• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      一類半線性橢圓型耦合方程組全局解的存在性和不存在性

      2013-10-16 07:21:20
      關鍵詞:橢圓型項為方程組

      高 黎

      (中國海洋大學數(shù)學科學學院,山東 青島266100)

      本文考慮一類半線性橢圓型耦合方程組

      其中:N≥3;p(x)和q(x)是RN上的非負連續(xù)函數(shù);fi和gi(i=1,2)是[0,∞)上單調不減的連續(xù)函數(shù),且滿足如下條件:

      方程組(1)描述許多物理現(xiàn)象,比如在非線性光學的應用中雙折射光纖、光折變介質中脈沖的傳播等等[1-2]。由于非線性橢圓型方程(組)中局部解的存在性不一定能夠保證全局解的存在性,從而使全局解的存在性問題成為國內外許多學者關注的熱點。

      對于單個方程的情形,Keller[3]和 Osserman[4]于1957年首次提出方程Δu=f(u)在正則有界區(qū)域Ω下,當f滿足(H1)時,存在大解的充要條件為

      對于方程組而言,當方程組(1)不含加權系數(shù)p和q,且f2=g1≡1,f1(v)=vα,g2(u)=uβ,α>0,β>0時,文獻[8]證明了,當αβ>1時,方程組(1)在有界區(qū)域Ω下存在大解。當f1(v)=vα1,f2(u)=uα2,g1(v)=vβ1,g2(u)=uβ2,其中α1>0,β2>0,α2>1,β1>1時,文獻[9]證明了,當α1<β1-1,β2<α2-1時,方程組(1)在有界區(qū)域Ω下存在大解。當方程組(1)帶加權系數(shù)p(x)=p(|x|)和q(x)=q(|x|),且f2=g1≡1,f1(v)=vα,g2(u)=uβ,0<α≤β<1時,文獻[10]研究了在整個RN空間上徑向全局解的存在性問題,證明了當函數(shù)函數(shù)p,q∈C(RN),滿足∫∞0tp(t)dt時,方程組(1)存在徑向有界全局解;而 當 p,q ∈ C(RN),滿 足)時,方程組(1存在徑向整大解。對于一般非線性項形式的耦合方程組,文獻[11]同樣給出了方程組(1)存在徑向有界全局解和徑向整大解的充分條件,其研究結果后來被推廣到完全非線性項為變量分離形式的耦合方程組[12]。據(jù)查閱文獻發(fā)現(xiàn),大多數(shù)學者側重于對方程組徑向解的研究,僅有少數(shù)文獻涉及到方程組的非徑向解。受此啟發(fā),本文將討論帶加權系數(shù)且完全非線性項為變量分離形式的半線性橢圓型耦合方程組,首先利用上下解方法證明方程組存在非徑向有界全局解,對于徑向情形得到方程組徑向整大解的不存在性結果。

      致謝:在該論文的寫作過程中,始終得到了樸大雄教授的悉心指導,在此,謹向樸老師致以崇高的敬意和真摯的感謝。

      [1] Akhmediey N,Ankiewicz A.Partially coherent solitons on a flnite background[J].Phys Rev Lett,1999,82:2661-2664.

      [2] Menyuk C R.Pulse propagation in an elliptically birefringent Kerr medium [J].Elec J Diff Eqs,1989,2:2674-2682.

      [3] Keller J B.On the inequalityΔu=f(u)[J].Comm Pure Appl Math,1957,10:503-510.

      [4] Osserman R.On the inequalityΔu≥f(u)[J].Paciflc J Math,1957,7:1641-1647.

      [5] Cristea F,Radulescu V.Blow-up boundary solutions of semilinear elliptic problems[J].Nonlinear Anal,2002,48:521-534.

      [6] Lair A,Large solutions of semilinear elliptic equations under the Keller-Osserman condition [J].J Math Anal Appl,2007,328:1247-1254.

      [7] Ye D,Zhou F.Existence and nonexistence of entire large solutions for some semilinear elliptic equations[J].J Partial Diff Eqs,2008,21:253-262.

      [8] Garcia-Melian J,Letelier-Albornoz R,Sabina de Lis J.The solvability of an elliptic system under a singular boundary condition[J].Proc Roy Soc Edinburgh,2006,136:509-546.

      [9] Garcia-Melian J,Rossi J.Boundary blow-up solutions to elliptic systems of competitive type[J].J Diff Eqs,2004,206:156-181.

      [10] Lair A,Wood A W.Existence of entire large positive solutions of semilnear elliptic systems[J].J Diff Eqs,2000,164:380-394.

      [11] Li H,Zhang P,Zhang Z.A remark on the existence of entire positive solutions for a class of semilinear elliptic systems[J].J Math Anal Appl,2010,365:338-341.

      [12] Zhang Z.On the existence of entire positive solutions for a class of semilinear elliptic systems[J].Elec J Diff Eqs,2010,16:1-5.

      猜你喜歡
      橢圓型項為方程組
      深入學習“二元一次方程組”
      一類帶臨界指數(shù)增長的橢圓型方程組兩個正解的存在性
      勾股數(shù)的新發(fā)現(xiàn)
      《二元一次方程組》鞏固練習
      一類次臨界Bose-Einstein凝聚型方程組的漸近收斂行為和相位分離
      完形樂園趣多多
      完形樂園趣多多
      完形樂園趣多多
      一類擬線性橢圓型方程的正解
      一類完全非線性橢圓型方程組解的對稱性
      九龙县| 东平县| 从江县| 西宁市| 冕宁县| 孟津县| 太仓市| 邵阳市| 深水埗区| 汾西县| 鄂温| 昂仁县| 开封市| 马关县| 壤塘县| 淳安县| 中山市| 易门县| 北票市| 南丹县| 大兴区| 神木县| 忻州市| 永清县| 甘洛县| 含山县| 抚松县| 隆化县| 温州市| 屯昌县| 台中县| 澄城县| 安溪县| 怀宁县| 长春市| 玛多县| 安庆市| 德阳市| 天峨县| 泸州市| 商河县|