詹火竻
初中數(shù)學(xué)總復(fù)習(xí)并不是對(duì)以前所教的知識(shí)進(jìn)行簡(jiǎn)單的回憶和再現(xiàn)。最主要的是要通過(guò)對(duì)知識(shí)系統(tǒng)復(fù)習(xí),使每一章節(jié)中的各個(gè)知識(shí)點(diǎn)聯(lián)系起來(lái),找出其變化規(guī)律、性質(zhì)相似之處及不同點(diǎn)等從而形成完整的知識(shí)體系,達(dá)到以點(diǎn)成線、以線成面、以面成體的目的,只有這樣學(xué)生才能把所學(xué)的知識(shí)融會(huì)貫通。
一、例題講解——善于變化
復(fù)習(xí)課例題的選擇,應(yīng)是最有代表性和最能說(shuō)明問(wèn)題的典型習(xí)題。對(duì)例題進(jìn)行分析和解答,發(fā)揮例題以點(diǎn)帶面的作用,有意識(shí)有目的地在例題的基礎(chǔ)上作系列的變化,達(dá)到能挖掘問(wèn)題的內(nèi)涵和外延、在變化中鞏固知識(shí)、在運(yùn)動(dòng)中尋找規(guī)律的目的,實(shí)現(xiàn)復(fù)習(xí)的知識(shí)從量到質(zhì)的轉(zhuǎn)變。
例如,在復(fù)習(xí)二次函數(shù)的內(nèi)容時(shí),我舉了這樣一個(gè)例題:二次函數(shù)的圖像經(jīng)過(guò)點(diǎn)(0,0)與(-1,-1),開(kāi)口向上,且在x軸上截得的線段長(zhǎng)為2。求它的解析式。因?yàn)槎魏瘮?shù)的圖像拋物線是軸對(duì)稱圖形,由題意畫圖后,不難看出(-1,-1)是頂點(diǎn),所以可用二次函數(shù)的頂點(diǎn)式y(tǒng)=-a(x+m)2+n,再求得它的解析式(解法略)。在數(shù)學(xué)中我對(duì)例題作了變化,把題例中的條件“拋物線在x軸上截得的線段2改成4”,求解析式。變化后,由題意畫圖可知(-1,-1)不再是拋物線的頂點(diǎn),但從圖中看出,圖像除了經(jīng)過(guò)已知的兩個(gè)點(diǎn)外,還經(jīng)過(guò)一點(diǎn) (-4,0),所以可用y=a(x-x1)(x-x2)的形式求出它的解析式。再對(duì)例題進(jìn)行變化,把題目中的“開(kāi)口向上”這一條件去掉,求解析式。再次變化后,此題可有兩種情況:(i)開(kāi)口向上;(ii)開(kāi)口向下。所以有兩個(gè)結(jié)論。
由于條件的不斷變化,使學(xué)生不能再套用原題的解題思路,從而改變了學(xué)生機(jī)械的模仿性,使學(xué)生學(xué)會(huì)分析問(wèn)題,尋找解決問(wèn)題的途徑,達(dá)到了在變化中鞏固知識(shí),在運(yùn)動(dòng)中尋找規(guī)律的目的
二、解題思路——善于優(yōu)化
一題多解有利于引導(dǎo)學(xué)生沿著不同的途徑去思考問(wèn)題,可以優(yōu)化思維,因此要將一題多解作為一種解題的方法去訓(xùn)練學(xué)生。一題多解可以產(chǎn)生多種解題思路,但在量的基礎(chǔ)上還需要考慮質(zhì)的提高,要對(duì)多解比較,找出新穎、獨(dú)特的最佳解才能成為名副其實(shí)的優(yōu)解思路。在數(shù)學(xué)復(fù)習(xí)時(shí),我不僅注意解題的多樣性,還重視引導(dǎo)學(xué)生分析比較各種解題思路和方法,提煉出最佳解法,從而達(dá)到優(yōu)化復(fù)習(xí)過(guò)程,優(yōu)化解題思路的目的。如:已知2斤蘋果,1斤桔子,4斤梨共價(jià)6元,又知4斤蘋果,2斤梨,2斤桔子共價(jià)4元,現(xiàn)買4斤蘋果,2斤桔子,5斤梨應(yīng)付多少錢?(解題略)本題妙在不具體求出每種水果的單價(jià),而是使用整體解題的思路直接求出答案為8元。又如計(jì)算(6x+y/2)(3x-y/4),這是一題多項(xiàng)式的乘法運(yùn)算,本題從表面上看無(wú)規(guī)律可找,學(xué)生也習(xí)慣按多項(xiàng)式系數(shù),發(fā)現(xiàn)第一個(gè)因式提出公因數(shù)2后,恰能構(gòu)成平方差公式的模型,顯然后一種解題思路優(yōu)于第一種解題的思路。對(duì)一些題目若把各因式計(jì)算后再相乘,很繁瑣,若能把各因式逆用平方差公式,再計(jì)算、約分,可以迅速地求出結(jié)果。
在復(fù)習(xí)的過(guò)程中加強(qiáng)對(duì)解題思路優(yōu)化的分析和比較,有利于培養(yǎng)學(xué)生良好的數(shù)學(xué)品質(zhì)和思維發(fā)展,能為學(xué)生培養(yǎng)嚴(yán)謹(jǐn)、創(chuàng)新的學(xué)風(fēng)打下良好的基礎(chǔ)。
三、習(xí)題歸類——善于類化
考查同一知識(shí)點(diǎn),可以從不同的角度,采用不同的數(shù)學(xué)模型,作出多種不同的命題,教師在復(fù)習(xí)時(shí)要善于引導(dǎo)學(xué)生將習(xí)題歸類,集中精力解決同類問(wèn)題中的本質(zhì)問(wèn)題,總結(jié)出解這一類問(wèn)題的方法和規(guī)律。例如在復(fù)習(xí)應(yīng)用題時(shí),我選下列四個(gè)題目作為例題。
題目1:甲乙兩人同時(shí)從相距10000米的兩地相對(duì)而行,甲騎自行車每分鐘行80米,乙騎摩托車每分鐘行200米,問(wèn)經(jīng)過(guò)幾分鐘,甲乙兩人相遇?
題目2:從東城到西城,汽車需8小時(shí),拖拉機(jī)需12小時(shí),兩車同時(shí)從兩地相向而行,幾小時(shí)可以相遇?
題目3:一項(xiàng)工程,甲隊(duì)單獨(dú)做需8天,乙隊(duì)單獨(dú)做需10天,兩隊(duì)合作需幾天完成?
題目4:一池水單開(kāi)甲管8小時(shí)可以注滿,單開(kāi)乙管12小時(shí)可以完成,兩管同時(shí)開(kāi)放,幾小時(shí)可以注滿?
上述四道復(fù)習(xí)應(yīng)用題,題目表達(dá)方式不同,有的看似行程問(wèn)題,有的看似工程問(wèn)題,但本質(zhì)基本相同,數(shù)量關(guān)系、解答方法基本一樣。通過(guò)這樣的歸類訓(xùn)練,學(xué)生便能在平時(shí)的學(xué)習(xí)中,注意加強(qiáng)方法的積累和歸納,并能分析異同,把知識(shí)從一個(gè)角度遷移到另一個(gè)角度,最終達(dá)到常規(guī)圖形能熟悉、常規(guī)結(jié)論要記憶、類同方法全套用、獨(dú)創(chuàng)解法受啟發(fā)的層次,提高舉一反三、觸類旁通的能力。
責(zé)任編輯 羅峰