/2EL2轉(zhuǎn)錄因子處于A-6亞組。其中,A-2亞組亞型1成員PwDREB2A/2AL1/2AL2中存在CMIV-1組分和CMIV-2組分,僅PwDREB2AL1/2AL2中存在CMIV-3組分,A-2亞組亞型2成員PwDREB2D/2DL可能是被截短的蛋白,僅含CMIV-1組分,A-2亞組亞型3成員PwDREB2F僅含CMIV-1組分。半定量RT-PCR分析結(jié)果表明,A-2亞組基因的表達(dá)水平受到多種單一非生物脅迫的誘導(dǎo),但處于A-6亞組的基因幾乎不響應(yīng)逆境脅迫。選擇同時(shí)受模擬干旱與熱激脅迫誘導(dǎo)的PwDREB2A/2AL1/2AL2/2D基因,進(jìn)行實(shí)時(shí)熒光定量PCR分析,結(jié)果表明PwDREB2D基因?qū)Ω蔁崦{迫的應(yīng)答具有組織特異性,僅在根狀莖中能被強(qiáng)烈誘導(dǎo)。肉質(zhì)葉中PwDREB2A/2AL1/2AL2基因在自然干旱-熱激復(fù)合脅迫下的轉(zhuǎn)錄反應(yīng)顯著強(qiáng)于對(duì)照組,但PwDREB2D基因的表達(dá)量則與對(duì)照組無(wú)顯著性差異。尤為重要的是,PwDREB2AL1/2AL2基因既能分別受單一自然干旱和熱激脅迫的強(qiáng)烈誘導(dǎo),也能被干熱復(fù)合脅迫顯著誘導(dǎo)。由此可見,PwDREB2AL1/2AL2基因參與了文采報(bào)春苣苔干旱-熱激復(fù)合脅迫的應(yīng)答調(diào)控,可為苦苣苔抗逆種質(zhì)的創(chuàng)制提供新的基因儲(chǔ)備。

      參考文獻(xiàn):

      AKBUDAK MA, FILIZ E, KONTBAY K, 2018.DREB2 (dehydration-responsive element-binding protein 2) type transcription factor in sorghum (Sorghum bicolor): genome-wide identification, characterization and expression profiles under cadmium and salt stresses [J]. 3 Biotech, 8: 426.

      ARROYO-HERRERA A, FIGUEROA-YNEZ L, CASTANO E, et al., 2016. A novel Dreb2-type gene from Carica papaya confers tolerance under abiotic stress [J]. Plant Cell, Tissue and" Organ Culture (PCTOC), 125: 119-133.

      BERKMAN SJ, ROSCOE EM, BOURRET JC, 2019. Comparing self-directed methods for training staff to create graphs using Graphpad Prism [J]. Journal of" Applied Behavior Analysis, 52(1): 188-204.

      CHAUDHARI RS, JANGALE BL, KRISHNA B, et al., 2022. Improved abiotic stress tolerance in Arabidopsis by constitutive active form of a banana DREB2 type transcription factor, MaDREB20. CA, than its native form, MaDREB20" [J]. Protoplasma, 260: 671-690.

      CHEN HL, LIU LP, WANG LX, et al., 2016. VrDREB2A, a DREB-binding transcription factor from Vigna radiata, increased drought and high-salt tolerance in transgenic Arabidopsis thaliana [J]. Journal of" Plant Research, 129: 263-273.

      CHEN YL, YANG JL, WANG ZC, et al., 2013. Gene structures, classification, and expression models of the DREB transcription factor subfamily in Populus trichocarpa [J]. The Scientific" World Journal: 954640.

      CRAMER GR, URANO K, DELROT S, et al., 2011. Effects of abiotic stress on plants: A systems biology perspective [J]. BMC Plant Biology, 11: 163.

      FENG C, DING DH, FENG C, et al., 2020a. The identification of an R2R3-MYB transcription factor involved in regulating anthocyanin biosynthesis in Primulina swinglei flowers [J]. Gene, 752: 144788.

      FENG C, WANG J, WU LQ, et al., 2020b. The genome of a cave plant, Primulina huaijiensis, provides insights into adaptation to limestone karst habitats [J]. New Phytologist, 227(4): 1249-1263.

      GUJJAR RS, AKHTAR M, SINGH M, 2014. Transcription factors in abiotic stress tolerance [J]. Indian Journal of" Plant Physiology, 19: 306-316.

      HICHRI I, MUHOVSKI Y, CLIPPE A, et al., 2016. SlDREB2, a tomato dehydration-responsive element-binding 2 transcription factor, mediates salt stress tolerance in tomato and Arabidopsis" [J]. Plant, Cell amp; Environment, 39(1): 62-79.

      ITO Y, KATSURA K, MARUYAMA K, et al., 2006. Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice [J]. Plant amp; Cell Physiology, 47(1): 141-153.

      KANG M, TAO JJ, WANG J, et al., 2014. Adaptive and nonadaptive genome size evolution in karst endemic flora of China [J]. New Phytologist, 202(4): 1371-1381.

      KE FS, VASSEUR L, YI HQ, et al., 2022. Gene flow, linked selection, and divergent sorting of ancient polymorphism shape genomic divergence landscape in a group of edaphic specialists [J]. Molecular Ecology, 31(1): 104-118.

      KE X, NONG JX, SHI DL, et al., 2016. Cloning and expression profile of DREB2.2 gene from Zoysia japonica var. pallida cv. Jiaodong [J]. Biotechnology Bulletin, 32(1): 115-123." [可祥, 農(nóng)鈞琇, 石大林, 等, 2016.日本結(jié)縷草‘膠東青’DREB2.2基因克隆及表達(dá)模式研究 [J]. 生物技術(shù)通報(bào), 32(1): 115-123.]

      KORBIE DJ, MATTICK JS, 2008. Touchdown PCR for increased specificity and sensitivity in PCR amplification [J]. Nature Protocols, 3(9): 1452-1456.

      LATA C, PRASAD M, 2011. Role of DREBs in regulation of abiotic stress responses in plants [J]. Journal of" Experimental Botany, 62(14): 4731-4748.

      LI HF, ZHAO Q, SUN XL, et al., 2017. Bioinformatic identification and expression analysis of the Malus domestica DREB2 transcription factors in different tissues and abiotic stress [J]. Journal of" Plant Biochemistry and Biotechnocogy, 26: 436-443.

      LI XP, TIAN AG, LUO GZ, et al., 2005. Soybean DRE-binding transcription factors that are responsive to abiotic stresses [J]. Theoretical amp; Applied Genetics, 110: 1355-1362.

      LI XS, ZHANG DY, LI HY, et al., 2014. EsDREB2B, a novel truncated DREB2-type transcription factor in the desert legume Eremosparton songoricum, enhances tolerance to multiple abiotic stresses in yeast and transgenic tobacco [J]. BMC Plant Biology, 14: 44.

      LIN RC, PARK HJ, WANG HY, 2008. Role of Arabidopsis RAP2.4 in regulating light- and ethylene-mediated developmental processes and drought stress tolerance [J]. Molecular Plant, 1(1): 42-57.

      LIU Q, KASUGA M, SAKUMA Y, et al., 1998. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, in Arabidopsis" [J]. The Plant Cell, 10(8): 1391-1406.

      LIVAK KJ, SCHMITTGEN TD, 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method [J]. Methods, 25(4): 402-408.

      MATSUKURA S, MIZOI J, YOSHIDA T, et al., 2010. Comprehensive analysis of rice DREB2-type genes that encode transcription factors involved in the expression of abiotic stress-responsive genes [J]. Molecular Genetics and" Genomics, 283: 185-196.

      MIZOI J, OHORI T, MORIWAKI T, et al., 2013. GmDREB2A; 2, a canonical DEHYDRATION-RESPONSIVE ELEMENT-BINDING PROTEIN2-type transcription factor in soybean, is posttranslationally regulated and mediates dehydration-responsive element-dependent gene expression [J]. Plant Physiology, 161(1): 346-361.

      NAKANO T, SUZUKI K, FUJIMURA T, et al., 2006. Genome-wide analysis of the ERF gene family in Arabidopsis and rice [J]. Plant Physiology, 140(2): 411-432.

      NAKASHIMA K, ITO Y, YAMAGUCHI-SHINOZAKI K, 2009. Transcriptional regulatory networks in response to abiotic stresses"in Arabidopsis and grasses [J]. Plant Physiology, 149(1): 88-95.

      OSAKABE Y, KAJITA S, OSAKABE K, 2011. Genetic engineering of woody plants: Current and future targets in a stressful environment [J]. Physiolcgia Plantarum, 142(2): 105-117.

      QIN F, KAKIMOTO M, SAKUMA Y, et al., 2007. Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. [J]. The Plant Journal, 50(1): 54-69.

      RAE L, 2010. Defining the role of the AP2/ERF transcription factors Rap2.4 and Rap2.4b in stress responses in the model plant Arabidopsis thaliana [D]. Dublin: Trinity College Dublin.

      RASHID M, HE GY, YANG GX, et al., 2012. AP2/ERF transcription factor in rice: Genome-wide canvas and syntenic relationships between monocots and eudicots [J]. Evolutionary Bioinformatics, 8: 321-355.

      SAKUMA Y, LIU Q, DUBOUZET JG, et al., 2002. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration-and cold-inducible gene expression [J]. Biochemical and Biophysical Research Communications, 290(3): 998-1009.

      SAKUMA Y, MARUYAMA K, OSAKABE Y, et al., 2006a. Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression [J]. The Plant Cell, 18(5): 1292-1309.

      SAKUMA Y, MARUYAMA K, QIN F, et al., 2006b. Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression [J]. Proceding of the National Academy Sciences USA, 103(49): 18822-18827.

      SHUKLA RK, RAHA S, TRIPATHI V, et al., 2006. Expression of CAP2, an APETALA2-family transcription factor from chickpea, enhances growth and tolerance to dehydration and salt stress in transgenic tobacco [J]. Plant Physiology, 142(1): 113-123.

      SUN JW, PENG XJ, FAN WH, et al., 2014. Functional analysis of BpDREB2 gene involved in salt and drought response from a woody plant Broussonetia papyrifera [J]. Gene, 535(2): 140-149.

      THEODOR CHC, HARTMUT HH, PETER FS, 2019. Angiosperm phylogeny poster (APP): Flowering plant systematics [J]. Peer J, 7: e2320v5.

      WANG LF, HUANG SX, ZHOU TJ, et al., 2012." Study on the introduction and culitvation of Chirita plants in Guangxi Province [J]. Journal of" Fujian Forestry Science and Technology, 39(2): 109-112."" [王莉芳, 黃仕訓(xùn), 周太久, 等, 2012. 廣西唇柱苣苔屬植物的引種栽培試驗(yàn) [J]. 福建林業(yè)科技, 39(2): 109-112.]

      WANG YZ, MAO RB, LIU Y, et al., 2011. Phylogenetic reconstruction of Chirita and allies (Gesneriaceae) with taxonomic treatments [J]. Journal of" Systematics and Evolution, 49(1): 50-64.

      WANG Z, YE SF, LI JJ, et al., 2011. Fusion primer and nested integrated PCR (FPNI-PCR): A new high-efficiency strategy for rapid chromosome walking or flanking sequence cloning [J]. BMC Biotechnology, 11: 109.

      WU Z, LIANG JH, ZHANG S, et al., 2018. A canonical DREB2-type transcription factor in lily is post-translationally regulated and mediates heat stress response [J]. Frontiers in" Plant Science, 9: 243.

      XIAN KH, FU CM, TANG FL, et al., 2014. Tissue culture and rapid propagation of Chirita wentsaii [J]. Plant Physiology Journal, 50(7): 1065-1069."" [冼康華, 付傳明, 唐鳳鸞, 等, 2014. 文采唇柱苣苔的組織培養(yǎng)與快速繁殖 [J]. 植物生理學(xué)報(bào), 50(7): 1065-1069.]

      XIN HB, ZHANG H, CHEN L, et al., 2010. Cloning and characterization of HsfA2 from Lily (Lilium longiflorum) [J]. Plant Cell Reports, 29: 875-885.

      XING Q, SHI L, LIU LA, et al., 2005. Chinese succulent ornamental plants of Gesneriaceae [J]. China Flower amp; Penjing (1): 2-4."" [邢全, 石雷, 劉立安, 等, 2005. 中國(guó)苦苣苔科多肉觀賞植物 [J]. 中國(guó)花卉盆景 (1): 2-4.]

      XU ZS, CHEN M, LI LC, et al., 2011. Functions and application of the AP2/ERF transcription factor family in crop improvement" [J]. Journal of" Integrative Plant Biology, 53(7): 570-585.

      YANG SJ, VANDERBELD B, WAN JX, et al., 2010. Narrowing down the targets: Towards successful genetic engineering of drought-tolerant crops [J]. Molecular Plant, 3(3): 469-490.

      YANG X, ZHAO XG, LI CQ, et al., 2015. Distinct regulatory changes underlying differential expression of TEOSINTE BRANCHED1-CYCLOIDEA-PROLIFERATING CELL FACTOR genes associated with petal variations in zygomorphic flowers of Petrocosmea spp. of the family Gesneriaceae [J]. Plant Physiology, 169(3): 2138-2151.

      YI HQ, WANG JY, WANG J, et al., 2022. Genomic insights into inter-and intraspecific mating system shifts in Primulina [J]. Molecular Ecology, 31(22): 5699-5713.

      ZHANG JQ, GUO C, LIU GF, et al., 2011. Genetic alteration with variable intron/exon organization amongst five PI-homoeologous genes in Platanus acerifolia [J]. Gene, 473(2): 82-91.

      (責(zé)任編輯 李 莉 王登惠)

      基金項(xiàng)目:" 中央引導(dǎo)地方科技發(fā)展資金項(xiàng)目(桂科ZY21195035); 廣西科學(xué)院基本業(yè)務(wù)費(fèi)項(xiàng)目(CQZ-E-1910); 廣西喀斯特植物保育與恢復(fù)生態(tài)學(xué)重點(diǎn)實(shí)驗(yàn)室課題(20-065-7)。

      第一作者: 劉寶駿(1986—),博士,助理研究員,研究方向?yàn)閳@藝植物遺傳育種與生物技術(shù),(E-mail)bjliumail@126.com。

      *通信作者:" 黃寧珍,研究員,研究方向?yàn)橹参锷砩?,(E-mail)1499533768@qq.com。

      猜你喜歡
      干旱
      探討夏季極端天氣對(duì)園林植物生長(zhǎng)的影響及應(yīng)對(duì)措施
      區(qū)域動(dòng)態(tài)氣象干旱強(qiáng)度指數(shù)與應(yīng)用探討
      基于距平的白城地區(qū)干旱時(shí)間分布特征分析
      臨夏地區(qū)干旱特征及干濕氣候區(qū)劃
      干旱鹽堿共脅迫下玉米miR398的表達(dá)
      夏季高溫干旱時(shí)節(jié)高山蔬菜種植管理策略
      小說里的世界 虛擬里的真實(shí)
      基于多源衛(wèi)星遙感的長(zhǎng)江流域旱情監(jiān)測(cè)研究
      模擬干旱對(duì)草地早熟禾種子萌發(fā)的影響
      基于SPI指數(shù)的農(nóng)作物生長(zhǎng)期干旱時(shí)間變化研究
      灌云县| 乌兰浩特市| 桂平市| 彰化县| 富裕县| 丹阳市| 梁平县| 钦州市| 靖安县| 斗六市| 光山县| 靖宇县| 东海县| 瓮安县| 海伦市| 临洮县| 利川市| 桂阳县| 饶阳县| 南昌县| 库车县| 芦溪县| 固镇县| 柳林县| 南康市| 岳阳市| 高台县| 青州市| 南通市| 恩平市| 福海县| 河津市| 大名县| 宜黄县| 盘锦市| 呼伦贝尔市| 毕节市| 乌拉特前旗| 肥西县| 札达县| 武夷山市|