李伯英(綜述),張增強(審校)
(1.慶陽市西峰區(qū)人民醫(yī)院神經(jīng)內(nèi)科,甘肅 慶陽 745000; 2.解放軍總醫(yī)院海南分院保健科,海南 三亞 572013)
隨著人類預(yù)期壽命的延長和社會人口的老齡化,越來越多的老年人面臨罹患癡呆疾病的危險。輕度認知損害(mild cognitive impairment,MCI)是介于正常老年人和癡呆之間的一種認知功能受損狀態(tài)。MCI患者的認知能力低于同齡階段的正常老人但未到達癡呆的標準,許多MCI是臨床前期的阿爾茨海默病(Alzheimer′s disease,AD)或AD的極早期階段,每年有10%~15%的MCI患者發(fā)展成癡呆。目前MCI仍缺乏統(tǒng)一診斷標準,其診斷主要依據(jù)病史和神經(jīng)心理學(xué)檢查。隨著影像學(xué)以及計算機輔助技術(shù)、基于體素的統(tǒng)計分析、功能成像等技術(shù)的發(fā)展,使得神經(jīng)影像在MCI診斷中的作用越來越重要。
AD極早階段的病理變化存在于內(nèi)嗅皮質(zhì)和海馬,因此大部分對于MCI腦容積的研究集中于此區(qū)域。Krasuski等[1]發(fā)現(xiàn),MCI有類似AD的內(nèi)側(cè)顳葉結(jié)構(gòu)(包括海馬旁回、內(nèi)嗅皮質(zhì)、杏仁核和海馬)萎縮,Wolf等[2]的研究也顯示MCI患者雙側(cè)海馬較對照組縮小,且海馬萎縮程度與認知損害程度呈正相關(guān)。定量結(jié)構(gòu)磁共振成像(structural magnetic resonance imaging,sMRI)研究提示,輕度AD患者的內(nèi)側(cè)顳葉、扣帶回峽部和眶額區(qū)萎縮,有類似表現(xiàn)的MCI患者發(fā)展成AD的比例遠高于無萎縮的患者[3]。Rossi等[4]根據(jù)sMRI表現(xiàn)將MCI患者按照有無內(nèi)側(cè)顳葉萎縮和白質(zhì)高信號進行分組,隨訪發(fā)現(xiàn)存在內(nèi)側(cè)顳葉萎縮更易于進展為AD,白質(zhì)高信號則沒有?;隗w素形態(tài)計量法研究發(fā)現(xiàn),根據(jù)海馬萎縮程度能夠預(yù)測MCI是否向AD轉(zhuǎn)化;MCI和AD患者與健康老人的海馬萎縮方式不同,MCI和AD的萎縮出現(xiàn)在CA1亞區(qū),健康老人隨年齡增長出現(xiàn)海馬下托萎縮[5];遺忘型MCI患者的海馬萎縮與其他類型MCI及正常人有差別,但是與AD并無顯著差異[6]。以上研究顯示,內(nèi)側(cè)顳葉萎縮可能是MCI的特異表現(xiàn)并預(yù)示進展為AD的可能。Kumar等[7]持不同觀點,認為目前眾多研究都是基于就診患者群體,病例選擇會有抽樣偏倚,他們隨機抽查社區(qū)居民,篩查出224例被試者進行縱向研究,利用磁共振掃描腦室腦比率、測定皮質(zhì)萎縮、海馬和杏仁核體積、腦白質(zhì)高信號,發(fā)現(xiàn)這些指標不能作為預(yù)測MCI的特征,而抑郁及教育程度低卻有預(yù)測作用,得出這一結(jié)論可能與該研究被試者年齡偏年輕有關(guān)(60~64歲)。
2.118F-氟脫氧葡萄糖正電子發(fā)射斷層掃描18F-氟脫氧葡萄糖(18F-fluoro deoxyglucose,FDG)正電子發(fā)射斷層掃描(positron emission tomography,PET)是利用18F標記的FDG的生化特性與組織利用的葡萄糖相似,能夠在分子水平定量測定腦組織代謝改變。Chételat等[8]對17例MCI患者進行為期18個月的隨訪發(fā)現(xiàn),轉(zhuǎn)變成AD的10例MCI患者均有顳、頂葉皮質(zhì)18F-FDG吸收下降;對21例遺忘型MCI患者進行研究發(fā)現(xiàn),記憶編碼過程與經(jīng)海馬標準化部分容積效應(yīng)校正的腦葡萄糖利用率有關(guān),提取過程與扣帶回后部這種校正的腦葡萄糖利用率有關(guān),表明MCI患者存在記憶編碼和提取的神經(jīng)基礎(chǔ)部分性分離。另一項縱向研究觀察了20例MCI患者,1年后有8例發(fā)展為AD;與健康對照組比較,進展型MCI患者在靜息狀態(tài)下,海馬、額下回、顳葉中部、頂下小葉和后扣帶回的葡萄糖代謝減低,而在穩(wěn)定型MCI患者中只觀察到很少區(qū)域有代謝減低;進展型與穩(wěn)定型MCI比較,代謝降低的區(qū)域為楔前葉和后扣帶回[9]。以上研究結(jié)果提示,18F-FDG PET有助于將MCI患者分為不同的亞型,并預(yù)示將來進展為AD的可能性。將心理學(xué)任務(wù)結(jié)合PET試驗,Nishi等[10]發(fā)現(xiàn)MCI患者的右內(nèi)側(cè)顳葉、前額葉、左側(cè)頂下小葉和兩側(cè)扣帶回后部的低代謝與延遲記憶受損有關(guān),右前額葉的低代謝則與執(zhí)行功能降低有關(guān);而Walhovd等[11]發(fā)現(xiàn),MCI患者海馬代謝能夠預(yù)測情景記憶再認知測試成績。
2.218F-FDG PET探測的是葡萄糖代謝變化,不能反映AD的特征性改變——β淀粉樣蛋白(amyloid beta,Aβ)沉積。11C-6-匹茨堡化合物B(Pittsburgh compound B,PIB)可與腦內(nèi)Aβ特異性結(jié)合,從而進行定性、定量分析。Klunk等[12]最早將11C-PIB作為示蹤劑用于AD患者PET顯像,發(fā)現(xiàn)在AD患者額葉、頂葉、顳葉和枕葉等Aβ易于沉積的區(qū)域與11C-PIB結(jié)合越多。在一部分MCI患者的額葉、顳葉及后扣帶回也發(fā)現(xiàn)PIB攝取增高,這種增高預(yù)示MCI轉(zhuǎn)化為AD的概率增大[13-14]。但有人認為,11C-PIB PET診斷MCI的特異性不如AD[15]。Aβ沉積與認知之間的關(guān)系存在爭議,Chételat等[16]發(fā)現(xiàn)Aβ沉積尤其是在顳葉與情景記憶損害相關(guān);而Jack等[17-18]認為,MCI患者腦內(nèi)Aβ沉積的增加不能預(yù)示認知功能下降,也不能預(yù)示MCI向AD進展加快。11C-PIB PET觀察到的MCI患者Aβ沉積可能是AD病程中較早的代謝異常,與神經(jīng)變性的下游表現(xiàn)如神經(jīng)元破壞、皮質(zhì)萎縮及癡呆癥狀等有何聯(lián)系仍有待研究。研究MCI患者Aβ負荷與腦萎縮的關(guān)系發(fā)現(xiàn),楔前葉Aβ增加與內(nèi)側(cè)顳葉萎縮速率呈正相關(guān)[19],這增加了將11C-PIB PET用于AD早期預(yù)測的信心。
單光子發(fā)射計算機斷層顯像(single photon emission computed tomography,SPECT)可通過觀測局部腦血流(regional cerebral blood flow,rCBF)來判斷該區(qū)域腦功能狀況,以前研究發(fā)現(xiàn)AD患者認知功能的改變與腦血流的改變有密切關(guān)系[20]。以小腦為參照,AD及MCI患者扣帶回后部rCBF比率顯著下降;AD患者額葉、顳葉和頂葉的rCBF比率下降,但MCI則無此改變。據(jù)此認為,MCI后扣帶回低灌注是其向AD發(fā)展的一個高危信號;采用腦脊液tau蛋白水平與扣帶回后部rCBF的比值作為MCI向AD轉(zhuǎn)化的預(yù)測指標時,其靈敏度、特異度分別為88.5%和90.0%[21-22]。Huang等[23-24]通過2年的隨訪研究發(fā)現(xiàn),以穩(wěn)定型MCI為基線,進展型MCI的rCBF在頂葉降低,在前額葉增加,其情景記憶與視空間功能受損比穩(wěn)定型MCI嚴重,提示結(jié)合SPECT和神經(jīng)心理學(xué)測試可以預(yù)測MCI患者的轉(zhuǎn)歸。H?gh等[25]和Staffen等[26]發(fā)現(xiàn),MCI患者顳葉灌注顯著減低。Hirao等[27]對76例遺忘型MCI患者進行3年的隨訪,其中52例進展型MCI兩側(cè)海馬旁回、楔前葉后扣帶回皮質(zhì)及兩側(cè)頂葉、右側(cè)顳葉中部rCBF顯著下降,而24例穩(wěn)定型MCI只表現(xiàn)為后扣帶回和右側(cè)尾狀核的rCBF降低;進展型與穩(wěn)定型MCI比較,前者表現(xiàn)為兩側(cè)顳-頂葉和楔前葉的rCBF降低,Logistics回歸模型顯示頂下小葉、角回和楔前葉的灌注減低有重要的預(yù)測價值。其他一些研究表明扣帶回、海馬或頂葉等區(qū)域灌注對MCI進展有預(yù)測作用。Caroli等[28]觀察到遺忘型MCI海馬旁回和下顳葉的低灌注預(yù)示著向AD的轉(zhuǎn)變;Johnson等[29]也發(fā)現(xiàn)進展型MCI的前扣帶回尾側(cè)和后扣帶回灌注顯著降低,而前扣帶回嘴側(cè)灌注增加。在另一個縱向研究中,Habert等[30]發(fā)現(xiàn)進展型MCI右頂葉和海馬的灌注顯著降低。
4.1任務(wù)功能磁共振成像 任務(wù)功能磁共振成像(functional magnetic resonance imaging,fMRI)顯示,MCI患者與正常人比較,在某些感興趣區(qū)表現(xiàn)出激活增高或者降低,表明MCI患者在這些腦區(qū)的適應(yīng)性發(fā)生改變。Bokde等[31]發(fā)現(xiàn),正常人面孔和空間識別任務(wù)分別激活背側(cè)和腹側(cè)通路,而MCI則無這種差別,且與正常人相比MCI患者視覺通路和左額葉激活代償性增強。進行情景記憶編碼時,正常對照組左腹外側(cè)前額葉皮質(zhì)的激活強度與再認知正確率呈正相關(guān),而遺忘型MCI患者在這一區(qū)域的激活減低,說明遺忘型MCI患者的情景記憶受損與左腹外側(cè)前額葉的功能障礙有關(guān)[32]。Jauhiainen等[33]將詞語-圖畫配對線索回憶任務(wù)fMRI與結(jié)構(gòu)MRI進行比較,發(fā)現(xiàn)fMRI在鑒別MCI、AD患者及正常人的準確率低于基于結(jié)構(gòu)MRI的內(nèi)嗅皮質(zhì)容積測量,這可能與分析方法有關(guān),因其只以海馬為感興趣區(qū)考察激活強度。
4.2靜息態(tài)fMRI 靜息狀態(tài)下,血氧水平依賴性信號中的自發(fā)低頻(<0.1 Hz)震蕩可被用于監(jiān)測大腦自發(fā)活動。Bai等[34]用局部一致性的分析方法發(fā)現(xiàn),MCI患者的后扣帶回局部一致性減低,而作為代償,頂下小葉、梭狀回和殼核等腦區(qū)激活增高。Han等[35]也發(fā)現(xiàn),靜息狀態(tài)下MCI患者后扣帶回、內(nèi)側(cè)前額葉、海馬和基底核等區(qū)域低頻振蕩波幅(amplitude of low-frequency fluctuations,ALFF)顯著降低,而在枕葉和顳葉的某些區(qū)域ALFF增高。Xi等[36]的研究結(jié)果顯示,MCI患者內(nèi)側(cè)顳葉、外側(cè)顳葉和內(nèi)側(cè)前額葉的ALFF降低,而在顳-頂交界區(qū)和頂下小葉出現(xiàn)代償性增高,這一點與Zhang等[37]的結(jié)果一致。同樣采用ALFF方法,Wang等[38]觀察到后扣帶回的自發(fā)活動從正常對照到MCI,再到AD被試者呈下降趨勢。而Jin等[39]發(fā)現(xiàn),MCI患者在外側(cè)前額葉、內(nèi)側(cè)顳葉、顳中回、后扣帶回和角回等區(qū)域的自發(fā)活動降低,中扣帶回、內(nèi)側(cè)前額葉、頂下皮質(zhì)增高??傊琈CI患者自發(fā)活動異常的腦區(qū)主要存在于由后扣帶回、內(nèi)側(cè)前額葉、內(nèi)側(cè)顳葉和頂下小葉等構(gòu)成的默認網(wǎng)絡(luò)系統(tǒng)。
綜合以上各種成像技術(shù),MCI的主要影像學(xué)表現(xiàn)有:結(jié)構(gòu)MRI觀察到內(nèi)嗅皮質(zhì)、海馬和顳葉的萎縮;PET和SPECT檢測到額葉、顳葉、頂葉、扣帶回后部、楔前葉和海馬等部位的腦灌注減低或代謝異常;fMRI顯示人腦默認網(wǎng)絡(luò)、前額葉的激活異常。部分研究者借助影像學(xué)致力于MCI的分型、轉(zhuǎn)歸及AD的預(yù)測研究,但由于目前MCI的概念仍處于發(fā)展中,缺乏操作性強的統(tǒng)一標準,使得各研究結(jié)果無法在研究對象一致的基礎(chǔ)上形成統(tǒng)一的結(jié)論。但是,隨著影像學(xué)資料的積累,影像學(xué)與神經(jīng)心理學(xué)、生物學(xué)標志物研究的配合,以及大規(guī)模人群長期隨訪研究,一定會推動對MCI發(fā)病機制、發(fā)展過程的認識,為預(yù)后和早期干預(yù)提供科學(xué)可靠的依據(jù)。
[1] Krasuski JS,Alexander GE,Horwitz B,etal.Volumes of medial temporal lobe structures in patients with Alzheimer′s disease and mild cognitive impairment(and in healthy controls)[J].Biol Psychiatry,1998,43(1):60-68.
[2] Wolf H,Grunwald M,Kruggel F,etal.Hippocampal volume discriminates between normal cognition; questionable and mild dementia in the elderly[J].Neurobiol Aging,2001,22(2):177-186.
[3] Mcevoy LK,Fennema-Notestine C,Roddey JC,etal.Alzheimer disease:quantitative structural neuroimaging for detection and prediction of clinical and structural changes in mild cognitive impairment[J].Radiology,2009,251(1):195-205.
[4] Rossi R,Geroldi C,Bresciani L,etal.Clinical and neuropsychological features associated with structural imaging patterns in patients with mild cognitive impairment[J].Dement Geriatr Cogn Disord,2007,23(3):175-183.
[5] Chételat G,Fouquet M,Kalpouzos G,etal.Three-dimensional surface mapping of hippocampal atrophy progression from MCI to AD and over normal aging as assessed using voxel-based morphometry[J].Neuropsychologia,2008,46(6):1721-1731.
[6] Becker JT,Davis SW,Hayashi KM,etal.Three-dimensional patterns of hippocampal atrophy in mild cognitive impairment[J].Arch Neurol,2006,63(1):97-101.
[7] Kumar R,Parslow RA,Jorm AF,etal.Clinical and neuroimaging correlates of mild cognitive impairment in a middle-aged community sample:the personality and total health through life 60+ study[J].Dement Geriatr Cogn Disord,2006,21(1):44-50.
[8] Chételat G,Desgranges B,de la Sayette V,etal.Mild cognitive impairment:Can FDG-PET predict who is to rapidly convert to Alzheimer′s disease?[J].Neurology,2003,60(8):1374-1377.
[9] Drzezga A,Lautenschlager N,Siebner H,etal.Cerebral metabolic changes accompanying conversion of mild cognitive impairment into Alzheimer′s disease:a PET follow-up study[J].Eur J Nucl Med Mol Imaging,2003,30(8):1104-1113.
[10] Nishi H,Sawamoto N,Namiki C,etal.Correlation between cognitive deficits and glucose hypometabolism in mild cognitive impairment[J].J Neuroimaging,2010,20(1):29-36.
[11] Walhovd KB,Fjell AM,Dale AM,etal.Multi-modal imaging predicts memory performance in normal aging and cognitive decline[J].Neurobiol Aging,2010,31(7):1107-1121.
[12] Klunk WE,Engler H,Nordberg A,etal.Imaging brain amyloid in Alzheimer′s disease with Pittsburgh compound-B[J].Ann Neurol,2004,55(3):306-319.
[13] Kemppainen NM,Aalto S,Wilson IA,etal.PET amyloid ligand [11C]PIB uptake is increased in mild cognitive impairment[J].Neurology,2007,68(19):1603-1606.
[14] Koivunen J,Pirttil? T,Kemppainen N,etal.PET amyloid ligand [11C]PIB uptake and cerebrospinal fluid beta-amyloid in mild cognitive impairment[J].Dement Geriatr Cogn Disord,2008,26(4):378-383.
[15] Li Y,Rinne JO,Mosconi L,etal.Regional analysis of FDG and PIB-PET images in normal aging,mild cognitive impairment,and Alzheimer′s disease[J].Eur J Nucl Med Mol Imaging,2008,35(12):2169-2181.
[16] Chételat G,Villemagne VL,Pike KE,etal.Independent contribution of temporal beta-amyloid deposition to memory decline in the pre-dementia phase of Alzheimer′s disease[J].Brain,2011,134(Pt 3):798-807.
[17] Jack CR Jr,Lowe VJ,Weigand SD,etal.Serial PIB and MRI in normal,mild cognitive impairment and Alzheimer′s disease:implications for sequence of pathological events in Alzheimer′s disease[J].Brain,2009,132(Pt 5):1355-1365.
[18] Jack CR Jr,Wiste HJ,Vemuri P,etal.Brain beta-amyloid measures and magnetic resonance imaging atrophy both predict time-to-progression from mild cognitive impairment to Alzheimer′s disease[J].Brain,2010,133(11):3336-3348.
[19] Tosun D,Schuff N,Mathis CA,etal.Spatial patterns of brain amyloid-beta burden and atrophy rate associations in mild cognitive impairment[J].Brain,2011,134(Pt 4):1077-1088.
[20] Fornarelli D,Ascoli G,Rossi R,etal.Clinical and instrumental diagnosis of Alzheimer′s and multi-infarct dementia[J].Radiol Med,1996,92(1/2):22-27.
[21] Okamura N,Shinkawa M,Arai H,etal.Prediction of progression in patients with mild cognitive impairment using IMP-SPECT[J].Nihon Ronen Igakkai Zasshi,2000,37(12):974-978.
[22] Okamura N,Arai H,Maruyama M,etal.Combined analysis of CSF tau levels and [(123)I]iodoamphetamine SPECT in mild cognitive impairment:implications for a novel predictor of Alzheimer′s disease[J].Am J Psychiatry,2002,159(3):474-476.
[23] Huang C,Wahlund LO,Almkvist O,etal.Voxel-and VOI-based analysis of SPECT CBF in relation to clinical and psychological heterogeneity of mild cognitive impairment[J].Neuroimage,2003,19(3):1137-1144.
[24] Huang C,Eidelberg D,Habeck C,etal.Imaging markers of mild cognitive impairment:multivariate analysis of CBF SPECT[J].Neurobiol Aging,2007,28(7):1062-1069.
[25] H?gh P,Madsen Sj? N,Gade A,etal.Temporal lobe hypoperfusion in isolated amnesia with slow onset:a single photon emission computer tomography study[J].Dement Geriatr Cogn Disord,2004,18(1):15-23.
[26] Staffen W,Sch?nauer U,Zauner H,etal.Brain perfusion SPECT in patients with mild cognitive impairment and Alzheimer′s disease:comparison of a semiquantitative and a visual evaluation[J].J Neural Transm,2006,13(2):195-203.
[27] Hirao K,Ohnishi T,Hirata Y,etal.The prediction of rapid conversion to Alzheimer′s disease in mild cognitive impairment using regional cerebral blood flow SPECT[J].Neuroimage,2005,28(4):1014-1021.
[28] Caroli A,Testa C,Geroldi C,etal.Cerebral perfusion correlates of conversion to Alzheimer′s disease in amnestic mild cognitive impairment[J].J Neurol,2007,254(12):1698-1707.
[29] Johnson KA,Moran EK,Becker JA,etal.Single photon emission computed tomography perfusion differences in mild cognitive impairment[J].J Neurol Neurosurg Psychiatry,2007,78(3):240-247.
[30] Habert MO,Horn JF,Sarazin M,etal.Brain perfusion SPECT with an automated quantitative tool can identify prodromal Alzheimer′s disease among patients with mild cognitive impairment[J].Neurobiol Aging,2011,32(1):15-23.
[31] Bokde AL,Lopez-Bayo P,Born C,etal.Functional abnormalities of the visual processing system in subjects with mild cognitive impairment:an fMRI study[J].Psychiatry Res,2008,163(3):248-259.
[32] Dannhauser TM,Shergill SS,Stevens T,etal.An fMRI study of verbal episodic memory encoding in amnestic mild cognitive impairment[J].Cortex,2008,44(7):869-880.
[33] Jauhiainen AM,Pihlajam?ki M,Tervo S,etal.Discriminating accuracy of medial temporal lobe volumetry and fMRI in mild cognitive impairment[J].Hippocampus,2009,19(2):166-175.
[34] Bai F,Zhang Z,Yu H,etal.Default-mode network activity distinguishes amnestic type mild cognitive impairment from healthy aging:a combined structural and resting-state functional MRI study[J].Neurosci Lett,2008,438(1):111-115.
[35] Han Y,Wang J,Zhao Z,etal.Frequency-dependent changes in the amplitude of low-frequency fluctuations in amnestic mild cognitive impairment:a resting-state fMRI study[J].Neuroimage,2011,55(1):287-295.
[36] Xi Q,Zhao X,Wang P,etal.Spontaneous brain activity in mild cognitive impairment revealed by amplitude of low-frequency fluctuation analysis:a resting-state fMRI study[J].Radiol Med,2012,117(5):865-871.
[37] Zhang Z,Liu Y,Jiang T,etal.Altered spontaneous activity in Alzheimer′s disease and mild cognitive impairment revealed by Regional Homogeneity[J].Neuroimage,2012,59(2):1429-1440.
[38] Wang Z,Yan C,Zhao C,etal.Spatial patterns of intrinsic brain activity in mild cognitive impairment and Alzheimer′s disease:a resting-state functional MRI study[J].Hum Brain Mapp,2011,32(10):1720-1740.
[39] Jin M,Pelak VS,Cordes D.Aberrant default mode network in subjects with amnestic mild cognitive impairment using resting-state functional MRI[J].Magn Reson Imaging,2012,30(1):48-61.