史 杰,馮世強,何中全
(西華師范大學(xué)數(shù)學(xué)與信息學(xué)院,中國 南充 637009)
設(shè)E是Banach空間,E*是其對偶空間,正規(guī)對偶映射J:E→2E*如下定義:
J(x)=f∈E*:〈x,f〉=‖x‖2=‖f‖2,x∈E,
其中,當(dāng)E是嚴格凸的光滑的Banach空間時,J和J-1是單值的[1].
設(shè)E是光滑的Banach空間,函數(shù)φ:E×E→R如下定義:
φ(x,y)=‖x‖2-2〈x,Jy〉+‖y‖2,?x,y∈E.
由于〈x,Jy〉≤‖x‖‖Jy‖=‖x‖‖y‖,于是(‖x‖-‖y‖)2≤φ(x,y),即φ(x,y)≥0.
設(shè)E是嚴格凸且光滑的自反Banach空間,C是E中非空閉凸集.那么對任意的x∈E,存在唯一的x0∈C使得[1]
φ(x0,x)=minφ(y,x),y∈C.
本文稱x0是x在C上的投影.定義投影算子∏C:E→2C如下
∏C(x)=y∈C:φ(y,x)=minφ(z,x),z∈C,x∈E.
設(shè)E是Banach空間,E*是其對偶空間,集值映射M:E→2E*,若滿足
〈x-y,f-g〉≥0,?x,y∈E,f∈Mx,g∈My,
則稱M是單調(diào)的.若M滿足
(1)M是單調(diào)的;
(2)對(x,f)∈E×E*,〈x-y,f-g〉≥0,?y∈E,g∈My,必有f∈Mx.
則稱M是極大單調(diào)的.
設(shè)E是Banach空間,E*是其對偶空間.若映射T:E→E滿足
φ(Tx,Ty)≤〈Tx-Ty,Jx-Jy〉,?x,y∈E,
則稱T為確定非擴張的.易得,T為確定非擴張的等價于
〈Tx-Ty,JTx-JTy〉≤〈Tx-Ty,Jx-Jy〉,?x,y∈E.
若映射B:E→E*滿足
(1)η:E→E為任意一個確定非擴張映射;
(2)對任意λ≥0,有
〈η(J-1(Jx-λBx))-η(J-1(Jy-λBy)),Bx-By〉≥0,?x,y∈E.
則稱B為廣義單調(diào)的.顯然,廣義單調(diào)映射必是單調(diào)的.
設(shè)Bi:E→E*是單值映射,Mi:E→2E*是多值映射,i=1,2,…,N,θ是零元素.本文研究如下的變分包含組問題(VISP):
VISP 求x∈E,使得
當(dāng)Bi≡B,Mi≡M,VISP問題變?yōu)槿缦伦兎职瑔栴}(Ⅵ):
VI 設(shè)B:E→E*是單值映射,M:E→2E*是多值映射,θ是零元素,求x∈E,使得θ∈B(x)+M(x)成立.
下面給出本文所需的一些引理.
引理1[2]設(shè)M:E→2E*是極大單調(diào)映射,B:E→E*是Lipshitz連續(xù)映射,則S=M+B:E→2E*是極大單調(diào)映射.
引理2[1]設(shè)E是嚴格凸的光滑實自反Banach空間,C是E中非空閉凸集,令x∈E,那么對任意y∈C,有φ(y,∏Cx)+φ(∏Cx,x)≤φ(y,x).
引理3[3]設(shè)E是嚴格凸的光滑實Banach空間,xn、yn都是E中子列,xn或yn是有界的且
φ(xn,yn)→0,n→∞,那么有xn-yn→0,n→∞.
引理4[1]令C是一光滑實Banach空間E凸集,令x∈E,那么x0∈∏Cx當(dāng)且僅當(dāng)
〈z-x0,Jx0-Jx〉≥0,?z∈C.
本節(jié)將通過構(gòu)造非擴張映射,得到新的迭代算法,使之產(chǎn)生的序列收斂到變分包含組問題的解.本文工作推廣和改進了文獻[2]、[4~10]中的一些結(jié)果.
其中Mi:E→2E*是極大單調(diào)映射,Bi:E→E*是Lipshitz連續(xù)映射,λi>0.
即
再由Mi的極大單調(diào)性得
(1)
又由于φ(z2,z1)+φ(z1,z2)≥0得
0≤‖z2‖2+‖z1‖2-2〈z2,Jz1〉+‖z1‖2+‖z2‖2-2〈z1,Jz2〉=2(‖z2‖2+‖z1‖2-
〈z2,Jz1〉-〈z1,Jz2〉)=2(〈z2,Jz2〉+〈z1,Jz1〉-〈z2,Jz1〉-〈z1,Jz2〉)=2〈z2-z1,Jz2-Jz1〉.
即
〈z2-z1,Jz2-Jz1〉≥0.
(2)
引理6設(shè)E是Banach空間,E*是其對偶空間,對一切i=1,…,N,?x∈E,有下面結(jié)論成立:
對任意x,y∈E,由Mi的極大單調(diào)性得
由Mi的極大單調(diào)性得
即
因此
證畢.
接下來構(gòu)造如下算法W:
其中,0≤ηn≤e對任意0≤e<1,i=0,1,…,n.
證分4步來證明.
(3)
由于xn=∏Cn(x0),根據(jù)引理2,得
φ(xn,x0)≤φ(p,x0)-φ(p,xn)≤φ(p,x0),φ(xn,x0)≤φ(xn+1,x0),?n≥0.
φ(xn+m,xn)=φ(xn+m,∏Cn(x0))≤φ(xn+m,x0)-φ(xn,x0).
故有
2‖p‖‖Jzn-Jxn‖).
任取(vj,gj)∈Bj+Mj,即gj-Bj(vj)∈Mj(vj).由Mj的極大單調(diào)性得
參考文獻:
[1] ZEGEYE H, ERIC U, OFOEDU E U,etal. Convergence theorems for equilibrium problem, variotional inequality problem and countably infinite relatively quasi-nonexpansive mappings[J].Appl Math Comput, 2010,216(12):3439-3449.
[2] KUMAM W, JAIBOON C, KUMAM P,etal. A shrinking projection method for generalized mixed equilibrium problems, variational inclusion problems and a finite family of quasi-nonexpansive mappings[J/OL]. http://dx.doi.org/10.1155/2010/458247,2010-03-21/2010-06-29.
[3] KAMIMURA S, TAKAHASHI W. Strong convergence of proximal-type algorithm in a Banach space[J].SIAM J, 2002,13(3):938-945.
[4] ZHANG S S, LEE J W, CHAN C K. Algorithms of common solutions to quasi variational inclusion and fixed point problems[J].Appl Math Mech, 2008,29(5):571-581.
[5] ZHANG S S, LEE J W, CHAN C K. Quadratic minimization for equilibrium problem variational inclusion and fixed point problem[J]. Appl Math Mech, 2010,31(7):917-928.
[6] 曹 珂.一類非線性三階三點邊值問題單調(diào)正解的存在[J].湖南師范大學(xué)自然科學(xué)學(xué)報,2011,34(4):13-17.
[7] LIN L J, WANG S Y, CHUANG C S. Existence theorems of systems of variational inclusion problems with applications[J].J Glob Optim,2008,40(4):751-764.
[8] KRISTALY A, VARGA C. Set-valued versions of Ky Fan’s inequality with application to variational inclusion theory[J].J Math Anal Appl,2003,282:8-20.
[9] DING X P, LAI T C, YU S J. Systems of generalized vector quasi-variational inclusion problems and application to mathematical programs[J].Taiwanese J Math,2009,13(5):1515-1536.
[10] DING X P. Systems of generalized quasi-variational inclusion (disclusion) problems in FC-spaces[J]. Appl Math Mech, 2010,31(5):545-556.
[11] JITPEERA T, KUMAM P. A new hybrid algorithm for a system of mixed equilibrium problems, fixed point problems for nonexpansive semigroup, and variational inclusion problem[J/OL].http:dx/doi.org/10.1155/2011/217407,2010-12-14/2011-01-15.
[12] LIOU Y C. An iterative algorithm for mixed equilibrium problems and variational inclusions approach to variational inequalities[J/OL]. http://dx.doi.org/10.1155/2010/564361,2009-09-13/2010-01-10.
[13] TAN J F, CHANG S S. Iterative algorithms for finding common solutions to variational inclusion equilibrium and fixed point problems[J/OL]. http://dx.doi.org/10.1155/2011/915629,2010-10-30/2010-11-09.