林樂勛,趙文然,武帥欽,佟雷,王燕,張鳳民,鐘照華
1. 哈爾濱醫(yī)科大學(xué)病原生物學(xué)實驗教學(xué)中心,哈爾濱 150081; 2. 哈爾濱醫(yī)科大學(xué)微生物學(xué)教研室,黑龍江省感染與免疫重點實驗室,哈爾濱 150081; 3. 哈爾濱醫(yī)科大學(xué)細胞生物學(xué)教研室,哈爾濱 150081
H9c2細胞是來源于胚胎期BD1X大鼠心臟組織的亞克隆細胞系,表現(xiàn)很多骨骼肌細胞的特性[1]。當(dāng)H9c2細胞匯合時,細胞就會融合成多核的肌管并對乙酰膽堿刺激有反應(yīng),但該細胞缺少像心肌細胞一樣的節(jié)律性搏動;此外,多項生化、電生理指標(biāo)的檢測也表明其具有骨骼肌的很多特點[1]。由于來源于心臟,H9c2細胞作為心臟成肌細胞也用于心肌疾病的研究[2,3]。
B組柯薩奇病毒(group B Coxsackievirus,CVB)是病毒性心肌炎和心肌病的主要病原體[4]。CVB可在容許細胞中迅速復(fù)制,并通過殺傷宿主細胞釋放出來。H9c2細胞能否被CVB感染,并作為體外細胞模型應(yīng)用于CVB致心肌疾病的研究,目前未見報道。本研究采用整合了增強型綠色熒光蛋白(enhanced green fluorescent protein,EGFP)或海腎熒光素酶(Renillaluciferase,RLuc)的CVB3重組株EGFP-CVB3、RLuc-CVB3攻擊H9c2細胞及小、大鼠原代心肌細胞和骨骼肌細胞,觀察H9c2細胞對CVB3的易感性。
1.1.1實驗動物BALB/c乳鼠、Sprague-Dawley (SD)大鼠(出生4 d內(nèi)),均購自哈爾濱醫(yī)科大學(xué)實驗動物中心。
1.1.2細胞、病毒H9c2和 HeLa細胞購自美國ATCC;CVB3H3為哈爾濱醫(yī)科大學(xué)微生物學(xué)教研室保存,EGFP-CVB3和RLuc-CVB3由本課題組構(gòu)建[5]并保存。
1.1.3主要試劑細胞培養(yǎng)液為DMEM,pH 7.2~7.4,使用時加入10%胎牛血清(fetal calf serum,F(xiàn)CS)和1%雙抗。消化液為0.25%胰蛋白酶及0.5%胰蛋白酶與0.04% EDTA的混合液(1∶1)。TRIzol試劑購自美國Invitrogen公司;RLU檢測試劑盒(RenillaLuciferase Assay System)E2820購自Promega公司;SYBR?PrimeScriptTMRT-PCR KitⅡ試劑盒DRR083A購自TaKaRa公司。
1.2.1H9c2細胞培養(yǎng)按常規(guī)貼壁細胞培養(yǎng)方法進行培養(yǎng),2~3 d傳代1次。
1.2.2原代骨骼肌細胞或心肌細胞培養(yǎng)處死出生4 d內(nèi)的BALB/c乳鼠或SD乳鼠,分別取四肢肌肉和心臟,用37 ℃預(yù)溫的D-Hanks液洗1~2次,剪成體積為1 mm3的小塊;用0.25%胰酶37 ℃水浴消化10 min,將消化的細胞懸液吸出,加入含有15% FCS和1% 雙抗的DMEM 終止消化,4 ℃保存;如此循環(huán)5~7次,至組織塊完全消化。將收集好的骨骼肌細胞 1 500 r/min 離心7 min,棄上清液,用培養(yǎng)液重懸、過濾后收集細胞到培養(yǎng)瓶中或接種到孔板中,置37 ℃、5% CO2孵箱中培養(yǎng)。
1.2.3CVB3H3、EGFP-CVB3和RLuc-CVB3毒力測定采用空斑形成試驗測定各毒株毒力,接種于HeLa細胞,純化、擴增病毒。
1.2.4EGFP-CVB3和RLuc-CVB3感染H9c2細胞、HeLa細胞、骨骼肌細胞和心肌細胞當(dāng)細胞長至60%~70%時,棄培養(yǎng)液,將稀釋好的1個感染復(fù)數(shù)(multiplicity of infection, MOI)的病毒接種到細胞中,37 ℃、5% CO2孵箱中孵育1 h;棄病毒液后,加入適量培養(yǎng)液繼續(xù)培養(yǎng)。
1.2.5綠色熒光觀察及流式細胞計數(shù)檢測每天用熒光顯微鏡觀察感染的各種細胞中EGFP表達情況,并用500 μl感染或未感染EGFP-CVB3的HeLa或H9c2細胞(約1×106個細胞)進行流式細胞計數(shù),分析感染后表達EGFP的細胞數(shù)。分離的細胞采用2%聚合甲醛進行固定。通過FC 500MPL流式細胞儀(Beckman,USA)計數(shù)10 000個細胞進行分析,數(shù)據(jù)用CellQuestTMPro(BD Biosciences, USA)進行處理。
1.2.6RLuc表達水平檢測以未感染的H9c2細胞和HeLa細胞為對照,按照RLU檢測試劑盒試劑說明書,用20/20n光度計對RLuc-CVB3感染的H9c2細胞和HeLa細胞進行RLuc測定。
1.2.7病毒核酸的反轉(zhuǎn)錄-聚合酶鏈反應(yīng)檢測RLuc-CVB3感染H9c2細胞后,用TRIzol試劑提取培養(yǎng)在6孔板中的細胞總RNA,并針對CVB3 5′非編碼區(qū)(untranslated region,UTR)進行反轉(zhuǎn)錄-聚合酶鏈反應(yīng)(reverse transcriptase-polymerase chain reaction,RT-PCR)[6]。擴增CVB3的上、下游引物分別為:GACTTGATCCC-ACCCACAGGGCCTAT和GACGCTCTATTA-GACACCGGATGGCC,擴增片段大小為638 bp;擴增β-actin的上、下游引物分別為:AGGGAAA-TCGTGCGTGAC和CTGGAAGGTGGACAGT-GAG,擴增片段大小為444 bp。在0.2 ml微量離心管中加入反轉(zhuǎn)錄反應(yīng)體系:下游引物(5′ UTR或β-actin)1.0 μl,RNA模板1.0 μl,5×Prime Script Buffer 2.0 μl,DEPC處理的ddH2O 5.5 μl,Prime Script RT Enzyme MixⅠ0.5 μl,總體積為10 μl。放入PCR儀中37 ℃ 15 min,85 ℃ 5 s,4 ℃終止反應(yīng)。PCR反應(yīng)體系:模板0.5 μl(50 ng),10 μmol/L上、下游引物各1.0 μl,2.5 mmol/L dNTP混合物4.0 μl,10× LA PCR BufferⅡ(含Mg2+)5.0 μl,LATaqDNA 聚合酶(5 u/μl)0.5 μl,ddH2O 38 μl。反應(yīng)條件為:95 ℃ 預(yù)變性5 min;95 ℃變性45 s,50 ℃退火45 s,72 ℃延伸1 min,循環(huán)30次;72 ℃充分延伸8 min。
空斑形成試驗測定CVB3H3和重組病毒株EGFP-CVB3、RLuc-CVB3的毒力,結(jié)果分別為2×108pfu/ml、1.17×108pfu/ml 和1.4×107pfu/ml。兩重組株均具有較強的毒力,但由于插入外源基因片段的大小不同,毒力略低于原型株。易感的HeLa細胞被感染時可見明顯的細胞病變效應(yīng),即細胞皺縮、變圓、聚集、脫落,甚至死亡(圖1)。
以MOI=1的EGFP-CVB3進行攻擊,用熒光顯微鏡觀察。結(jié)果顯示,與其他細胞相比,H9c2細胞EGFP產(chǎn)生情況與原代大鼠骨骼肌細胞相似,即在感染后2~5 d原代大鼠骨骼肌細胞和H9c2細胞中均未見EGFP;與正常對照組相比,細胞正常生長,未見細胞病變效應(yīng)。而在原代小鼠心肌細胞、小鼠骨骼肌細胞和大鼠心肌細胞中都可見EGFP;與正常對照組細胞相比,產(chǎn)生EGFP的細胞部分出現(xiàn)皺縮、變圓等細胞病變效應(yīng)(圖2)。
HeLa cells were challenged with CVB3H3, EGFP-CVB3, and RLuc-CVB3 (MOI=1). The cytopathic effect was observed under light microscope at 24 h post-infection. A: HeLa cells. B: HeLa cells infected with CVB3H3. C: HeLa cells infected with EGFP-CVB3. D: HeLa cells infected with RLuc-CVB3.
圖1CVB3H3、EGFP-CVB3和RLuc-CVB3感染HeLa細胞的結(jié)果
Fig.1ResultsofHeLacellsinfectedwithCVB3H3,EGFP-CVB3,andRLuc-CVB3
Primary culture of cardiac myocytes of BALB/c mouse (mCM) and SD rat (rCM), skeletal myocytes of BALB/c mouse (mSM) and SD rat (rSM) as well as H9c2 cells were challenged with EGFP-CVB3 (MOI=1). EGFP expression was observed under 488 nm excitation at 2 to 5 d post-infection. LM, light microscopy; FM, fluorescent microscopy; NC, normal cells; VC, cells infected with EGFP-CVB3.
圖2EGFP-CVB3感染各種細胞后2~5d熒光觀察結(jié)果
Fig.2EGFPexpressioninvariouscellsinfectedwithEGFP-CVB3(MOI=1)at2to5dpost-infection
以未感染的H9c2和HeLa細胞為對照,流式細胞儀計數(shù)以MOI=1的EGFP-CVB3攻擊后感染細胞表達EGFP的細胞數(shù)。結(jié)果表明,感染的H9c2和HeLa細胞熒光(fluorescence light,F(xiàn)L)/邊散射(side scatter,SS)的模式完全不同(圖3A)。同時熒光顯微鏡下可見病毒感染的HeLa細胞出現(xiàn)明顯皺縮、變圓、脫落等細胞病變效應(yīng),病變細胞產(chǎn)生綠色熒光;而病毒感染的H9c2細胞與正常H9c2細胞相比,形態(tài)并無明顯差別,感染后7 d也未見細胞病變效應(yīng)及特異的綠色熒光(圖3B)。
將MOI=1的RLuc-CVB3感染H9c2細胞和HeLa細胞,間隔1 d或2 d進行RLuc檢測(n=4)。結(jié)果表明,與感染的HeLa細胞相比,感染的H9c2細胞保持較低水平的RLuc表達,直至感染后第14 天(圖4)。
To compare the green fluorescence in H9c2 cells and HeLa cells infected with EGFP-CVB3, 70% confluent H9c2 cells and HeLa cells were infected with EGFP-CVB3 (MOI=1). The cells were counted by flow cytometry and fluorescent microscopy at intervals of 2 to 3 d. HeLa cells were checked only for 2 d because the cells were killed thereafter. The X-axis represents fluorescence light (FL) in Log. The Y-axis represents side scatter (SS). The patterns of FL/SS were completely different between H9c2 cells and HeLa cells. A: Flow cytometry. B: Fluorescent microscopy. p.i., post-infection.
圖3EGFP-CVB3感染的H9c2和HeLa細胞中綠色熒光比較
Fig.3ComparisonofthegreenfluorescenceinH9c2cellsandHeLacellsinfectedwithEGFP-CVB3byflowcytometry
70% confluent H9c2 and HeLa cells were infected with RLuc-CVB3 (MOI=1). The luciferase activities were checked at intervals of 1-2 d (n=4). The infected HeLa cells were killed at the 3rd day post-infection. The luciferase activities in infected H9c2 cultures kept low at all time points tested. The Y-axis represents luciferase activity in Log.
圖4RLuc-CVB3感染的H9c2細胞中RLuc表達
Fig.4ExpressionofRLucinH9c2cellsinfectedwithRLuc-CVB3
將MOI=1的RLuc-CVB3感染H9c2和HeLa細胞,以β-actin為內(nèi)參,用RT-PCR方法檢測H9c2細胞中RLuc-CVB3基因組RNA表達水平。結(jié)果表明,在感染后的第1、2、3、5天, H9c2細胞中可檢測到病毒RNA,而在第9天和第14天卻未檢測到(圖5)。
H9c2細胞是來源于胚胎期的BD1X大鼠心臟組織的亞克隆細胞系,表現(xiàn)很多骨骼肌細胞的特性[1]。由于來源于心臟,H9c2細胞作為心臟成肌細胞也應(yīng)用于一些研究中[2,3]。
柯薩奇病毒屬小核糖核酸病毒科,它是小的無包膜病毒,核酸為單股正鏈RNA。根據(jù)柯薩奇病毒對乳鼠致病特點的不同,將其分成A組和B組。因為在心肌炎和擴張型心肌病患者的心肌組織中經(jīng)??蓹z測到CVB基因組,所以認為CVB是造成心肌炎和擴張型心肌病的主要病原體[7-10]。CVB感染容許細胞后,通常會產(chǎn)生明顯的致細胞病變效應(yīng)。H9c2細胞能否被CVB感染并作為體外細胞模型應(yīng)用于CVB致心肌疾病的研究,目前未見報道。
70% confluent H9c2 and HeLa cells were infected with RLuc-CVB3 (MOI=1). The genomic RNA of RLuc-CVB3 in infected H9c2 cells could be detected at days 1, 2, 3, and 5, but not at days 9 and 14. The amplification length of RLuc-CVB3 is 638 bp, the amplification length of β-actin is 444 bp, and the marker is DL2000. p.i., post-infection.
圖5RLuc-CVB3感染的H9c2細胞中病毒基因組的動態(tài)檢測結(jié)果
Fig.5DynamicdetectionofgenomicRNAofRLuc-CVB3inH9c2cellsinfectedwithRLuc-CVB3
本研究中,我們采用攜帶有EGFP、RLuc的CVB3重組株EGFP-CVB3和RLuc-CVB3感染H9c2細胞,通過檢測EGFP或RLuc的蛋白和核酸水平來反映CVB對 H9c2細胞的感染性。在EGFP-CVB3感染的H9c2細胞中,未檢測到EGFP表達(圖2、3)。RLuc-CVB3感染H9c2細胞后,每隔1~2 d檢測RLuc的表達直到感染后第14天(n=4)也未見RLuc產(chǎn)生(圖4)。對病毒感染的細胞進行RT-PCR檢測,在RLuc-CVB3感染的H9c2細胞中,病毒的基因組RNA從感染后第9天消失(圖5)。
根據(jù)H9c2細胞系表型的研究[3],發(fā)現(xiàn)這種細胞表現(xiàn)的骨骼肌細胞特性多于心肌細胞特性。如當(dāng)培養(yǎng)的H9c2細胞匯合時,可融合形成多核的肌管并對乙酰膽堿的刺激有反應(yīng),但缺少像心肌細胞一樣的節(jié)律性搏動;同時生化和電生理的檢測指標(biāo)也表明其具有骨骼肌特性[1]。我們的研究也表明大鼠骨骼肌細胞和H9c2細胞都抵抗CVB3重組毒株的感染,為支持H9c2細胞在對CVB感染的易感性上具有大鼠骨骼肌的表型提供了進一步的證據(jù)。因此,不能以這種傳代細胞系代替心肌細胞進行CVB致心肌疾病的研究。
[1] Kimes BW, Brandt BL. Properties of a clonal muscle cell line from rat heart [J]. Exp Cell Res, 1976, 98 (2): 367-381.
[2] Eguchi M, Liu Y, Shin EJ, Gary S. Leptin protects H9c2 rat cardiomyocytes from H2O2-induced apoptosis [J]. FEBS J, 2008, 275 (12):3136-3144.
[3] Hwang JT, Kwon DY, Park OJ, Kim MS. Resveratrol protects ROS-induced cell death by activating AMPK in H9c2 cardiac muscle cells [J]. Genes Nutr, 2008, 2 (4):323-326.
[4] Feuer R, Mena I, Pagarigan R, Slifka MK, Whitton JL. Cell cycle status affects coxsackievirus replication, persistence, and reactivation in vitro [J]. J Virol , 2002, 76 (9):4430-4440.
[5] Tong L, Lin L, Zhao W, Wang B, Wu S, Liu H, Zhong X, Cui Y, Gu H, Zhang F, Zhong Z. Destabilization of coxsackievirus B3 genome integrated with enhanced green fluorescent protein gene [J]. Intervirology, 2011 [Epub ahead of print].doi: 10.1159/000321351.
[6] Slifka MK, Pagarigan R, Mena I, Feuer R, Whitton JL. Using recombinant coxsackievirus B3 to evaluate the induction and protective efficacy of CD8+T cells during picornavirus infection [J]. J Virol, 2001,75 (5): 2377-2387.
[7] Bowles NE, Richardson PJ, Olsen EG, Archard LC. Detection of coxsackie-B-virus-specific RNA sequences in myocardial biopsy samples from patients with myocarditis and dilated cardiomyopathy [J]. Lancet, 1986, 1 (8490): 1120-1123.
[8] Satoh M, Tamura G, Segawa I, Hiramori K, Satodate R. Enteroviral RNA in dilated cardiomyopathy [J]. Eur Heart J, 1994, 15 (7): 934-939.
[9] Baboonian C, Davies MJ, Booth JC, McKenna WJ. Coxsackie B viruses and human heart disease [J]. Curr Top Microbiol Immunol, 1997, 223: 31-52.
[10] Kuethe F, Sigusch HH, Hilbig K, Tresselt C, Glück B, Egerer R, Figulla HR. Detection of viral genome in the myocardium: lack of prognostic and functional relevance in patients with acute dilated cardiomyopathy [J]. Am Heart J, 2007, 153 (5): 850-858.