• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      RNAi與順鉑腫瘤耐藥研究進(jìn)展

      2013-08-15 00:48:58黃豪達(dá)綜述審校
      腫瘤基礎(chǔ)與臨床 2013年2期
      關(guān)鍵詞:細(xì)胞株靶點(diǎn)敏感性

      黃豪達(dá) 綜述,趙 健 審校

      (廣州醫(yī)學(xué)院附屬腫瘤醫(yī)院肺腫瘤科,廣東廣州 510019)

      RNAi與順鉑腫瘤耐藥研究進(jìn)展

      黃豪達(dá) 綜述,趙 健 審校

      (廣州醫(yī)學(xué)院附屬腫瘤醫(yī)院肺腫瘤科,廣東廣州 510019)

      RNAi;順鉑;耐藥;腫瘤

      順鉑是一種以二價(jià)鉑與2個(gè)氯原子和2個(gè)氨分子結(jié)合的重金屬絡(luò)合物,自1978年第1次由FDA批準(zhǔn)用于治療睪丸癌和膀胱癌以來(lái),已經(jīng)應(yīng)用于許多實(shí)體腫瘤的治療,但腫瘤對(duì)順鉑耐藥性的產(chǎn)生嚴(yán)重影響了其療效[1]。雖然目前已經(jīng)研發(fā)出了第3代的鉑類(lèi)藥物,但順鉑仍然是鉑類(lèi)藥物中應(yīng)用最廣、最有效的抗腫瘤藥物。因此探討腫瘤對(duì)順鉑耐藥機(jī)制是克服耐藥,提高療效的關(guān)鍵。近年來(lái)RNA干擾技術(shù)(RNA interference,RNAi)已應(yīng)用于表觀遺傳學(xué)領(lǐng)域的研究[2],利用RNAi研究順鉑耐藥的分子機(jī)制及探討逆轉(zhuǎn)腫瘤細(xì)胞順鉑耐藥的方法也隨之成為研究的熱點(diǎn),本文作者對(duì)RNAi與腫瘤順鉑耐藥的最新研究進(jìn)行綜述。

      1 RNAi的作用原理

      RNAi是同源性雙鏈RNA誘發(fā)的序列特異性轉(zhuǎn)錄后基因沉默現(xiàn)象,其可以通過(guò)與靶mRNA特異性結(jié)合,從而使mRNA發(fā)生降解而抑制相應(yīng)蛋白的表達(dá)。在起始階段,雙鏈RNA通過(guò)細(xì)胞膜進(jìn)入細(xì)胞質(zhì)中,隨后被細(xì)胞質(zhì)中的Dicer酶的Ⅲ型核糖核酸酶切割成21~23個(gè)堿基;3’端帶有2~3核苷酸末端突出的雙鏈RNA分子,這種小的雙鏈RNA分子被稱為小干擾RNA(small interfering RNA,siRNA)[3-4]。siRNA 同Argonaute 2等一些蛋白酶結(jié)合形成大約500 000個(gè)bp的復(fù)合物,稱為RNA介導(dǎo)的沉默復(fù)合體(RNA-induced silencing complex,RISC),從功能上分析 RISC應(yīng)包括解旋酶和1個(gè)核酸內(nèi)切酶Slicer。解旋酶在ATP供能情況下將siRNA的雙鏈解開(kāi),正義鏈從RISC中釋放出來(lái),此時(shí),RISC處于激活狀態(tài)[5]?;罨腞ISC通過(guò)堿基配對(duì)與靶mRNA結(jié)合,而后mRNA分子斷裂,斷裂的mRNA分子在核糖核酸酶的作用下被降解。新產(chǎn)生的siRNA片斷可再次形成RISC,繼續(xù)降解mRNA,從而產(chǎn)生高效抑制基因表達(dá)的效果。

      2 順鉑的抗腫瘤作用及耐藥機(jī)制

      2.1 順鉑的抗腫瘤作用 順鉑本身是一種中性的、正方形Pt(CN)配合物,含有2個(gè)氯離子配體位于順位,這種結(jié)構(gòu)在血漿中及細(xì)胞外具有穩(wěn)定性。當(dāng)順鉑進(jìn)入細(xì)胞內(nèi),由于細(xì)胞內(nèi)高濃度的氯離子,會(huì)產(chǎn)生一系列的效應(yīng),使順位的氯離子自發(fā)地為水分子所替代,形成具有親水性的正電子化合物,并易于與許多細(xì)胞質(zhì)基質(zhì)相結(jié)合,特別是內(nèi)生的親核物質(zhì),如谷胱甘肽、蛋氨酸、金屬硫蛋白等形成蛋白質(zhì)、DNA、RNA等的加合物[6]。水合的順鉑易于與鳥(niǎo)嘌呤堿基上的N7上的N結(jié)合,也可與胞嘧啶及腺嘌呤結(jié)合,引起DNA鏈間或鏈內(nèi)交聯(lián),形成將近 65% 的 1,2—d(GpG),25% 的 1,2—d(ApG),5% ~10%的 1,3—d(GpNpG)的鏈內(nèi)交聯(lián),還有很少一部分形成鏈間交聯(lián)和單功能加合物[7]。隨著對(duì)順鉑作用機(jī)制研究的深入,人們發(fā)現(xiàn):1)只有少于1%的細(xì)胞內(nèi)順鉑會(huì)與核DNA結(jié)合[8];2)在無(wú)細(xì)胞核細(xì)胞中,順鉑也產(chǎn)生明顯的細(xì)胞毒效應(yīng)[9]。由此推測(cè),順鉑的抗腫瘤效應(yīng)可能是通過(guò)DNA損傷和線粒體的凋亡來(lái)共同實(shí)現(xiàn)的。

      2.2 順鉑的耐藥機(jī)制 順鉑通過(guò)復(fù)雜的分子機(jī)制發(fā)揮其抗腫瘤的作用,主要包括DNA損傷及線粒體的凋亡。但是順鉑耐藥最終導(dǎo)致全身化療的失敗,細(xì)胞對(duì)順鉑的解毒作用可能發(fā)生在幾個(gè)階段:1)順鉑與DNA結(jié)合之前(靶點(diǎn)結(jié)合前階段);2)出現(xiàn)DNA加合物時(shí)(靶點(diǎn)結(jié)合中階段);3)順鉑與DNA結(jié)合后發(fā)揮致凋亡作用時(shí)(靶點(diǎn)結(jié)合后階段);4)與順鉑致細(xì)胞凋亡作用無(wú)直接關(guān)聯(lián)的分子信號(hào)通路(非靶點(diǎn)作用階段)。細(xì)胞對(duì)順鉑的解毒可能是一個(gè)或同時(shí)有數(shù)個(gè)因素在發(fā)揮作用,以致腫瘤細(xì)胞逃逸順鉑的殺傷作用。

      3 RNAi與順鉑腫瘤耐藥的研究

      3.1 RNAi與靶點(diǎn)結(jié)合前階段的研究 細(xì)胞在順鉑與DNA結(jié)合前對(duì)順鉑的解毒作用,主要是降低細(xì)胞內(nèi)順鉑的藥物濃度。銅轉(zhuǎn)運(yùn)蛋白1(copper transporter 1,CTR1)是一個(gè)維持細(xì)胞銅代謝平衡的跨膜蛋白,研究[10]發(fā)現(xiàn)CTR1在維持細(xì)胞內(nèi)順鉑的濃度也具有重要作用,CTR1是研究酵母菌的時(shí)候被發(fā)現(xiàn)的,在敲除酵母菌CTR1基因后,酵母菌對(duì)順鉑的耐藥性增加,并且是由于藥物積聚濃度減少所導(dǎo)致的[11]。近來(lái),CTR2也被發(fā)現(xiàn)與順鉑的耐藥具有密切的關(guān)系,Blair等[12]利用慢病毒載體敲除了具有CTR1+和CTR1-的一對(duì)鼠親本胚胎纖維原細(xì)胞的CTR2基因,發(fā)現(xiàn)在敲除CTR2基因后,順鉑對(duì)2種細(xì)胞的細(xì)胞毒性增加,細(xì)胞內(nèi)順鉑的濃度也增加,證明了CTR2具有與CTR1相反的功能,即CTR2能將細(xì)胞內(nèi)順鉑泵出細(xì)胞外,從而減弱順鉑的細(xì)胞毒性。ATP7A、ATP7B也屬于CTR家族成員,與CTR1共同維持細(xì)胞內(nèi)銅離子的平衡,其也參與了順鉑的耐藥[13]。Li等[14]利用 RNAi技術(shù)敲除了人肺癌細(xì)胞A549的順鉑耐藥細(xì)胞株的ATP7A基因,能夠部分逆轉(zhuǎn) A549對(duì)順鉑的耐藥,證明針對(duì)ATP7A基因的治療,可作為逆轉(zhuǎn)順鉑耐藥的一個(gè)方案。ATP結(jié)合盒式蛋白是一類(lèi)ATP驅(qū)動(dòng)泵,通過(guò)將順鉑泵出細(xì)胞外而介導(dǎo)順鉑的耐藥[15],其中MRP2可能是該家族中介導(dǎo)順鉑外流從而導(dǎo)致順鉑耐藥的主要成員,MRP2的表達(dá)水平可能可用于預(yù)測(cè)腫瘤患者對(duì)順鉑的療效[16-17]。Materna 等[18]則首次利用 RNAi技術(shù)設(shè)計(jì)靶向MRP2的siRNA,敲除人卵巢腫瘤耐順鉑細(xì)胞A2780 RCIS的MRP2基因,成功證明MRP2基因敲除后A2780 RCIS細(xì)胞重新獲得對(duì)順鉑的敏感性。

      3.2 RNAi與靶點(diǎn)結(jié)合中階段的研究 順鉑的抗腫瘤效應(yīng)很大程度是通過(guò)形成DNA鏈間或鏈內(nèi)交聯(lián)或形成DNA與蛋白質(zhì)的交聯(lián),抑制DNA復(fù)制和轉(zhuǎn)錄,導(dǎo)致DNA斷裂或誤碼,從而抑制細(xì)胞有絲分裂。而在順鉑耐藥腫瘤細(xì)胞,由于核苷酸切除修復(fù)[19]及跨損傷修復(fù)[20]等的參與,使得順鉑對(duì)腫瘤細(xì)胞DNA及RNA的攻擊失效。在核苷酸切除修復(fù)系統(tǒng)中,尤為重要的一個(gè)基因-人切除修復(fù)交叉互補(bǔ)基因1(human excision repair cross-complementing gene 1,ERCC1),已經(jīng)有許多證據(jù)證明,ERCC1與腫瘤患者的預(yù)后及對(duì)順鉑的治療效果相關(guān)[21-22],在細(xì)胞水平也已經(jīng)證明在敲除ERCC1的細(xì)胞對(duì)順鉑的敏感性增加[23]。另一參與核苷酸切除修復(fù)的蛋白著色性干皮病基因互補(bǔ)組A(XPA),XPA參與早期DNA損傷的識(shí)別,XPA的谷氨酸殘基的延伸對(duì)接和ERCC1是必須的,XPA-ERCC1復(fù)合體能在受損部位的5’端切斷DNA單鏈,從而在核苷酸切除修復(fù)中發(fā)揮重要的作用,Arora等[24]設(shè)計(jì)靶向XPA-ERCC1的 siRNA,證明敲除 XPA-ERCC1后能夠減少腫瘤細(xì)胞DNA的損傷修復(fù)并逆轉(zhuǎn)順鉑的耐藥??鐡p傷修復(fù)是指當(dāng)DNA鏈在復(fù)制過(guò)程中遇到損傷而使復(fù)制停頓時(shí),機(jī)體啟動(dòng)跨損傷修復(fù)系統(tǒng)以忽略存在的損傷,繼續(xù)進(jìn)行DNA復(fù)制,然而付出的代價(jià)則是因此而產(chǎn)生的突變。REV3L定位于染色體6q21,是人基因組中與釀酒酵母菌Rev3同源的基因,其能與REV7共同構(gòu)成參與易誤性跨損傷修復(fù)的一個(gè)主要聚合酶 polζ,Wang等[25]的研究發(fā)現(xiàn),在腦膠質(zhì)瘤細(xì)胞中,順鉑能誘導(dǎo)膠質(zhì)瘤細(xì)胞的REV3LmRNA水平的升高,高表達(dá)細(xì)胞的REV3L能增強(qiáng)細(xì)胞對(duì)順鉑的耐藥,利用RNAi技術(shù)敲除REV3L,則能增加細(xì)胞對(duì)順鉑的敏感性,表明REV3L可能在順鉑耐藥中扮演相當(dāng)重要的角色。Polζ在執(zhí)行跨損傷修復(fù)的功能時(shí),需要有REV1的參與才能完成,REV1具有cDMP轉(zhuǎn)移酶活性,通過(guò)在新生鏈上無(wú)堿基位置插入cDMP來(lái)啟動(dòng)polζ的跨損傷修復(fù)。Okuda等[26]設(shè)計(jì)靶向 REV1的shRNA敲除卵巢癌細(xì)胞株2008的REV1基因,敲除后的卵巢癌細(xì)胞2008-shREV1-3.3比其親本細(xì)胞株對(duì)順鉑的敏感性高出1.5倍。與Wang等[25]的研究結(jié)果類(lèi)似,順鉑也誘導(dǎo)卵巢癌細(xì)胞株2008的REV1蛋白表達(dá)增高,這也說(shuō)明了跨損傷修復(fù)在腫瘤細(xì)胞對(duì)順鉑產(chǎn)生耐藥中發(fā)揮著重要的作用。

      3.3 RNAi與靶點(diǎn)結(jié)合后階段的研究 細(xì)胞自我凋亡信號(hào)通路的缺失使腫瘤細(xì)胞對(duì)順鉑發(fā)生耐藥。當(dāng)機(jī)體細(xì)胞的遺傳物質(zhì)發(fā)生不可逆的損傷時(shí),通常在細(xì)胞內(nèi)會(huì)有一些類(lèi)似“檢查站”的蛋白來(lái)發(fā)現(xiàn)這些損傷,并誘導(dǎo)細(xì)胞的自我凋亡,從而避免錯(cuò)誤的復(fù)制。P53就是一個(gè)執(zhí)行這種自我凋亡功能的重要基因。有P53缺陷的細(xì)胞不能執(zhí)行自我凋亡程序,甚至能在不利的條件下繼續(xù)分裂。但是,在一些野生型P53的腫瘤中,則有其他的因素改變阻斷了P53的功能,以促進(jìn)腫瘤細(xì)胞繼續(xù)生長(zhǎng),例如MDM2基因的擴(kuò)增或MDM2蛋白的過(guò)表達(dá)[27]。MDM2在體內(nèi)最重要的功能是抑制野生型P53的激活轉(zhuǎn)錄功能和抗腫瘤活性,其與P53結(jié)合使后者泛素化后被蛋白酶體降解并清除[27]。在非小細(xì)胞肺癌、結(jié)直腸癌組織中都發(fā)現(xiàn) MDM2的擴(kuò)增[28-29]。Yu 等[30]敲除結(jié)腸癌細(xì)胞 LoVo的 MDM2 基因后,發(fā)現(xiàn)細(xì)胞的凋亡增加,而且對(duì)順鉑的敏感性也增強(qiáng),提示MDM2的擴(kuò)增可能與順鉑的耐藥有密切的聯(lián)系。近來(lái)還發(fā)現(xiàn)另一個(gè)與MDM2關(guān)系密切的基因,也與致DNA損傷化療藥物的耐藥有關(guān)。NEDD8是一種類(lèi)泛素的修飾蛋白,其能夠調(diào)控MDM2的表達(dá),從而激活P53的功能[31],NEDP1則是NEDD8的特異性前體加工酶,能將NEDD8分子從底物上解離出來(lái)重新進(jìn)入類(lèi)泛素化循環(huán)[32]。Watson 等[33]的研究顯示,在乳腺癌細(xì)胞 MCF-7中,敲除 NEDP1基因后,能增加MCF-7對(duì)多西他賽的耐藥性,并且在具有野生型P53的HeLa細(xì)胞和腎癌786-0細(xì)胞中也有相似的結(jié)果。細(xì)胞凋亡信號(hào)通路上某個(gè)基因表達(dá)的改變,也會(huì)導(dǎo)致細(xì)胞在靶點(diǎn)結(jié)合后階段對(duì)順鉑耐藥,Galetin-3就是一個(gè)具有調(diào)控細(xì)胞生長(zhǎng)功能的基因,其廣泛表達(dá)于正常組織和腫瘤組織中,并且與腫瘤的發(fā)生、發(fā)展、轉(zhuǎn)移等有關(guān)[34]。Wang 等[35]利用 RNAi技術(shù)證實(shí) Galetin-3參與前列腺癌細(xì)胞對(duì)順鉑的耐藥,在對(duì)化療藥物不敏感的 PC3細(xì)胞株中敲除 Galetin-3基因后,給予50 μmol·L-1順鉑時(shí) caspase-3、caspase-9 的激活均增加,線粒體溶解增加,細(xì)胞質(zhì)中細(xì)胞色素C的含量比對(duì)照組細(xì)胞高3.8倍,增加了PC3細(xì)胞對(duì)順鉑的敏感性。此外,對(duì)于在細(xì)胞凋亡信號(hào)通路中發(fā)揮重要作用的基因,利用RNAi技術(shù)敲除后能增加腫瘤細(xì)胞對(duì)順鉑的敏感性,例如 Bcl-2 、survivin 、XIAP 基因[36-38]。

      3.4 RNAi與非靶點(diǎn)作用階段的研究 腫瘤細(xì)胞對(duì)順鉑的耐藥,有時(shí)也可與順鉑致細(xì)胞凋亡信號(hào)通路無(wú)直接關(guān)聯(lián),這種耐藥的機(jī)制既與基因的損傷修復(fù)無(wú)關(guān),也與順鉑對(duì)DNA損傷后監(jiān)管缺失無(wú)關(guān),這里總結(jié)為非靶點(diǎn)作用階段。Beclin1基因也稱BECN1基因,是哺乳動(dòng)物參與自噬的特異性基因,是編碼自噬體的主要基因,在維護(hù)細(xì)胞內(nèi)環(huán)境穩(wěn)態(tài)方面起重要作用,并且是完整細(xì)胞器和大分子蛋白降解的主要途徑[39]。Beclin1 與多種化療藥物的耐藥有關(guān)[40-41],如 5-Fu、依瑪替尼,也有報(bào)道認(rèn)為Beclin1是一個(gè)新的候選抑癌基因,75%卵巢癌、50%乳腺癌以及40%前列腺癌組織中存在 Beclin1 基因的缺失性突變[42]。Kang等[43]在人口腔鱗癌細(xì)胞株Hep-2中,利用RNAi技術(shù)探討B(tài)eclin1基因的功能,發(fā)現(xiàn)敲除Beclin1基因后可以增加Hep-2細(xì)胞對(duì)順鉑的敏感性,進(jìn)一步的研究表明,Beclin1敲除后對(duì)順鉑的敏感性增加是通過(guò)激活 caspase-3和caspase-9實(shí)現(xiàn)的。熱休克蛋白27(heat shock protein 27,HSP27)和HSP70被認(rèn)為是致癌基因并且與腫瘤的化療耐藥有關(guān)[44],在順鉑耐藥的卵巢癌細(xì)胞中HSP27 高表達(dá)[45]。Zhang等[46]在鼠 L929 細(xì)胞株中轉(zhuǎn)染人HSP27基因,在Hela細(xì)胞中敲除HSP27基因后,發(fā)現(xiàn)轉(zhuǎn)染了人HSP27基因的鼠L929細(xì)胞對(duì)順鉑的敏感性降低,而敲除了HSP27基因的Hela細(xì)胞對(duì)順鉑的敏感性增加,ASK1/p38的激活增加、Akt激活減少?;钚匝跏亲匀唤缙毡榇嬖诘囊环N具有很高生物活性的氧分子,也是致細(xì)胞凋亡中最常見(jiàn)的生物活性因子,活性氧產(chǎn)生所致的氧化還原失衡是細(xì)胞凋亡發(fā)生的共同中心環(huán)節(jié)。順鉑能夠增加多種腫瘤細(xì)胞中活性氧的水平而致細(xì)胞凋亡[47]。Mirk基因與減少細(xì)胞內(nèi)活性氧水平而增加胰腺癌細(xì)胞的存活有關(guān)[48]。Mirk在正常組織中的表達(dá)量非常少,而在腫瘤組織中的表達(dá)量則明顯升高[49]。Hu等[50]發(fā)現(xiàn)敲除了 Mirk基因的卵巢癌SKOV3和TOV21G細(xì)胞對(duì)順鉑的敏感性增加,細(xì)胞中PARP和caspase-3表達(dá)水平增加,在敲除Mirk基因后的細(xì)胞中加入抗氧化劑-N-乙酰半胱氨酸,發(fā)現(xiàn)PARP和caspase-3水平有所下降,在給予順鉑治療、未敲除Mirk基因組,加入N-乙酰半胱氨酸也同樣能降低PARP和caspase-3的水平。Mirk并不是一個(gè)必須的基因,在敲除Mirk的小鼠沒(méi)有出現(xiàn)明顯的表型[51],因此Mirk極有可能作為逆轉(zhuǎn)順鉑耐藥的一個(gè)治療靶點(diǎn)。

      4 展望

      順鉑作為許多實(shí)體腫瘤一線化療的基礎(chǔ)用藥,解決其耐藥問(wèn)題顯得尤為重要,近年來(lái)利用RNAi技術(shù)對(duì)順鉑耐藥的機(jī)制及逆轉(zhuǎn)順鉑耐藥的研究在不斷深入,應(yīng)用RNAi沉默某個(gè)基因逆轉(zhuǎn)順鉑的耐藥已經(jīng)取得新的進(jìn)展,但將RNAi技術(shù)應(yīng)用于臨床仍面臨許多的難題[52]。隨著新的RNAi技術(shù)的出現(xiàn)和越來(lái)越完善的轉(zhuǎn)運(yùn)載體的設(shè)計(jì)[53-54],相信該技術(shù)最終可成為腫瘤治療的一種強(qiáng)有力的手段。

      [1] Giaccone G.Clinical perspectives on platinum resistance[J].Drugs,2000,59 Suppl 4:9 -17.

      [2] Fire A,Xu S,Montgomery MK,etal.Potentand specific genetic interference by double-stranded RNA in Caenorhabditis elegans[J].Nature,1998,391(6669):806 -811.

      [3] Elbashir SM,LendeckelW,Tuschl T.RNA interference ismediated by 21-and 22-nucleotide RNAs[J].Genes Dev,2001,15(2):188-200.

      [4] Zamore PD,Tuschl T,Sharp PA,et al.RNAi:double-stranded RNA directs the ATP-dependent cleavage ofmRNA at21 to 23 nucleotide intervals[J].Cell,2000,101(1):25 -33.

      [5] Sijen T,F(xiàn)leenor J,Simmer F,et al.On the role of RNA amplification in dsRNA-triggered gene silencing[J].Cell,2001,107(4):465-476.

      [6] Timerbaev AR,Hartinger CG,Aleksenko SS,et al.Interactions of antitumormetallodrugswith serum proteins:advances in characterization usingmodern analyticalmethodology[J].Chem Rev,2006,106(6):2224-2248.

      [7] Kelland LR,Abel G,McKeage MJ,et al.Preclinical antitumor evaluation of bis-acetato-ammine-dichloro-cyclohexylamine platinum(IV):an orally active platinum drug[J].Cancer Res,1993,53(11):2581-2586

      [8] Gonzalez VM,F(xiàn)uertes MA,Alonso C,et al.Is cisplatin-induced cell death always produced by apoptosis[J].Mol Pharmacol,2001,59(4):657-563.

      [9] Berndtsson M,H?gg M,Panaretakis T,et al.Acute apoptosis by cisplatin requires induction of reactive oxygen species but is not associated with damage to nuclear DNA[J].Int JCancer,2007,120(1):175-180.

      [10] Ishida S,Lee J,Thiele DJ,et al.Uptake of the anticancer drug cisplatin mediated by the copper transporter Ctr1 in yeast and mammals[J].Proc Natl Acad Sci U S A,2002,99(22):14298-14302.

      [11] Ishida S,Lee J,Thiele DJ,et al.Uptake of the anticancer drug cisplatin mediated by the copper transporter Ctr1 in yeast and mammals[J].Proc Natl Acad Sci U S A,2002,99(22):14298-14302.

      [12] Blair BG,Larson CA,Safaei R,et al.Copper transporter 2 regulates the cellular accumulation and cytotoxicity of Cisplatin and Carboplatin[J].Clin Cancer Res,2009,15(13):4312 -4321.

      [13] Samimi G,Safaei R,Katano K,et al.Increased expression of the copper efflux transporter ATP7A mediates resistance to cisplatin,carboplatin,and oxaliplatin in ovarian cancer cells[J].Clin Cancer Res,2004,10(14):4661 -4669.

      [14] Li ZH,Qiu MZ,Zeng ZL,et al.Copper-transporting P-type adenosine triphosphatase(ATP7A)is associated with platinum-resistance in non-small cell lung cancer(NSCLC)[J].J Transl Med,2012,10:21.

      [15] Borst P,Evers R,Kool M,et al.A family of drug transporters:the multidrug resistance-associated proteins[J].J Natl Cancer Inst,2000,92(16):1295 -1302.

      [16] Korita PV,Wakai T,Shirai Y,et al.Multidrug resistance-associated protein 2 determines the efficacy of cisplatin in patientswith hepatocellular carcinoma[J].Oncol Rep,2010,23(4):965 -972.

      [17] YamasakiM,Makino T,Masuzawa T,etal.Role ofmultidrug resistance protein 2(MRP2)in chemoresistance and clinicaloutcome in oesophageal squamous cell carcinoma[J].Br JCancer,2011,104(4):707-713.

      [18] Materna V,Stege A,Surowiak P,et al.RNA interference-triggered reversal of ABCC2-dependent cisplatin resistance in human cancer cells[J].Biochem Biophys Res Commun,2006,348(1):153-157.

      [19] Wood RD,Araújo SJ,Ariza RR,et al.DNA damage recognition and nucleotide excision repair in mammalian cells[J].Cold Spring Harb Symp Quant Biol,2000,65:173 -182.

      [20] Masutani C,Kusumoto R,Iwai S,et al.Mechanisms of accurate translesion synthesis by human DNA polymerase eta[J].EMBO J,2000,19(12):3100 -3109.

      [21] Bellmunt J,Paz-Ares L,Cuello M,et al.Gene expression of ERCC1 as a novel prognostic marker in advanced bladder cancer patients receiving cisplatin-based chemotherapy[J].Ann Oncol,2007,18(3):522-528.

      [22] Olaussen KA,Dunant A,F(xiàn)ouret P,et al.DNA repair by ERCC1 in non-small-cell lung cancer and cisplatin-based adjuvant chemotherapy[J].N Engl JMed,2006,355(10):983 -991.

      [23] Chang IY,Kim MH,Kim HB,et al.Small interfering RNA-induced suppression of ERCC1 enhances sensitivity of human cancer cells to cisplatin[J].Biochem Biophys Res Commun,2005,327(1):225 -233.

      [24] Arora S,Kothandapani A,Tillison K,et al.Downregulation of XPFERCC1 enhances cisplatin efficacy in cancer cells[J].DNA Repair(Amst),2010,9(7):745 -753.

      [25] Wang H,Zhang SY,Wang S,et al.REV3L confers chemoresistance to cisplatin in human gliomas:the potential of its RNAi for synergistic therapy[J].Neuro Oncol,2009,11(6):790 -802.

      [26] Okuda T,Lin X,Trang J,et al.Suppression of hREV1 expression reduces the rate at which human ovarian carcinoma cells acquire resistance to cisplatin[J].Mol Pharmacol,2005,67(6):1852-1860.

      [27] Freedman DA,Wu L,Levine AJ.Functions of the MDM2 oncoprotein [J].Cell Mol Life Sci,1999,55(1):96 - 107.

      [28] Higashiyama M,Doi O,Kodama K,et al.MDM2 gene amplification and expression in non-small-cell lung cancer:immunohistochemical expression of its protein is a favourable prognosticmarker in patients without p53 protein accumulation[J].Br JCancer,1997,75(9):1302-1308.

      [29] Abdel-Fattah G,Yoffe B,Krishnan B,et al.MDM2/p53 protein expression in the development of colorectal adenocarcinoma[J].J Gastrointest Surg,2000,4(1):109 -114.

      [30] Yu Y,Sun P,Sun LC,et al.Downregulation of MDM2 expression by RNAi inhibits LoVo human colorectal adenocarcinoma cells growth and the treatment of LoVo cells with mdm2siRNA3 enhances the sensitivity to cisplatin[J].Biochem Biophys Res Commun,2006,339(1):71-78.

      [31] Xirodimas DP,Saville MK,Bourdon JC,et al.Mdm2-mediated NEDD8 conjugation of p53 inhibits its transcriptional activity[J].Cell,2004,118(1):83 -97.

      [32] Mendoza HM,Shen LN,Botting C,etal.NEDP1,a highly conserved cysteine protease that deNEDDylates Cullins[J].J Biol Chem,2003,278(28):25637 -25643.

      [33] Watson IR,Li BK,Roche O,et al.Chemotherapy induces NEDP1-mediated destabilization of MDM2[J].Oncogene,2010,29(2):297-304.

      [34] O'Driscoll L,Linehan R,Liang YH,et al.Galectin-3 expression alters adhesion,motility and invasion in a lung cell line(DLKP),in vitro[J].Anticancer Res,2002,22(6A):3117 -3125.

      [35] Wang Y,Nangia-Makker P,Balan V,et al.Calpain activation through galectin-3 inhibition sensitizes prostate cancer cells to cisplatin treatment[J].Cell Death Dis,2010,1:e101.

      [36] Huang Z,Lei X,Zhong M,et al.Bcl-2 small interfering RNA sensitizes cisplatin-resistant human lung adenocarcinoma A549/DDP cell to cisplatin and diallyl disulfide[J].Acta Biochim Biophys Sin(Shanghai),2007,39(11):835 -843.

      [37] Liu JL,Wang Y,Jiang J,et al.Inhibition of survivin expression and mechanisms of reversing drug-resistance of human lung adenocarcinoma cells by siRNA[J].Chin Med J(Engl),2010,123(20):2901-2907.

      [38] Ma JJ,Chen BL,Xin XY,et al.XIAP gene downregulation by small interfering RNA inhibits proliferation,induces apoptosis,and reverses the cisplatin resistance of ovarian carcinoma[J].Eur JObstet Gynecol Reprod Biol,2009,146(2):222 -226.

      [39] Li J,Ni M,Lee B,et al.The unfolded protein response regulator GRP78/BiP is required for endoplasmic reticulum integrity and stress-induced autophagy in mammalian cells[J].Cell Death Differ,2008,15(9):1460 -1471.

      [40] Li J,Hou N,F(xiàn)aried A,et al.Inhibition of autophagy augments 5-fluorouracil chemotherapy in human colon cancer in vitro and in vivomodel[J].Eur JCancer,2010,46(10):1900 -1909.

      [41] Shingu T,F(xiàn)ujiwara K,B?gler O,et al.Inhibition of autophagy at a late stage enhances imatinib-induced cytotoxicity in human malignant glioma cells[J].Int JCancer,2009,124(5):1060 -1071.

      [42] Aita VM,Liang XH,Murty VV,et al.Cloning and genomic organization of beclin 1,a candidate tumor suppressor gene on chromosome 17q21[J].Genomics,1999,59(1):59 -65.

      [43] Kang R,Wang ZH,Wang BQ,etal.Inhibition ofautophagy-potentiated chemosensitivity to cisplatin in laryngeal cancer Hep-2 cells[J].Am JOtolaryngol,2012,33(6):678 - 684.

      [44] Garrido C,Schmitt E,CandéC,etal.HSP27 and HSP70:potentially oncogenic apoptosis inhibitors[J].Cell Cycle,2003,2(6):579-584.

      [45] Yamamoto K,Okamoto A,Isonishi S,et al.Heat shock protein 27 was up-regulated in cisplatin resistant human ovarian tumor cell line and associated with the cisplatin resistance [J].Cancer Lett,2001,168(2):173 -181.

      [46] Zhang Y,Shen X.Heat shock protein 27 protects L929 cells from cisplatin-induced apoptosis by enhancing Aktactivation and abating suppression of thioredoxin reductase activity[J].Clin Cancer Res,2007,13(10):2855 -2864.

      [47] Miyajima A,Nakashima J,Yoshioka K,et al.Role of reactive oxygen species in cis-dichlorodiammineplatinum-induced cytotoxicity on bladder cancer cells[J].Br JCancer,1997,76(2):206 - 210.

      [48] Deng X,Ewton DZ,F(xiàn)riedman E.Mirk/Dyrk1Bmaintains the viability of quiescent pancreatic cancer cells by reducing levels of reactive oxygen species[J].Cancer Res,2009,69(8):3317 -3324

      [49] Deng X,Ewton DZ,Li S,et al.The kinase Mirk/Dyrk1B mediates cell survival in pancreatic ductal adenocarcinoma[J].Cancer Res,2006,66(8):4149 -4158.

      [50] Hu J,F(xiàn)riedman E.Depletingmirk kinase increases cisplatin toxicity in ovarian cancer cells[J].Genes Cancer,2010,1(8):803 - 811.

      [51] Leder S,Czajkowska H,Maenz B,etal.Alternative splicing variants of dual specificity tyrosine phosphorylated and regulated kinase 1B exhibit distinct patterns of expression and functional properties[J].Biochem J,2003,372(Pt 3):881 - 888.

      [52] Davis ME,Zuckerman JE,Choi CH,et al.Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles[J].Nature,2010,464(7291):1067 -1070.

      [53] Dickerson EB,Blackburn WH,Smith MH,et al.Chemosensitization of cancer cells by siRNA using targeted nanogel delivery[J].BMC Cancer,2010,10:10.

      [54] Lam JK,Liang W,Chan HK.Pulmonary delivery of therapeutic siRNA[J].Adv Drug Deliv Rev,2012,64(1):1 -15.

      10.3969/j.issn.1673-5412.2013.02.032

      R730.2;R730.53

      A

      1673-5412(2013)02-0181-05

      黃豪達(dá)(1985-),男,碩士在讀,主要從事肺癌綜合治療方面的研究。E-mail:hhd_wong@163.com

      趙健(1963-),男,博士,主任醫(yī)師,主要從事肺癌綜合治療方面的研究。E-mail:zj_hjh@163.com

      2012-10-17)

      猜你喜歡
      細(xì)胞株靶點(diǎn)敏感性
      維生素D受體或是糖尿病治療的新靶點(diǎn)
      中老年保健(2021年3期)2021-12-03 02:32:25
      腫瘤免疫治療發(fā)現(xiàn)新潛在靶點(diǎn)
      釔對(duì)Mg-Zn-Y-Zr合金熱裂敏感性影響
      AH70DB鋼焊接熱影響區(qū)組織及其冷裂敏感性
      焊接(2016年1期)2016-02-27 12:55:37
      如何培養(yǎng)和提高新聞敏感性
      新聞傳播(2015年8期)2015-07-18 11:08:24
      心力衰竭的分子重構(gòu)機(jī)制及其潛在的治療靶點(diǎn)
      穩(wěn)定敲低MYH10基因細(xì)胞株的建立
      Rab27A和Rab27B在4種不同人肝癌細(xì)胞株中的表達(dá)
      穩(wěn)定抑制PAK2蛋白表達(dá)的HUH—7細(xì)胞株的建立
      微小RNA與食管癌放射敏感性的相關(guān)研究
      华宁县| 利川市| 英吉沙县| 壶关县| 巴里| 洛浦县| 福鼎市| 务川| 赤峰市| 南京市| 宁乡县| 闽清县| 和龙市| 阿巴嘎旗| 维西| 页游| 麦盖提县| 永川市| 衢州市| 汤阴县| 西乡县| 孙吴县| 页游| 响水县| 金平| 石家庄市| 温宿县| 南和县| 东乡族自治县| 习水县| 古丈县| 江口县| 松潘县| 买车| 海盐县| 化州市| 嵊州市| 准格尔旗| 建始县| 辰溪县| 东兰县|