郭曉燕, 黃 斌
(長(zhǎng)沙理工大學(xué) 數(shù)學(xué)與計(jì)算科學(xué)學(xué)院,湖南 長(zhǎng)沙 410114)
涉及微分多項(xiàng)式的亞純函數(shù)的唯一性
郭曉燕, 黃 斌
(長(zhǎng)沙理工大學(xué) 數(shù)學(xué)與計(jì)算科學(xué)學(xué)院,湖南 長(zhǎng)沙 410114)
研究了涉及(fn)(k)和(gn)(k)CM分擔(dān)1的唯一性問題,其中f和g是亞純函數(shù),所得定理在一定程度上推廣了S.S.Bhoosnurmath和R.S.Dyavanal的結(jié)果.
亞純函數(shù);分擔(dān)值;唯一性;微分多項(xiàng)式
本文采用值分布論中的標(biāo)準(zhǔn)符號(hào),設(shè)f(z)與g(z)為非常數(shù)的亞純函數(shù),如果f-a與g-a零點(diǎn)相同(不計(jì)重?cái)?shù)),則稱a為f與g的IM分擔(dān)值;如果f-a與g-a零點(diǎn)相同,且每個(gè)零點(diǎn)重?cái)?shù)也相同,則稱a為f與g的CM分擔(dān)值.對(duì)于任意常數(shù)a,我們定義
近年來,許多數(shù)學(xué)工作者對(duì)亞純函數(shù)的唯一性問題進(jìn)行了研究[1-7],特別是對(duì)函數(shù)微分多項(xiàng)式具有分擔(dān)值的唯一性問題的研究得到了一些深刻的結(jié)果.
1997年楊重駿和華歆厚證明了下面定理:
定理A[1]設(shè)(fz)與g(z)為兩個(gè)非常數(shù)的亞純函數(shù),n為正整數(shù)且滿足n≥11,對(duì)一非零復(fù)數(shù)a,如果fnf′與gng′CM分擔(dān)a,則或者(fz)=dg(z),這里的d滿足dn+1=1,或者g(z)=c1e-cz且(fz)=c2ecz,這里c,c1,c2是常數(shù),且滿足(c1c2)n+1c2=-a2.
定理B[4]設(shè)f(z)與g(z)為兩個(gè)非常數(shù)的亞純函數(shù),n,k為正整數(shù)且滿足n>3k+8.如果(fn)(k)和(gn)(k)CM分擔(dān)1,則f(z)=c1ecz,g(z)=c2e-cz,其中c,c1,c2為三個(gè)常數(shù)且滿足(-1)k(c1c2)n(nc)2k=1,或者f(z)=tg(z),這里的t滿足tn=1.
2011年Renukadevi S.Dyavanal在定理A基礎(chǔ)上考慮重?cái)?shù)推廣到定理C:
定理C[5]設(shè)f(z)與g(z)為兩個(gè)非常數(shù)的亞純函數(shù),且它們的零點(diǎn)重?cái)?shù)和極點(diǎn)重?cái)?shù)至少為s,s,n(≥2)為正整數(shù)且滿足(n+1)s≥12,如果 fnf′與gng′CM分擔(dān)1,則g(z)=c1e-cz且f(z)=c2ecz,其中c,c1,c2為三個(gè)常數(shù)且滿足(c1c2)n+1c2=-1,或者f(z)=tg(z),這里的t滿足tn+1=1.
本文在定理B的基礎(chǔ)上考慮重?cái)?shù)可得到下面的定理:
定理2設(shè)f(z)與g(z)為兩個(gè)非常數(shù)超越整函數(shù),且它們的零點(diǎn)重?cái)?shù)至少為s,s,n,k為正整數(shù)且滿足ns>2k+4.如果(fn)(k)和(gn)(k)CM分擔(dān)1,則f(z)=c1ecz,g(z)=c2e-cz,其中c,c1,c2為三個(gè)常數(shù)且滿足(-1)k(c1c2)n(nc)2k=1,或者f(z)=tg(z),這里的t滿足tn=1.
定理的證明需要以下幾個(gè)引理.
引理1[4]設(shè)f(z)與g(z)為兩個(gè)非常數(shù)的亞純函數(shù),k為正整數(shù).若f(k)(z)與g(k)(z)CM分擔(dān)1,且
引理2[2]設(shè)f(z)是一非常數(shù)整函數(shù),正整數(shù)k≥2,若f(z)f(k)(z)≠0,則f(z)=eaz+b,其中a(≠0),b都為常數(shù).
引理3[1]設(shè)f(z)與g(z)為兩個(gè)非常數(shù)整函數(shù),n(≥1)為整數(shù),若fnf′gng′=1,則g(z)=c1e-cz且f(z)=c2ecz,其中c,c1,c2為三個(gè)常數(shù)且滿足(c1c2)n+1c2=-1.
引理4[5]設(shè)f(z)與g(z)為兩個(gè)非常數(shù)超越整函數(shù),k為正整數(shù).若f(k)(z)與g(k)(z)CM分擔(dān)1,且
3.1 定理1的證明
3.2 定理2的證明
因?yàn)閒(z)與g(z)為整函數(shù),所以我們就有N(r,f)=N(r,g)=0.仿照定理1的證明,運(yùn)用引理4即可證得結(jié)論.
[1]Yang C C,Hua X H.Uniqueness and value-sharing of meromorphic functions[J].Ann Acad Sci Fenn Math,1997,22(2):395.
[2]Frank G.Eine Vermutung von Hayman fiber nullstellen meromorpher Funktion[M].Math Z,1976,149:29-36.
[3]Fang M L.Uniqueness and value-sharing of entire func?tions[J].Computers and Mathematics with Applications.2002,44:828-831.
[4]Bhoosnurmath S S,Dyavanal R S.Uniqueness and val?ue-sharing of meromorphic functions[J].Comput Math Appl,2007,53:1191-1205.
[5]Dyavanal R S.Uniqueness and value-sharing of differen?tial polynomials of meromorphic functions[J].Math Anal Appl,2011,374:335-345.
[6]Yang C C,Yi H X.Uniqueness Theory of Meromorphic Functions[J].Math Appl vol 557,Kluwer Academic Pub?lishers,Dordrecht,2003.
[7]Yang L.Value Distribution Theory,Springer-Verlag/Sci?ence Press[M].Berlin/Beijing,1993.
Uniqueness of Meromorphic Functions Concerning Differential Polynomials
GUO Xiaoyan,HUANG Bin
(College of Mathematics and Computing Sciences,Changsha University of Science and Technology,Changsha410114,China)
This paper studies the uniqueness of meromorphic functions concerning the case that(fn)(k)and(gn)(k)share 1 CM,where f and g are meromorphic,and establishes a uniqueness theorem that improves the results of S.S.Bhoosnur?math and R.S.Dyavanal.
Meromorphic function;sharing value;uniqueness;differential polynomials
O 174.52
A
1674-4942(2012)01-0017-03
2011-12-14
國(guó)家自然科學(xué)基金資助項(xiàng)目(11071064)
畢和平