7 折線型滑面極限分析上限法
折線型滑面破壞機(jī)制是指邊坡表部和淺部的堆積體(殘坡積、沖洪積、風(fēng)積)及其下的風(fēng)化卸荷破碎巖體沿著基巖面產(chǎn)生滑動的一種破壞機(jī)制,滑裂面多呈不規(guī)則的折線形。這種形式的破壞在自然界是比較普遍的,例如三峽庫區(qū)奉節(jié)縣就有很多這樣的庫岸邊坡,另外在陜西南部的秦巴山區(qū)也普遍發(fā)育這一種斜坡地貌。對于這一類型邊坡的穩(wěn)定性評價計算一般采用國家規(guī)范《巖土工程勘察規(guī)范》(GB 50021—2001)中推薦的不平衡推力法。由于不平衡推力法沒有考慮力矩平衡條件,因此目前的一些分析結(jié)果表明,其分析結(jié)果在某些情況下產(chǎn)生的誤差很大,并且計算結(jié)果偏大。薩爾瑪法(Sarma,1979)是計算折線滑面邊坡穩(wěn)定的一種公認(rèn)比較好的方法,但其要求對滑體按節(jié)理構(gòu)造斜分條,對于巖質(zhì)邊坡應(yīng)用較多,但對堆積體邊坡不是很適用。摩根斯坦-普萊斯法(Morgenster - Price,1965)對土坡穩(wěn)定性進(jìn)行極限分析計算最一般的方法,對于折線滑面很適用,但其假定沿相鄰?fù)翖l法向力和切向力之間存在一個水平方向坐標(biāo)函數(shù)不好確定,且微分方程的求解也很繁瑣,因此使用起來比較困難。簡布法(Janbu,1965)對于不規(guī)則滑面的土坡很適用,同時這種方法滿足力矩和力平衡條件,但要求假定條間力的作用點位置。陳祖煜從極限分析理論出發(fā),提出了巖質(zhì)邊坡斜分條法(陳祖煜,等,2005;Donald 和 陳祖煜,1997;陳祖煜 和 Donald,1988)。在本章中,筆者采用垂直分條折線型滑面的工程地質(zhì)計算模型,以堆積體邊坡為研究對象,采用極限分析方法為基礎(chǔ),依據(jù)虛功率方程,得到了簡化的垂直分條折線型滑面邊坡穩(wěn)定系數(shù)計算的極限分析上限解。這與巖質(zhì)邊坡斜分條極限分析法屬于同一類,但又有一定的差異之處,表現(xiàn)在適用對象不同、分條法不同兩個方面。垂直分條折線型滑面邊坡穩(wěn)定系數(shù)計算的極限分析上限解是一個精密的數(shù)學(xué)解,是解決堆積體型邊坡、滑坡穩(wěn)定性計算的一種新方法。
7.2.1 折線型滑面機(jī)動許可速度場
折線型滑面邊坡極限分析法是將材料的本構(gòu)關(guān)系簡化為理想剛塑性應(yīng)力-應(yīng)變關(guān)系,利用剛塑性體處于極限狀態(tài)的普遍原理——上限定理求解邊坡穩(wěn)定性的一種方法(陳惠發(fā),1995)。首先將邊坡按照折線滑面的轉(zhuǎn)折點垂直離散為一系列的條塊(見圖7-1),視每一條塊為剛體,滑面和條間錯動的部位被視為塑性體。以第i條塊為例,其變形速率為vi,與該條塊底面線夾角為φi;該條塊與左邊相鄰第i-1條塊的相對速度為為vi,i-1,此相對速度與相鄰兩條塊的垂直分界面的夾角為φi,i-1。為了使由n個條塊組成的機(jī)構(gòu)的位移是協(xié)調(diào)的,就要求相鄰兩個條塊的移動不能導(dǎo)致它們重疊或分離,或者說要求相鄰條塊(以第i和第i-1條塊為例)底面的速度vi,vi-1與條塊間垂直界面的相對速度vi,i-1組成的速度矢量要閉合。
圖7-1 垂直分條折線型滑面邊坡破壞機(jī)制
式中:vi,i-1為相鄰條塊豎向速度間斷面的相對速度;φi,i-1為相鄰條塊豎向速度間斷面的內(nèi)摩擦角;θi,θi-1分別為第i個條塊與第i-1個條塊底面的傾角;φi,φi-1分別為第i個條塊與第i-1個條塊折線滑面位置的內(nèi)摩擦角;vi,vi-1分別為第i個條塊與第i-1個條塊折線滑面位置的速度。
7.2.2 折線型滑面邊坡虛功率原理
當(dāng)邊坡變形破壞時,內(nèi)能的耗散只發(fā)生于條塊的底面(滑面)和條間界面處,在條塊內(nèi)為零。條塊的底面和條間界面是速度間斷面,速度間斷面可以看作是一個薄層塑性變形區(qū),速度在層內(nèi)發(fā)生急劇而連續(xù)的變化。因此,在該薄層塑性變形區(qū)內(nèi)將有內(nèi)能的耗散。文獻(xiàn)(龔曉南,1997)指出,只要能合理地計算出能量耗損,速度間斷也是允許的。這種間斷面可以被認(rèn)為是連續(xù)速度場的極限情況。在這種情況下,速度分量(一個或多個)在跨越窄過渡層時變化很快,因而為了方便起見,可以用間斷面來代替。間斷速度場不僅提供了方便,而且往往還可獲得實際的破壞模式或破壞機(jī)制。沿速度間斷面內(nèi)能的耗散率計算,是將薄層的塑性變形區(qū)視為速度間斷面,而將兩側(cè)視為剛體。
極限分析法對于虛功原理的描述是:作用在邊坡上的外荷載和巖土體自重所做的外功率與塑性變形區(qū)的內(nèi)部能量耗損率相等。由于已經(jīng)假設(shè)條塊為剛體,因此,能量耗損只發(fā)生在滑面和豎向速度間斷面上。內(nèi)部能量耗損率計算公式為
上式中等號右端第一項表示沿滑面的內(nèi)能耗損率,li,ci分別為第i個條塊底面(滑面)長度和黏聚力;第二項表示豎向速度間斷面的內(nèi)能耗損率,hi,i-1,ci,i-1為相鄰條塊交線高度和凝聚力。
由巖土體自重和外部作用荷載產(chǎn)生的附加鉛直向荷載所做的外功率計算公式為
式中:Wi為第i個條塊的自重;Ti為外部作用荷載分配給第i個條塊的鉛直向附加荷載。
當(dāng)邊坡處于極限破壞狀態(tài)時,根據(jù)內(nèi)外功率相等的條件(D內(nèi)=W外),即可建立虛功率方程。
7.2.3 極限分析上限解的公式推導(dǎo)
應(yīng)該注意,在虛功率方程中的力學(xué)參數(shù)c,φ并不是邊坡正常工作狀態(tài)時的值,或者說并不是由土工試驗提供的試驗參數(shù),而應(yīng)該是用來維持內(nèi)外功率相等的巖土材料強(qiáng)度儲備cd,φd值。材料強(qiáng)度儲備穩(wěn)定系數(shù)的定義是:沿某一滑面的實際工作狀態(tài)的力學(xué)參數(shù)c,tanφ與用來維持邊坡內(nèi)外功率相等的換算力學(xué)參數(shù)cd,tanφd之比,其公式為
考慮到折線滑面以上的巖土主要是風(fēng)化卸荷破碎巖體和第四系的殘坡積物,厚度變化大,物理力學(xué)參數(shù)離散度大,因此為了簡化計算,可以將條塊垂直速度間斷面上的力學(xué)參數(shù)取統(tǒng)計平均值c'和φ'。公式(7-1)和式(7-2)是速度遞推公式,分析可知,vi,vi-1可以表示為v1的表達(dá)式。聯(lián)立式(7-1)、式(7-2)、是(7-5)和虛功率方程D內(nèi)=W外,可得到折線型滑面邊坡穩(wěn)定分析的上限解計算公式(王根龍,等,2007)
式中:
在計算時,應(yīng)該注意式(7-6)右端的φ值要取維持邊坡極限平衡狀態(tài)的換算指標(biāo):
7.3.1 三馬山滑坡的垂直分條法折線滑面上限解
三馬山滑坡是三峽庫區(qū)奉節(jié)移民新城區(qū)有爭議的重大滑坡之一,屬于三峽庫區(qū)滑坡塌岸防治研究專題。該滑坡是一個基巖古滑坡,滑坡體中上部有約30m厚坡積、沖洪積、殘積的第四紀(jì)晚更新世和全新世堆積物,前緣分布較薄,下部為巴東組第三段(T2b3)灰色泥質(zhì)灰?guī)r,屬風(fēng)化卸荷碎裂巖體,均受到坡體滑動不同程度的擾動。滑床面以下主要為巴東組第二段(T2b2)紫紅色泥巖夾粉砂巖,弱風(fēng)化到微風(fēng)化。根據(jù)鉆探資料顯示,滑帶主要位于巴東組第二段頂部,滑面由鉆孔控制點連接形成折線型,坡體中存在地下水,水位埋深30~80m。
采用折線型滑面極限分析方法,不考慮外荷載作用(如地震力)的影響,選用枯水位線時的典型剖面(見圖7-2)作為計算模型,對三馬山滑坡進(jìn)行穩(wěn)定性計算。
將滑體分為6個條塊,劃分條塊主要依據(jù)鉆孔確定的滑面位置,分條數(shù)據(jù)和物理力學(xué)指標(biāo)的選取見表7-1。經(jīng)過計算,得到的穩(wěn)定系數(shù)為1.46;采用規(guī)范法推薦的不平衡推力法計算,得到的穩(wěn)定系數(shù)為1.52。從穩(wěn)定系數(shù)計算結(jié)果比較來看,采用本文的方法要比不平衡推力法計算結(jié)果小一些(小4%),這樣的計算結(jié)果可以克服不平衡推力法計算結(jié)果偏大的影響,從而對堆積體滑坡、邊坡的穩(wěn)定計算具有一定的實用性。
圖7-2 三馬山滑坡極限分析工程地質(zhì)圖
表7-1 三馬山滑坡極限分析計算數(shù)據(jù)
7.3.2 紫陽縣滑坡的垂直分條法折線滑面上限解
紫陽縣位于陜西省南部的安康地區(qū),是秦嶺山脈南部的一個典型山區(qū)縣,在該縣發(fā)育有較多的沿基巖面變形滑動的危險坡體和滑坡。針對紫陽縣一典型的沿基巖面折線型滑面滑坡(見圖7-3),筆者采用從塑性極限分析理論得到的折線形破壞機(jī)制進(jìn)行了分析計算。
分析過程中將基巖面以上的土坡依據(jù)滑面的形態(tài)劃分為五個土條,在只考慮土體自重荷載作用時,采用公式(7-7),得到的安全系數(shù)值為0.843。計算用到的基本數(shù)據(jù)見表7-2。對同一滑坡采用不平衡推力傳遞法得到的安全系數(shù)值為0.941。兩種方法結(jié)果相比較,可以得到結(jié)論,即本文所采用的塑性極限分析條分法方法是合理的,計算結(jié)果比較理想。
圖7-3 紫陽縣滑坡極限分析工程地質(zhì)圖
表7-2 紫陽縣滑坡塑性極限分析條分法計算基本數(shù)據(jù)