李兆興,郭 爽,劉國清,趙 微
(大慶師范學(xué)院數(shù)學(xué)科學(xué)學(xué)院,黑龍江 大慶 163712)
三階奇異常微分方程超定邊值問題
李兆興,郭 爽,劉國清,趙 微
(大慶師范學(xué)院數(shù)學(xué)科學(xué)學(xué)院,黑龍江 大慶 163712)
研究了三階奇異常微分方程超定邊值問題解的存在性,通過將邊值問題轉(zhuǎn)化為與它等價(jià)的初值問題,應(yīng)用不動(dòng)點(diǎn)定理得到了解的存在性,推廣和改進(jìn)了已有的結(jié)果,并給出一個(gè)顯解.
微分方程;奇異;超定邊值問題
在文獻(xiàn)[1]中,作者研究了如下形式的超定三階邊值問題:
其中:f(y)=(1-y)λg(y),λ>0是給定常數(shù),g(y)∈C(0,1]是連續(xù)的不增函數(shù).給出解的存在性.
一般來講,超定三階邊值問題出現(xiàn)在滴水和流淌問題研究中,f(y)在y=0是奇異的.文獻(xiàn)[2]給出不同情形,其中最簡(jiǎn)單和最重要的情形是f(y)=(1-y)y-3.詳見參考文獻(xiàn)[2-4].
在本文中,假設(shè)下列條件成立:
(H)f(t)=(1-t)λg(t),t∈(0,1)且f(t)≡0,t∈[1,+∞),λ>-1/2是給定的常數(shù),g(t)是定義在(0,1)上的可測(cè)函數(shù),存在不增函數(shù)θ(t)∈C1(0,1],對(duì)t∈(0,1),滿足0<θ(1)≤g(t)≤θ(t).
假設(shè)(H)允許但不要求g(t)在t=0處有奇性.例如函數(shù)g(t)=exp{t-b},b>0,滿足(H).我們將證明,若(H)成立,則問題(1)的解存在.
如果函數(shù)y(x)∈C[0,+∞)∩C2(0,+∞)滿足:
則稱其為超定邊值問題(1)的解.
為研究邊值問題(1),考慮與(1)等價(jià)的初值問題.設(shè)y(x)是超定三階邊值問題(1)的解,且對(duì)x>0,y′(x)>0,則y(x)有定義在[0,1)上的反函數(shù)σ(t),且σ(0)=0.設(shè)
這表明邊值問題(1)可以形式地轉(zhuǎn)換成(2).事實(shí)上,能夠證明超定邊值問題(1)與(2)是等價(jià)的.
這表明,對(duì)任意給定的ε∈(0,1),Φ*(X)∩C[ε,1]是C[ε,1]的緊子集.由Schauder不動(dòng)點(diǎn)定理,可得映射Φ*在C[ε,1]內(nèi)至少有一個(gè)不動(dòng)定點(diǎn).由ε的任意性可知,在X內(nèi)有一個(gè)不動(dòng)點(diǎn).
設(shè)w(t)是Φ*在X內(nèi)的不動(dòng)點(diǎn),由Φ和Φ*的定義,據(jù)(7)式可得函數(shù)
是(2)的一個(gè)正解,且(3)式成立.定理1證畢.
定理2的證明當(dāng)g(t)≡1時(shí),取θ(t)≡1,由(3)式即得.
首先,引入下列定義:
定義1 設(shè)u(t)∈C[0,1)嚴(yán)格遞增,u(0)=0,u(1-0)=+∞,則x=u(t)有反函數(shù)t=η(x)∈C[0,+∞),η(0)=0,η(+∞)=1,稱η(x)為u(t)的反函數(shù).
定義2設(shè)u(t)∈C[0,1]嚴(yán)格遞增,u(0)=0,u(1)=0,則x=u(t)有反函數(shù)t=η(x)∈C[0,b],η(0)=0,η(b)=1,對(duì)x≥b定義η(x)≡1.則η(x)在[0,+∞)上連續(xù),稱其為u(t)的廣義反函數(shù).
設(shè)w(t)是初值問題(2)的一個(gè)正解,由w(t)的定義和定理1,可得
因?yàn)閥(0)=0,y(+∞)=1,表明y(x)∈C[0,+∞)∩C2(0,+∞)是問題(1)的解.
只要λ>0,g(t)在(0,1)上連續(xù),顯然y?(x)∈C(0,+∞).
根據(jù)ξ(x)的定義,由(1)和(6)式可得ξ(x).當(dāng)g(t)≡1時(shí),取θ(t)≡1.由(8)—(10)式,可知函數(shù)ξ(x)顯然是問題(1)的解.
概括上述結(jié)果,得到下面兩個(gè)定理.
[1] WANG J,ZHANG Z.A boundary value problem from draining and coating flows involving a third-order ordinary differential equation[J].ZAMP,1998,49:506-513.
[2] TUCK E O,SCHWARTZ L W.Anumerical and asymptotic study of some third-order ordinary differential equations relevant to draining and some coating flows[J].SIAM Rev,1990,32:453-469.
[3] BERNIS F,PELETIER L A.Two problems from draining flows involving third-order ordinary differential equations[J].SIAM J Math Anal,1996,27:515-527.
[4] TROY W C.Solutions of third-order differential equations relevant to draining and coating flows[J].SIAM J Math Anal,1993,24:155-171.
Overdetermined boundary value problems for third-order singular ordinary differential equations on(0,∞)
LI Zhao-xing,Guo Shuang,LIU Guo-qing,ZHAO Wei
(College of Mathematics,Daqing Normal University,Daqing 163712,China)
The existence of a solution is discussed in this paper third-th order singular nonlinear ordinary differential equation with overdetermined boundary conditions.In the way that the boundary problem is formally converted into initial value problem that is equivaleut to it,and the fixed point theorem is used,the problem is solved.
differential equation;singular;overdetermined boundary value problems
O 175
110·44
A
1000-1832(2011)03-0019-04
2010-12-10
黑龍江省自然科學(xué)基金資助項(xiàng)目(A200813).
李兆興(1953—),男,教授,主要從事微分方程邊值問題研究.
陶 理)