孫中洋,李東韜,2 綜述 張 舒 審校
1第四軍醫(yī)大學 航空航天生物動力學教研室,航空航天醫(yī)學教育部重點實驗室,陜西西安 710032;2海軍總醫(yī)院 心臟中心,北京 100048
綜 述
成骨細胞鉀、鈣離子通道的研究進展
Advances in research on osteoblast potassium and calcium ion channels
孫中洋1,李東韜1,2綜述 張 舒1審校
1第四軍醫(yī)大學 航空航天生物動力學教研室,航空航天醫(yī)學教育部重點實驗室,陜西西安 710032;2海軍總醫(yī)院 心臟中心,北京 100048
骨質疏松的發(fā)病率呈現(xiàn)逐年上升的趨勢,患者生活質量下降,其所帶來的危害已引起全世界的廣泛關注。骨質疏松的發(fā)病機制復雜,涉及因素較多,但成骨細胞功能障礙處于中心環(huán)節(jié)。研究發(fā)現(xiàn)成骨細胞表達多種離子通道,本文將對鉀離子和鈣離子通道進行綜述分析。
成骨細胞;骨質疏松;鉀離子通道;鈣離子通道
骨質疏松癥(osteoporosis,OP)是一種最常見的代謝性骨病,病理特征為骨量減低,骨組織微結構退行性變和骨脆性增加。OP主要癥狀是骨痛和肌無力,嚴重者可發(fā)生骨折和脊柱變形。成骨細胞在骨重建過程中起到核心作用。成骨細胞不僅調節(jié)骨的礦化,還間接調節(jié)破骨細胞的骨吸收功能,它的數(shù)量和功能變化直接影響代謝性骨病的發(fā)生、發(fā)展和預后[1]。作為骨代謝治療藥物的靶細胞,成骨細胞功能受許多激素和骨組織局部調節(jié)因子的影響。因此,成骨細胞的功能及調節(jié)機制已成為OP研究的重中之重。現(xiàn)已發(fā)現(xiàn),成骨細胞存在多種離子通道,尤以K+通道和Ca2+通道的研究最為深入。這些離子通道不僅調節(jié)成骨細胞的分化和增殖等生理活動,還參與機械信號感知、傳遞及轉導過程,進而影響其成骨功能。本文針對成骨細胞上K+通道和Ca2+通道的結構和特性等相關研究進行綜述。
K+是細胞內的重要離子,有很高的電化學活性。在成骨細胞的收縮過程起始階段起作用。其在成骨細胞的線粒體上也有分布,并且和細胞的凋亡關系密切[2]。依據(jù)拓撲結構,成骨細胞上K+通道可劃分為3大類,分別為電壓依賴性鉀離子通道(voltage-dependent potassium channels),內向整流鉀離子通道(inwardly rectifying potassium channels,Kir)和雙孔鉀離子通道(two-pore domain potassium channel,2PK+)。
1.1 電壓依賴性鉀離子通道 具有6個跨膜段和1個孔區(qū)的K+通道亞型。成骨細胞上表達的電壓依賴性鉀離子通道主要有以下4種。電壓門控性鉀離子通道(voltage-gated potassium channels,Kv)由4個孔道形成亞基α和4個輔助亞基β組成,α亞基有6個穿膜結構域,其主要負責細胞膜的復極化[2-3]。大電導鈣激活鉀離子通道(large-conductance calcium activated potassium channels,BK)由α亞單位和β亞單位組成,其中α亞單位組成孔道,β亞單位可調節(jié)通道的電學和藥理學特點。BK屬于機械敏感性通道,因其在成骨細胞上高表達和可在膜牽張時開放,能夠使機械牽張轉變成為胞內反應,可將其看作是骨組織的機械感受器[4]。BK參與許多胞內活動,比如細胞容積的調節(jié),控制細胞的黏附,在機械負荷下調節(jié)細胞膜電位,調節(jié)細胞因子釋放和細胞遷徙等[5-7],并參與細胞形態(tài)的保持[8]。此外,成骨細胞上BK還可快速持續(xù)地反饋調節(jié)細胞膜去極化[9]。BK可被奎尼丁、粉防己堿和四乙胺阻斷,被異松脂酸、甲狀旁腺素和前列腺素E2激活,表現(xiàn)為Ca2+和電壓依賴[10]。BK通道的活性還受到動態(tài)聚合狀態(tài)或解離狀態(tài)肌動蛋白等細胞骨架的影響[4]。中電導鈣激活鉀離子通道(intermediateconductance calcium activated potassium channels,IK)與BK相似,在成骨細胞上廣泛表達,而且有著相似的電生理性質。即使在ATP足夠的情況下,BK調控細胞膜電位的作用也較?。?相反,IK可在激動劑的作用下促進Ca2+的移動,從而調控細胞膜電位。ATP介導的細胞內Ca2+濃度增加主要是激活IK,引起細胞膜的超極化。IK通道表現(xiàn)為Ca2+依賴,可被環(huán)磷酰胺阻斷[11]。瞬時外向鉀離子通道(transient outward potassium channels)電流在去極化刺激時被引出,表現(xiàn)出激活快,失活慢的特點[12]。細胞膜的去極化和細胞內Ca2+的濃度增加都可激活此通道,從而緩沖胞內Ca2+濃度。瞬時外向鉀離子通道在成骨細胞中Ca2+信號轉導機制起到重要作用,由于它的存在,細胞內Ca2+增加是暫時的[13]。
1.2 內向整流鉀離子通道 具有2個跨膜段和1個孔區(qū),這2個跨膜結構域形成了孔道。Kir是由4個α亞基組成的同聚體或異聚體[2]。Kir負責當膜電位小于K+平衡電位時內向轉運K+,從而使電流進入細胞比出細胞更容易。這種內向電流伴隨著細胞外K+濃度的增加而增加。它還可增加K+膜電導,有效地控制膜電位接近K+的平衡電位。值得注意的是Kir雖具有整流作用,但無電壓依賴性[14]。Kir的門控特性不僅受到膜電位的影響也受到細胞外K+濃度的調節(jié)[13]。其最具確定意義的特點是可被細胞外Ba2+可逆性阻斷。
1.3 雙孔鉀離子通道 雙孔鉀離子通道是20世紀90年代發(fā)現(xiàn)的具有4個跨膜段和2個孔區(qū)的K+通道亞型。由于該通道無電壓依賴性,可在靜息電位時開放,故也被稱為背景K+通道或漏流通道[4,14]。2PK+的表達分布非常廣泛,與細胞增殖和細胞膜靜息電位的關系密切。在成骨細胞中與在神經(jīng)系統(tǒng)中的作用相似,調節(jié)靜息電位和細胞電興奮性。2PK+對機械作用敏感,與電壓門控和Ca2+激活的K+通道配合,使細胞膜的復極化速率與機械作用的影響相偶聯(lián)。2PK+還可作為機械信號轉導下游通路信號[14]。2PK+對細胞膜的牽張、pH、溫度等因素敏感,而對于傳統(tǒng)K+通道阻斷劑不敏感,但又能被前列腺素和cAMP阻斷[15]。
除此以外,最近還發(fā)現(xiàn)一類特殊的K+通道-EAG(ether a go-go related)通道。傳統(tǒng)觀點認為K+通道通過控制膜電位,調節(jié)K+內流從而促進細胞的增殖,但EAG通道能夠抑制細胞的增殖[16]。K+通道對成骨細胞的數(shù)量、形態(tài)和礦化等能力的影響是復雜的,在調節(jié)其生理活動過程中扮演了極為重要的角色。
Ca2+在成骨細胞中發(fā)揮了至關重要的作用。Ca2+的增加可來自細胞外也可來自細胞內鈣庫釋放。細胞內的鈣庫在成骨細胞是指內質網(wǎng)。為了了解成骨細胞中的Ca2+穩(wěn)態(tài),要區(qū)分一個重要的概念,信號Ca2+和無機Ca2+。在細胞外的礦化作用中,無機Ca2+作為細胞內其他信號通路的下游被調控,和羥基磷灰石晶體一同沉積在蛋白質支架上。在第二信使作用中,信號Ca2+在激活細胞反應中起到基礎作用。作為主要的細胞內離子,Ca2+已經(jīng)被證明和細胞內的許多功能相關,但更重要的是,Ca2+信號的微小變化可以在細胞中產(chǎn)生不同的信號通路,從而產(chǎn)生不同的作用。任何原因、任何形式的細胞內Ca2+長時程的增多都會引起細胞的死亡或凋亡[17]。成骨細胞膜片鉗研究集中在2大類Ca2+通道,即電壓敏感性鈣離子通道(voltage-sensitive calcium channels,VSCC)和配基門控性鈣離子通道(ligand-gated calcium channels)。
2.1 電壓敏感性鈣離子通道 電壓敏感性鈣離子通道是蛋白質復合體,可調節(jié)Ca2+內流等生理功能。根據(jù)通道的動力學和藥理學特性,可以將VSCC超家族分為5個亞群: L,T,P,N和Q。其中L型是細胞中發(fā)現(xiàn)分布最廣研究最透徹的Ca2+通道,其次是T型,而P、N和Q型少有報道[18-20]。VSCC是異質二聚體,由4個亞單位組成,分別是α1、α2、β和δ[21-22]。α亞單位組成通道的孔道,這個亞單位由4個跨膜結構域組成,每個結構域又是由6穿膜結構組成[23]。α亞單位既有電壓敏感的序列,也有二氫吡啶結合的序列??烧J為α亞單位是產(chǎn)生通道活性的唯一亞單位,在其他亞單位缺失的情況下,α仍然可以發(fā)揮作用,但此時膜電流密度變低,電壓激活更加緩慢[18,24]。分子克隆證明VSCC具有非常大的多態(tài)性,α亞基就由至少3個基因調控。根據(jù)α1亞基藥理學和生理學功能的不同,VSCC可以分為以下兩類,高電壓激活型(L,P/Q,N和R亞型)和低電壓激活型(T亞型)[25]。低電壓激活的通道和高電壓激活的通道在蛋白質水平序列的相似性<25%,并且在功能特性上有著顯著的差異[22]。其他輔助亞基,特別是β亞基,調節(jié)VSCC的門控特性和控制通道的裝配和運輸。β亞基可促進VSCC的正確折疊,并幫助其在細胞膜上定位。研究發(fā)現(xiàn)β亞基與和細胞膜鏈接的鳥苷酸激酶蛋白結構相似[26-28]。β亞基通過許多不同蛋白質的相互作用影響細胞間的信號轉導。成骨細胞上有3種β亞基,其中β2亞基的密度最大,并起到主要作用[29]。δ亞基的分子量有24 kU和27 kU兩種。
成骨細胞上表達的VSCC是可興奮細胞上的特征性通道,但又很難引起鈣誘導的鈣釋放現(xiàn)象,而此現(xiàn)象又是絕大多數(shù)可興奮細胞的重要特征[30]。成骨細胞上VSCC表達與一般可興奮細胞的最大不同在于其表達的數(shù)量要少得多。比如,成熟的橫紋肌細胞上VSCC的數(shù)量是成骨細胞數(shù)十倍,VSCC數(shù)量上的不同也體現(xiàn)在mRNA水平[31]。推測成骨細胞可根據(jù)其功能需要的不同,表達出數(shù)量介于可興奮細胞和不可興奮細胞之間的VSCC。其功能是隨著激素和機械刺激的影響,調節(jié)多種細胞外基質蛋白的分泌[32-33]。VSCC在成骨細胞乃至骨骼系統(tǒng)的生理作用中起到核心作用。
L型VSCC在細胞體外培養(yǎng)7 ~ 8 d后才能被檢測出來,在1 ~ 2周時活性達到峰值。但如果用無血清的培養(yǎng)基來培養(yǎng)成骨細胞,L型的活性可更早出現(xiàn)。然而,T型在培養(yǎng)2 ~4 d后就可檢出,而且活性在8 d后就減低或消失[34]。由此產(chǎn)生一個假設,T型在細胞分化的早期發(fā)揮作用,而L型和分化一直相關。L型是高電壓激活且電流持續(xù)時間長,可被二氫吡啶特異性阻斷。而T型能夠在微小去極化的情況下被激活且很快失活,T型對二氫吡啶不敏感但可被Ni2+阻斷,此為T型通道的主要特征[35]。
胞膜去極化、VD3、PTH和表皮生長因子可調節(jié)成骨細胞上VSCC的功能。VSCC的功能是根據(jù)Ca2+進入細胞的時空方式不同而改變。而Ca2+進入細胞的時空方式不同主要是因為細胞膜上表達不同亞型的VSCC,每種亞型都具有不同的激活和失活動力學特征、藥理學特征和組織的分布特征[36]。
2.2 配基門控性鈣離子通道 代謝型谷氨酸受體和離子型谷氨酸受體在成骨細胞上功能性表達。離子型谷氨酸受體作為谷氨酸門控型離子通道,它的激活可引起Ca2+內流。而代謝型谷氨酸受體可和G蛋白偶聯(lián),進而激活磷脂酶C合成二酰甘油和三磷酸鹽,或被動地與腺核苷酸環(huán)化酶結合[37]。
離子型受體根據(jù)激活受體的配體不同,可以將其分為N-methyl-D-aspartate (NMDA),a-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)和Kainate (KA)等不同型別,研究主要集中在NMDA上[37-38]。
成骨細胞上離子型受體的激活引起細胞膜去極化和Ca2+內流,進而增加谷氨酸釋放和激活第二信號通路,同時也會影響成骨細胞表型。離子型谷氨酸受體的阻斷會使骨質合成減少,減緩成骨細胞的分化,降低骨基質蛋白的翻譯,說明谷氨酸信號的調控可促進骨質形成[39]。
綜上所述,鉀、鈣離子通道通過調節(jié)成骨細胞的增殖和分化等功能影響骨組織的生長和發(fā)育,揭示了鉀、鈣離子通道,成骨細胞和骨質疏松的密切關系。成骨細胞上鉀、鈣離子通道的進一步研究將對理解和治療骨質疏松有積極意義。
1 呂厚辰,唐佩福.胎球蛋白 A 在骨礦化早期的抑制作用[J].解放軍醫(yī)學院學報,2013,34(1):98-100.
2 Pangalos M, Bintig W, Schlingmann B, et al. Action potentials in primary osteoblasts and in the MG-63 osteoblast-like cell line[J]. J Bioenerg Biomembr, 2011, 43(3): 311-322.
3 Li GR, Deng XL, Sun H, et al. Ion channels in mesenchymal stem cells from rat bone marrow[J]. Stem Cells, 2006, 24(6): 1519-1528.
4 Rezzonico R, Cayatte C, Bourget-Ponzio I, et al. Focal adhesion kinase pp125FAK interacts with the large conductance calciumactivated hSlo Potassium Channel in human osteoblasts: potential role in mechanotransduction[J]. J Bone Miner Res, 2003, 18(10):1863-1871.
5 Ehrhardt AG, Frankish N, Isenberg G. A large-conductance K+ Channel that is inhibited by the cytoskeleton in the smooth muscle cell line DDT1 MF-2[J]. J Physiol, 1996, 496 ( Pt 3)(Pt 3): 663-676.
6 Kraft R, Benndorf K, Patt S. Large conductance Ca(2+)-activated K(+) channels in human meningioma cells[J]. J Membr Biol,2000, 175(1): 25-33.
7 Huang H, Rao Y, Sun P, et al. Involvement of actin cytoskeleton in modulation of Ca(2+)-activated K(+) channels from rat hippocampal CA1 pyramidal neurons[J]. Neurosci Lett, 2002,332(2): 141-145.
8 Martin DK, Bootcov MR, Campbell TJ, et al. Human macrophages contain a stretch-sensitive Potassium Channel that is activated by adherence and cytokines[J]. J Membr Biol, 1995, 147(3):305-315.
9 Wu SN, Jan CR, Chiang HT. Fenamates stimulate BKCa channel osteoblast-like MG-63 cells activity in the human[J]. J Investig Med, 2001, 49(6):522-533.
10 Henney NC, Li B, Elford C, et al. A large-conductance (BK)Potassium Channel subtype affects both growth and mineralization of human osteoblasts[J]. Am J Physiol Cell Physiol, 2009, 297(6):1397-1408.
11 Weskamp M, Seidl W, Grissmer S. Characterization of the increase in [Ca(2+)](i) during hypotonic shock and the involvement of Ca(2+)-activated K(+) channels in the regulatory volume decrease in human osteoblast-like cells[J]. J Membr Biol, 2000, 178(1):11-20.
12 Chesnoy-Marchais D, Fritsch J. Potassium currents and effects of vitamin D-3 metabolites and cyclic GMP in rat osteoblastic cells[J]. Biochim Biophys Acta, 1993, 1148(2): 239-248.
13 Yellowley CE, Hancox JC, Skerry TM, et al. Whole-cell membrane currents from human osteoblast-like cells[J]. Calcif Tissue Int,1998, 62(2): 122-132.
14 Hughes S, Magnay J, Foreman M, et al. Expression of the mechanosensitive 2Pk+ Channel TREK-1 in human osteoblasts[J]. J Cell Physiol, 2006, 206(3): 738-748.
15 Rezzonico R, Schmid-Alliana A, Romey G, et al. Prostaglandin E2 induces interaction between hSlo Potassium Channel and Syk tyrosine kinase in osteosarcoma cells[J]. J Bone Miner Res, 2002, 17(5):869-878.
16 Hernandez L, Park KH, Cai SQ, et al. The antiproliferative role of ERG K+ channels in rat osteoblastic cells[J]. Cell Biochem Biophys, 2007, 47(2): 199-208.
17 McDonald F. Ion channels in osteoblasts: a story of two intracellular organelles[J]. Surgeon, 2004, 2(2): 63-69.
18 Duncan RL, Akanbi KA, Farach-Carson MC. Calcium signals and Calcium channels in osteoblastic cells[J]. Semin Nephrol, 1998,18(2): 178-190.
19 Dolmetsch RE, Lewis RS, Goodnow CC, et al. Differential activation of transcription factors induced by Ca2+ response amplitude and duration[J]. Nature, 1997, 386(6627): 855-858.
20 王維,馮澤國.RNA干擾用于疼痛治療的離子通道靶點[J].軍醫(yī)進修學院學報,2009,30(5):747-749.
21 Bergh JJ, Shao Y, Akanbi K, et al. Rodent osteoblastic cells Express voltage-sensitive Calcium channels lacking a gamma subunit[J]. Calcif Tissue Int, 2003, 73(5): 502-510.
22 Bergh JJ, Shao Y, Puente E, et al. Osteoblast Ca(2+) permeability and voltage-sensitive Ca(2+) Channel expression is temporally regulated by 1,25-dihydroxyvitamin D(3)[J]. Am J Physiol Cell Physiol, 2006, 290(3): 822-831.
23 Perez-Reyes E, Kim HS, Lacerda AE, et al. Induction of Calcium currents by the expression of the alpha 1-subunit of the dihydropyridine receptor from skeletal muscle[J]. Nature, 1989,340(6230): 233-236.
24 Gu X, Spitzer NC. Distinct aspects of neuronal differentiation encoded by frequency of spontaneous Ca2+ transients[J]. Nature, 1995,375(6534): 784-787.
25 Reuter H. Diversity and function of presynaptic Calcium channels in the brain[J]. Curr Opin Neurobiol, 1996, 6(3): 331-337.
26 Black JA, Westenbroek RE, Catterall WA, et al. Type II brain Sodium Channel expression in non-neuronal cells: embryonic rat osteoblasts[J]. Brain Res Mol Brain Res, 1995, 34(1): 89-98.
27 Arikkath J, Campbell KP. Auxiliary subunits: essential components of the voltage-gated Calcium Channel complex[J]. Curr Opin Neurobiol, 2003, 13(3): 298-307.
28 Hullin R, Khan IF, Wirtz S, et al. Cardiac L-type Calcium Channel beta-subunits expressed in human heart have differential effects on single Channel characteristics[J]. J Biol Chem, 2003, 278(24):21623-21630.
29 Shao Y, Czymmek KJ, Jones PA, et al. Dynamic interactions between L-type voltage-sensitive Calcium Channel Cav1.2 subunits and ahnak in osteoblastic cells[J]. Am J Physiol Cell Physiol, 2009, 296(5):1067-1078.
30 Caffrey JM, Farach-Carson MC. Vitamin D3 metabolites modulate dihydropyridine-sensitive Calcium currents in clonal rat osteosarcoma cells[J]. J Biol Chem, 1989, 264(34): 20265-20274.
31 Caffrey JM, Brown AM, Schneider MD. Mitogens and oncogenes can block the induction of specific voltage-gated ion channels[J]. Science, 1987, 236(4801): 570-573.
32 Meszaros JG, Karin NJ, Akanbi K, et al. Down-regulation of L-type Ca2+ Channel transcript levels by 1,25-dihyroxyvitamin D3. Osteoblastic cells Express L-type alpha1C Ca2+ Channel isoforms[J]. J Biol Chem, 1996, 271(51): 32981-32985.
33 Duncan RL, Kizer N, Barry EL, et al. Antisense oligodeoxynucleotide inhibition of a swelling-activated cation Channel in osteoblast-like osteosarcoma cells[J]. Proc Natl Acad Sci U S A, 1996, 93(5):1864-1869.
34 Gu Y, Preston MR, el Haj AJ, et al. Osteoblasts derived from loadbearing bones of the rat Express both L- and T-like voltage-operated Calcium channels and mRNA for alpha 1C, alpha 1D and alpha 1G subunits[J]. Pflugers Arch, 1999, 438(4): 553-560.
35 Ertel SI, Ertel EA, Clozel JP. T-type Ca2+ channels and pharmacological blockade: potential pathophysiological relevance[J]. Cardiovasc Drugs Ther, 1997, 11(6): 723-739.
36 Liu R, Li W, Karin NJ, et al. Ribozyme ablation demonstrates that the cardiac subtype of the voltage-sensitive Calcium Channel is the molecular transducer of 1, 25-dihydroxyvitamin D(3)-stimulated Calcium influx in osteoblastic cells[J]. J Biol Chem, 2000, 275(12):8711-8718.
37 Patton AJ, Genever PG, Birch MA, et al. Expression of an N-methyl-D-aspartate-type receptor by human and rat osteoblasts and osteoclasts suggests a novel glutamate signaling pathway in bone[J]. Bone, 1998, 22(6): 645-649.
38 Hinoi E, Fujimori S, Takemori A, et al. Demonstration of expression of mRNA for particular AMPA and kainate receptor subunits in immature and mature cultured rat calvarial osteoblasts[J]. Brain Res, 2002, 943(1): 112-116.
39 Mason DJ. Glutamate signalling and its potential application to tissue engineering of bone[J]. Eur Cell Mater, 2004, 7:12-25.
R 348
A
2095-5227(2014)02-0186-04
10.3969/j.issn.2095-5227.2014.02.026
2013-10-24 10:19
http://www.cnki.net/kcms/detail/11.3275.R.20131024.1019.002.html
2013-09-02
國家自然科學基金項目(31170889;30870595);教育部留學回國啟動基金(HG4406)
Supported by the National Natural Science Foundation of China(31170889; 30870595); Project-sponsored by SRF for ROCS, SEM(HG4406)
孫中洋,男,在讀碩士。研究方向:航空航天醫(yī)學。Email: szylpxt@163.com
張舒,男,博士,教授,博士生導師。Email: shuzhang@ fmmu.edu.cn