復(fù)旦大學(xué)附屬腫瘤醫(yī)院實(shí)驗(yàn)研究中心,復(fù)旦大學(xué)上海醫(yī)學(xué)院腫瘤學(xué)系,上海200032
Aurora-A促進(jìn)胰腺癌細(xì)胞放射抵抗的機(jī)制研究
孫會(huì)貞 楊恭
復(fù)旦大學(xué)附屬腫瘤醫(yī)院實(shí)驗(yàn)研究中心,復(fù)旦大學(xué)上海醫(yī)學(xué)院腫瘤學(xué)系,上海200032
背景與目的:Aurora-A屬于絲氨酸和蘇氨酸蛋白激酶家族,其異常表達(dá)可導(dǎo)致腫瘤發(fā)生及其對(duì)放射線的抵抗,本研究旨在探討Aurora-A與細(xì)胞放射敏感的相關(guān)性。方法:用Aurora-A激酶抑制劑處理Capan-1細(xì)胞,檢測(cè)細(xì)胞增殖、錨定非依賴性生長(zhǎng)和細(xì)胞周期及其周期相關(guān)蛋白的變化;處理的細(xì)胞同時(shí)用γ線照射,然后用流式細(xì)胞術(shù)檢測(cè)細(xì)胞凋亡。結(jié)果:Aurora-A激酶抑制劑處理后,Capan-1細(xì)胞生長(zhǎng)速度減慢,克隆形成率降低;Aurora-A抑制可引起細(xì)胞周期G1/S以及G2/M期轉(zhuǎn)化阻滯,Cyclin D1、CDK2和CDK6表達(dá)下降。Aurora-A激酶抑制劑處理后可以提高放射線照射誘導(dǎo)的細(xì)胞凋亡率。結(jié)論:Aurora-A激酶抑制劑可抑制胰腺癌細(xì)胞增殖,阻滯細(xì)胞周期,促進(jìn)細(xì)胞對(duì)放射線照射的敏感性。因此,Aurora-A可能是胰腺癌放射治療增敏的靶向分子之一。
Aurora-A;胰腺癌;放射敏感性
Aurora-A又稱為BTAK[1]、STK15[2]、AIKI[3]等,是絲氨酸和蘇氨酸蛋白激酶家族成員[4],其在胰腺癌[5]、乳腺癌[6]等多種腫瘤中均高表達(dá)。Aurora-A可通過調(diào)節(jié)中心體復(fù)制,紡錘體組裝以及染色體分離[7-8]等參與有絲分裂,并且可以通過與Cyclin B1[9]、P53以及BRCA1/2相互作用調(diào)節(jié)細(xì)胞周期檢查點(diǎn),維持基因組完整性[10]。近期研究發(fā)現(xiàn)Aurora-A與某些腫瘤放療抵抗相關(guān),但其機(jī)制尚不明了。本研究選取Aurora-A高表達(dá)的胰腺癌細(xì)胞系Capan-1進(jìn)行研究,用Aurora-A激酶抑制劑對(duì)其處理后發(fā)現(xiàn),Aurora-A激酶抑制劑可通過阻滯細(xì)胞周期進(jìn)展,抑制細(xì)胞周期蛋白表達(dá)等明顯增加其放射線敏感性。胰腺癌是致死率最高的惡性腫瘤之一,其病死率接近100%[11],且往往不能通過單純的手術(shù)治療改善5年生存率,必須通過手術(shù)聯(lián)合放療等綜合治療達(dá)到延長(zhǎng)生存期的目的。因此,抑制Aurora-A激酶活性有可能對(duì)胰腺癌放射治療具有增敏作用。
1.1 材料和試劑
人胰腺癌細(xì)胞系Capan-1和HPAFⅡ購(gòu)自美國(guó)ATCC公司;PI (Propidium Iodide,P4170) 為美國(guó) Sigma公司產(chǎn)品;流式凋亡試劑盒(556547)購(gòu)自BD公司;BCA試劑盒(P0012)購(gòu)自碧云天公司;HRP化學(xué)發(fā)光試劑盒(WBKLS0500)購(gòu)自Millipore公司;Aurora-A (CS-3042)、p-Aurora-A(Thr288,CS-3079)、Cyclin D1(CS-2922)、CDK2(cyclin-dependent kinase 2,CS-2546)、CDK6(cyclin-dependent kinase 6,CS-3136)等抗體購(gòu)自Cell Signaling Technology公司;β-actin抗體(A5316)購(gòu)自Sigma公司;Aurora-A激酶抑制劑VX680(S1048)購(gòu)自美國(guó) Selleck公司。
1.2 方法
1.2.1 熒光定量PCR
收集細(xì)胞2×106個(gè),然后用TRIzol試劑(Invitrogen, Carlsbad, CA)提取RNA;用逆轉(zhuǎn)錄試劑盒將總RNA轉(zhuǎn)錄成cDNA,用Ex-Script Sybr green QPCR試劑盒(TaKaRa)進(jìn)行PCR反應(yīng),反應(yīng)體系含10×buffer、MgCl2、dNTP、Tag酶、引物、cDNA模板、DEPCH2O等。PCR反應(yīng)條件為,42 ℃溫育15 min,95 ℃溫育2 min,95 ℃變性5 s,62 ℃退火延伸31 s,共40個(gè)循環(huán)。實(shí)驗(yàn)重復(fù)3次。GAPDH引物:5’-GGCCTCCAAGGAGTAAGACC-3’(正向引物)和5’-CAAGGGGTCTACAT GGCAAC-3’(反向引物);Aurora-A引物:5-TCCATCTTCCAGGAGGACCAC-3(正向引物),5’-CCAGAGATCCACCTTCTCATC-3’(反向引物)。由PCR反應(yīng)曲線得到閾值循環(huán)數(shù)(Ct),以GAPDH作為內(nèi)參照,用2-△△CT法計(jì)算Aurora-A mRNA相對(duì)表達(dá)量。
1.2.2 免疫印跡檢測(cè)
用胰酶消化細(xì)胞后收集細(xì)胞沉淀,用預(yù)冷的PBS洗滌細(xì)胞2次,加入蛋白裂解液,置冰上30 min,4 ℃,15 000×g離心10 min,收集蛋白裂解液。用BCA試劑盒測(cè)定蛋白濃度,然后將蛋白用6×上樣緩沖液以及細(xì)胞裂解液稀釋,之后煮沸5 min。將變性后的蛋白25 μg經(jīng)SDSPAGE電泳后,100 V恒壓轉(zhuǎn)膜2 h,然后用5%脫脂奶粉封閉該膜2 h,之后加入一抗(1%脫脂奶粉1∶1 000稀釋),室溫溫育2 h,1%TBST(Tris-Buffered Saline and Tween 20)洗膜3次(每次15 min),然后加入辣根過氧化物酶標(biāo)記的鼠抗/兔抗(1%脫脂奶粉1∶1 000稀釋),室溫溫育1 h,用1%TBST洗膜3次(每次15 min)。最后用Millipore化學(xué)發(fā)光劑于暗室中對(duì)PVDF膜進(jìn)行曝光和顯影。
1.2.3 細(xì)胞計(jì)數(shù)
將細(xì)胞種植于6孔板,每孔5×104個(gè),在37 ℃、CO2體積分?jǐn)?shù)為5%的細(xì)胞培養(yǎng)箱中培養(yǎng),每2天計(jì)數(shù)1次,共計(jì)數(shù)8 d,繪制細(xì)胞生長(zhǎng)曲線。每孔設(shè)置3個(gè)副孔。
1.2.4 軟瓊脂克隆形成試驗(yàn)
在60 mm細(xì)胞培養(yǎng)皿中提前制備0.7%低熔點(diǎn)瓊脂糖底膠(2 mL 1.4%低熔點(diǎn)瓊脂糖與2 mL 2×DMEM培養(yǎng)基混合制備而成),4 ℃冰箱保存,在用之前提前1 h置于37 ℃細(xì)胞培養(yǎng)箱中預(yù)熱。用胰酶將細(xì)胞消化成單細(xì)胞后,將1×103個(gè)細(xì)胞懸浮于0.5 mL含20%胎牛血清的2×DMEM培養(yǎng)液中。將0.5 mL細(xì)胞與培養(yǎng)基混合物與0.5 mL 0.7%的低熔點(diǎn)瓊脂糖混合均勻后懸于已制備好的0.7%低熔點(diǎn)瓊脂糖底膠之上。待上層瓊脂糖凝固后,置入37 ℃,CO2體積分?jǐn)?shù)為5%的溫箱中培養(yǎng)21 d,然后拍照計(jì)數(shù),在此過程中每7 d加1 mL不含細(xì)胞的上層瓊脂糖避免細(xì)胞干燥。
1.2.5 凋亡檢測(cè)
收集細(xì)胞5×105個(gè),在1 200×g的條件下離心5 min,用PBS清洗2次,向細(xì)胞沉淀中加入100 μL 1×buffer,然后向buffer中加入5 μL An-nexin-Ⅴ FITC,5 μL PI,避光,室溫溫育15 min。流式細(xì)胞儀分析:流式細(xì)胞儀激發(fā)光波長(zhǎng)為488 nm,并用一波長(zhǎng)為515 nm的通帶濾器檢測(cè)FITC熒光,另一波長(zhǎng)>560 nm的濾器檢測(cè)PI。
1.2.6 細(xì)胞周期檢測(cè)
細(xì)胞生長(zhǎng)至對(duì)數(shù)期時(shí),胰酶消化細(xì)胞,PBS清洗,在1 000×g的條件下離心5 min,沉淀重懸于75%乙醇,-20 ℃固定4 h以上。用PBS清洗,在1 200×g的條件下離心5 min,收集細(xì)胞,將細(xì)胞重懸于含100 μg/mL的RNaseA和50 μg/mL的PI的PBS中,室溫溫育30 min,之后用流式細(xì)胞儀檢測(cè)細(xì)胞周期。
1.2.7 細(xì)胞系處理
應(yīng)用熒光定量PCR和蛋白質(zhì)印跡法(Western blot)在胰腺癌的兩個(gè)細(xì)胞系Capan-1和HPAFⅡ中分別檢測(cè)Aurora-A mRNA和蛋白水平的變化,然后選擇Aurora-A高表達(dá)的細(xì)胞系Capan-1進(jìn)行研究。用DMSO溶劑處理組做為對(duì)照(control),用300 nmol/L VX680處理細(xì)胞12 h,通過Western blot檢測(cè)p-Aurora-A (Thr288)蛋白表達(dá)水平,然后根據(jù)1.2.3和1.2.4所示實(shí)驗(yàn)方法檢測(cè)Aurora-A激酶抑制劑對(duì)細(xì)胞增殖和體外克隆的影響。應(yīng)用300 nmol/L VX680處理細(xì)胞2 h,然后對(duì)其進(jìn)行18 Gy γ射線照射,4 d后用流式細(xì)胞術(shù)檢測(cè)細(xì)胞凋亡水平,并用等量DMSO溶劑處理組做為對(duì)照(control),進(jìn)行相同處理,檢測(cè)Aurora-A激酶抑制劑對(duì)細(xì)胞凋亡的影響。
實(shí)驗(yàn)分為3組:抑制劑組、對(duì)照組和抑制劑加放射線組。其中抑制劑組采用300 nmol/L Aurora-A激酶抑制劑VX680處理Capan-1細(xì)胞12 h后收集細(xì)胞沉淀,對(duì)照組采用等量DMSO溶劑處理Capan-1細(xì)胞12 h后收集細(xì)胞沉淀,抑制劑加放射線組采用300 nmol/L VX680處理細(xì)胞2 h,然后對(duì)其進(jìn)行18 Gy γ射線照射,10 h后收集細(xì)胞沉淀。應(yīng)用流式細(xì)胞術(shù)檢測(cè)細(xì)胞周期,并采用Western blot檢測(cè)周期相關(guān)蛋白的變化。
1.3 統(tǒng)計(jì)學(xué)處理
實(shí)驗(yàn)數(shù)據(jù)采用SPSS 17.0軟件進(jìn)行整理和統(tǒng)計(jì)分析。計(jì)量數(shù)據(jù)采用t檢驗(yàn),P<0.05為差異有統(tǒng)計(jì)學(xué)意義,P<0.01為差異有顯著統(tǒng)計(jì)學(xué)意義。
2.1 抑制Aurora-A激酶活性阻滯胰腺癌細(xì)胞增殖和體外瘤性生長(zhǎng)
熒光定量PCR和Western blot檢測(cè)結(jié)果顯示,Capan-1細(xì)胞株Aurora-A基因和蛋白水平明顯高于HPAF Ⅱ(圖1A、B),因此本研究選擇Aurora-A高表達(dá)的Capan-1細(xì)胞株進(jìn)行進(jìn)一步研究。
由于VX680可降低Aurora-A激酶磷酸化活性位點(diǎn)Thr288的自我磷酸化來抑制Aurora-A激酶活性,本研究發(fā)現(xiàn),VX680成功降低了p-Aurora-A表達(dá)水平(圖1C),證實(shí)了VX680確可降低Aurora-A激酶活性,且較對(duì)照組VX680處理后細(xì)胞生長(zhǎng)速度明顯減慢(圖1D),體外克隆數(shù)亦明顯減少(圖1E、F)。表明Aurora-A激酶抑制劑可抑制胰腺癌細(xì)胞增殖和錨定非依賴性生長(zhǎng)。
2.2 Aurora-A激酶抑制劑促進(jìn)胰腺癌細(xì)胞對(duì)放射線的敏感性
盡管細(xì)胞早期凋亡差異無統(tǒng)計(jì)學(xué)意義,但抑制劑組細(xì)胞經(jīng)放射線照射后晚期凋亡比例(50.7%)明顯高于對(duì)照組(23.8%)(圖2A、B),Aurora-A激酶抑制劑可促進(jìn)胰腺癌細(xì)胞的放射線敏感。
2.3 Aurora-A激酶抑制劑促進(jìn)胰腺癌細(xì)胞放射線敏感的機(jī)制
本研究結(jié)果顯示,抑制劑組較對(duì)照組G0/G1期增加13.7%,G2/M期增加25.4%,而S期減低39.2%,抑制劑加放射線組較對(duì)照組G0/G1期增加更加明顯,為23.1% (圖3A、B、C)。Western blot檢測(cè)結(jié)果顯示,抑制劑組較其對(duì)照組周期蛋白Cyclin D1、CDK2和CDK6均降低,γ射線處理后周期蛋白減低更加明顯(圖3D)。
圖 1 Aurora-A激酶抑制劑對(duì)細(xì)胞增殖和錨定非依賴性生長(zhǎng)的影響Fig. 1 Effect of Aurora-A kinase inhibitor on cell proliferation and anchorage-independent growth
圖 2 Aurora-A激酶抑制劑對(duì)Capan-1細(xì)胞放射線敏感性的影響Fig. 2 Influence of Aurora-A kinase inhibitor on radiosensitivity in Capan-1 cells.
圖3. Aurora-A激酶抑制劑促進(jìn)胰腺癌細(xì)胞放射線敏感的機(jī)理研究Fig. 3 Mechanism of the enhanced radiosensitivity induced by Aurora-A kinase inhibitor in pancreatic cancer cells
細(xì)胞周期有3個(gè)檢驗(yàn)點(diǎn),分別在G1/S期、G2/ M期和M期。大多數(shù)研究表明,Aurora-A主要在G2/M期被激活,進(jìn)而調(diào)節(jié)細(xì)胞周期進(jìn)展。本研究證明在胰腺癌細(xì)胞系Capan-1中,Aurora-A激酶抑制劑可同時(shí)抑制G1/S期和G2/M期轉(zhuǎn)化,進(jìn)而阻滯細(xì)胞周期進(jìn)展,抑制劑加放射線處理后細(xì)胞G1/S期阻滯更加顯著,但該阻滯由Aurora-A激酶抑制劑直接引起還是通過抑制周期蛋白Cyclin D1、CDK2和CDK6等引起尚待進(jìn)一步研究。
細(xì)胞周期進(jìn)展主要受細(xì)胞周期蛋白以及細(xì)胞周期蛋白依賴性激酶調(diào)節(jié)。Cyclin D1是細(xì)胞周期檢查點(diǎn)G1/S期的重要調(diào)控因子,其可與CDK4/6結(jié)合形成復(fù)合物引起Rb蛋白的磷酸化[12],從而解除Rb對(duì)轉(zhuǎn)錄因子E2F的抑制效應(yīng)[13],啟動(dòng)DNA的合成,使細(xì)胞由G1期過渡到S期。CDK2可與Cyclin A以及Cyclin B結(jié)合[14],促進(jìn)細(xì)胞G2/M期轉(zhuǎn)化,進(jìn)而啟動(dòng)細(xì)胞有絲分裂,亦可與 Cyclin E結(jié)合調(diào)控細(xì)胞周期向G1/S期轉(zhuǎn)換[15]。有報(bào)道稱Aurora-A可通過調(diào)節(jié)Cyclin B1或磷酸化BRCA1和CDC25B而繞過G2/M檢驗(yàn)點(diǎn),促進(jìn)細(xì)胞周期G2/M轉(zhuǎn)換[10,16];磷酸化p53的Ser315位點(diǎn),從而促進(jìn)Mdm2介導(dǎo)的p53泛素化途徑降解[17],影響細(xì)胞周期以及細(xì)胞凋亡。Aurora-A與細(xì)胞周期蛋白表達(dá)密切相關(guān),其介導(dǎo)細(xì)胞周期進(jìn)展的機(jī)制尚待進(jìn)一步分析和研究。
綜上所述,Aurora-A激酶抑制劑可通過影響細(xì)胞周期蛋白表達(dá),抑制細(xì)胞周期進(jìn)展,進(jìn)而引起胰腺癌細(xì)胞的放射敏感性。此實(shí)驗(yàn)為胰腺癌的治療提供了新靶點(diǎn),有助于尋找胰腺癌綜合治療的新方法。
[參 考 文 獻(xiàn)]
[1] BABA Y, NOSHO K, SHIMA K, et al. Aurora-A expression is independently associated with chromosomal instability in colorectal cancer [J] . Neoplasia, 2009, 11(5): 418-425.
[2] PAN J Y, AJANI J A, GU J, et al. Association of Aurora-A (STK15) kinase polymorphisms with clinical outcome of esophageal cancer treated with preoperative chemoradiation[J]. Cancer, 2012, 118(17): 4346-4353.
[3] XU H T, MA L, QI F J, et al. Expression of serine threonine kinase 15 is associated with poor differentiation in lung squamous cell carcinoma and adenocarcinoma[J]. Pathol Int, 2006, 56(7): 375-380.
[4] JEON H Y, LEE H. Depletion of Aurora-A in zebrafish causes growth retardation due to mitotic delay and p53-dependent cell death [J]. FEBS J, 2013, 280(6): 1518-1530.
[5] BEARSS D J. Shining the light on aurora-a kinase as a drug target in pancreatic cancer [J]. Mol Cancer Ther, 2011, 10(11): 2012.
[6] FERCHICHI I, SASSI HANNACHI S, BACCAR A, et al. Assessment of Aurora A kinase expression in breast cancer: a tool for early diagnosis? [J]. Dis Markers, 2013, 34(2): 63-69.
[7] NIKONOVA A S, ASTSATUROV I, SEREBRIISKII I G, et al. Aurora A kinase (AURKA) in normal and pathological cell division [J]. CMLS, 2013, 70(4): 661-687.
[8] PLOTNIKOVA O V, NIKONOVA A S, LOSKUTOV Y V, et al. Calmodulin activation of Aurora-A kinase (AURKA) is required during ciliary disassembly and in mitosis [J]. Mol Biol Cell, 2012, 23(14): 2658-2670.
[9] QIN L, TONG T, SONG Y, et al. Aurora-A interacts with Cyclin B1 and enhances its stability [J]. Cancer Lett, 2009, 275(1): 77-85.
[10] DODSON C A, BAYLISS R. Activation of Aurora-A kinase by protein partner binding and phosphorylation are independent and synergistic [J]. J Biol Chem, 2012, 287(2): 1150-1157.
[11] CHAKRABORTY S, BAINE M J, SASSON A R, et al. Current status of molecular markers for early detection of sporadic pancreatic cancer [J]. Biochem Biophys Acta, 2011, 1815(1): 44-64.
[12] DU Z, TONG X, YE X. Cyclin D1 promotes cell cycle progression through enhancing the kinase activity of NDR1/2 independent of cyclin dependent kinase 4[J]. J Biol Chem, 2013, 29.
[13] COE B P, TH K L, AVIEL-RONEN S, et al. Genomic deregulation of the E2F/Rb pathway leads to activation of the oncogene EZH2 in small cell lung cancer[J]. PloS One, 2013, 8(8): 71670.
[14] CERQUETTI L, SAMPAOLI C, AMENDOLA D, et al. Mitotane sensitizes adrenocortical cancer cells to ionizing radiations by involvement of the cyclin B1/CDK complex in G2arrest and mismatch repair enzymes modulation[J]. Int J Oncol, 2010, 37(2): 493-501.
[15] LIU Q, LIU X, GAO J, et al. Overexpression of DOC-1R inhibits cell cycle G1/S transition by repressing CDK2 expression and activation[J]. Int J Biol Sci, 2013, 9(6): 541-549.
[16] REBOUTIER D, TROADEC M B, CREMET J Y, et al. Nucleophosmin/B23 activates Aurora A at the centrosome through phosphorylation of serine 89[J]. J Cell Biol, 2012, 197(1): 19-26.
[17] HSUEH K W, FU S L, CHANG C B, et al. A novel Aurora-A-mediated phosphorylation of p53 inhibits its interaction with MDM2[J]. Biochim Biophys Acta, 2013, 1834(2): 508-515.
Mechanistic study of pancreatic cancer cell radioresistance conferred by Aurora-A
SUN Hui-zhen, YANG Gong (Cancer Research Laboratory, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China)
YANG Gong E-mail: yanggong@fudan.edu.cn
Background and purpose: Aurora-A is a member of serine/threonine kinase family. The abnormal expression of Aurora-A induces tumorigenesis and radioresistance. This study was aimed to investigate the association of Aurora-A with radioresistance. Methods: Capan-1 cells were treated with Aurora-A kinase inhibitor, and then used to test cell proliferation, anchorage independent assay, cell cycle, and cell cycle regulatory proteins. Treated cells were also used to detect cell apoptosis after γ-irradiation. Results: Cell growth and colony number in soft agar were decreased after treatment with Aurora-A inhibitor. Treatment of cells with Aurora-A inhibitor also down-regulated the expression of Cyclin D1, CDK2 and CDK6 to induce cell cycle arrest at G1/S and G2/M phases, but promoted cell apoptosis after γ-irradiation. Conclusion: Treatment of pancreatic cancer cells with Aurora-A kinase inhibitor blocks cell proliferation and cell cycle progression, and promotes sensitivity of cells to radiation. Thus, Aurora-A may be used as one of therapeutic targets to increase the sensitivity of pancreatic cancer radiotherapy.
Aurora-A; Pancreatic cancer; Radiosensitivity
10.3969/j.issn.1007-3969.2013.12.007
R735.9
A
1007-3639(2013)12-0974-06
2013-07-30
2013-10-07)
浦江人才計(jì)劃基金(No:PJ[2011]0000652)。
楊恭 E-mail:yanggong@fudan.edu.cn