張國(guó)威,陳昂
(1.安陽師范學(xué)院數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,河南 安陽 455000;2.教育部考試中心,北京 100084)
整函數(shù)及其微分多項(xiàng)式分擔(dān)一個(gè)多項(xiàng)式
張國(guó)威1,陳昂2
(1.安陽師范學(xué)院數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,河南 安陽 455000;2.教育部考試中心,北京 100084)
將Br¨uck猜想目前得到的幾個(gè)結(jié)論進(jìn)行了推廣,研究了整函數(shù)及其微分多項(xiàng)式分擔(dān)的一個(gè)多項(xiàng)式時(shí)的問題,并且得到了一個(gè)與之相關(guān)的復(fù)微分方程的解的性質(zhì).另外,還得到了一個(gè)定理,這個(gè)定理改進(jìn)了一些已知的結(jié)果.
整函數(shù);Nevanlinna理論;唯一性;分擔(dān)值
本文中使用了Nevanlinna經(jīng)典理論的一些基本符號(hào)和基本定理,關(guān)于這部分詳細(xì)內(nèi)容可見文獻(xiàn)[1-4].令f(z)和g(z)為復(fù)平面?上的兩個(gè)非常數(shù)亞純函數(shù),并且令P(z)為一個(gè)多項(xiàng)式或者是一個(gè)有限數(shù).用deg P(z)來定義多項(xiàng)式P(z)的級(jí).用f(z)=P(z)?g(z)=P(z)來表示:當(dāng)f(z)-P(z)=0時(shí)可推得g(z)-P(z)=0.若有f(z)=P(z)?g(z)=P(z)且g(z)=P(z)?f(z)=P(z),則將其表示為f(z)=P(z)?g(z)=P(z),并且稱f(z)和g(z)分擔(dān)P(z)IM(不計(jì)零點(diǎn)重?cái)?shù)).如果f(z)-P(z)和g(z)-P(z)有相同的零點(diǎn)并且這些零點(diǎn)的重?cái)?shù)相同,則稱f(z)和g(z)分擔(dān)P(z)CM(計(jì)零點(diǎn)重?cái)?shù))[1].更進(jìn)一步,用記號(hào)σ(f), ν(f)來定義f(z)的級(jí)和超級(jí).下面給出定義:
證明將分兩種情況討論.
情況1如果P(z)是個(gè)多項(xiàng)式.如果f不是個(gè)超越的整函數(shù),由于方程(1)的解均為多項(xiàng)式,因此由方程(1),可知eP=c是個(gè)常數(shù),則ν(f)=σ(eP)=0,易知定理1.3的結(jié)論成立.
[1] 儀洪勛,楊重駿.亞純函數(shù)唯一性理論[M].北京:科學(xué)出版社,1995.
[2] Hayman W K. Meromorphic Functions[M]. Oxford: Clarendon Press, 1964.
[3] Laine I. Nevanlinna Theory and Complex Differential Equations[M]. Berlin: Walter de Gruyter, 1993.
Yang L Z, Zhang J L. Non-existence of meromorphic solutions of Fermat type functional equation[J]. Aequationes. Math., 2008,7:140-150.
[5] Br¨uck R. On entire functions which share one value CM with their first derivatives[J]. Results Math., 1996,30:21-24.
[6] Gundersen G G, Yang L Z. Entire functions that share one value with one or two of their derivatives[J]. J.Math. Anal. Appl., 1998,223:88-95.
[7] Li X M, Yi H X. An entire function and its derivative sharing a polynomial[J]. J. Math. Anal. Appl., 2007,330:66-79.
[8] Chen Y S, Zhang T D, Lu W R. Entire functions sharing a polynomial with their derivatives[J]. Complex Variables and Elliptic Equations, 2009,54(5):463-470.
[9] Chen Z X, Yang C C. Some further results on the zeros and growths of entire solutions of second order linear differential equation[J]. Kodai Math. J., 1999,22:273-285.
Entire functions that share one polynomial with their linear differential polynomials
Zhang Guowei1,Chen Ang2
(1. School of Mathematics and Statistics, Anyang Normal University, Anyang 455000, China; 2. National Education Examinations Authority, Beijing 100084, China)
In this paper,we improve some known results about Bruck's conjecture. We study the problem that entire function and its linear differential polynomial share a polynomial and obtain some properties of solution of the related complex differential equation. Moreover, we get a theorem which improves some known results.
entire functions,Nevan linna theory,uniqueness,share value
O174.5
A
1008-5513(2012)02-0196-05
2010-12-10.
河南省教育廳重點(diǎn)項(xiàng)目(12A 110002).
張國(guó)威(1981-),博士,講師,研究方向:值分布論,復(fù)微分方程,復(fù)動(dòng)力系統(tǒng)等.
2010 MSC:30D 35