崔世友 張蛟蛟
摘 ?要:鹽脅迫是作物生產中主要的非生物逆境之一,本研究根據(jù)已有的報道,從品嘗品質、次生代謝物的積累和微量元素的缺乏等3個方面對鹽脅迫對園藝作物品質的影響進行了綜述,以期為沿海灘涂鹽堿地耐鹽植物的篩選和生產提供指導。
關鍵詞:鹽分逆境;園藝作物;品質
中圖分類號:S63-3 ? ?文獻標志碼:A ? ?論文編號:2014-0129
Effects of Salt Stress on the Quality of Horticultural Crops
Cui Shiyou, Zhang Jiaojiao
(Jiangsu Yanjiang Institute of Agricultural Sciences/Nantong Public Technology Service Platform of Salt-tolerant Plants,
Nantong 226541, Jiangsu, China)
Abstract: Salt stress is one of the major abiotic stresses in crop production. According to the investigations published, the effects of salt stress on the quality of horticultural crops were reviewed from 3 aspects of the tasting quality, accumulation of secondary metabolites and microelements deficiency, so as to provide guidance for salt-tolerant crop screening and crop production.
Key words: Salt Stress; Horticultural Crops; Quality
0 ?引言
世界上鹽堿土的面積很大,根據(jù)FAO在2010年發(fā)布的報告,全球鹽堿地總面積為831×106 hm2[1]。在氣候干燥的半干旱、干旱地區(qū),由于降雨量低、蒸發(fā)劇烈,鹽分不斷積累;海濱地區(qū)由于海水倒灌造成土壤含鹽量增加。中國鹽堿土主要分布于西北、華北、東北和濱海地區(qū),隨著大棚面積的逐年增長和栽培年代的推移,土壤鹽漬化日趨嚴重。
與鹽分逆境對作物產量的影響相比,人們對鹽分逆境對作物經濟產品品質的影響所知甚少。在已有的研究中,園藝作物方面的研究較多,大田作物研究較少。因此,本研究對園藝作物在鹽脅迫下的品質表現(xiàn)進行綜述,以期為沿海灘涂鹽堿地耐鹽作物的篩選和生產提供指導。
1 ?鹽脅迫對園藝作物品嘗品質的影響
在1塊用鹽水種植達10年的試驗田,設計3個鹽水灌溉處理:43、86和171 mmol/L,對照為非鹽水灌溉,研究鹽水灌溉對加工番茄產量、品質的影響[2]。鹽分抑制了葉面積和根密度,這可能與植物對鹽逆境的功能性適應有關。86 mmol/L中度鹽分的處理也未對產量成熟顯著影響,只是鹽水灌溉的果品較小;但是,鹽脅迫下的番茄具有較高的酸度、可溶性固形物增加、糖含量較高。中度鹽分下產量的減少可通過番茄品質的強化而得以補償。鹽分下總可溶性固形物的濃度增加與減少水分含量、離子積累和有機分子的從頭合成有關,在高滲透環(huán)境下,有機酸具有多個功能,包括滲透調節(jié)和活性氧的區(qū)隔。
鹽分環(huán)境下酸度和糖分的增加已在多種蔬菜中有報道,如茄子[3]、番茄[4-6]、甜瓜[7]、黃瓜[8]和西瓜[9],鹽逆境下有機酸的積累增加;而黃瓜、番茄、甜瓜和西瓜[5,9-12]在鹽脅迫下增加了還原性糖的積累。另外,黃瓜、番茄、甜瓜和西瓜[6,9-13]、果品的總可溶性固形物隨鹽分而增加;而在辣椒中未觀察到類似的現(xiàn)象[14],可能是果品的呼吸隨著營養(yǎng)液中離子強度的增加而增加[15]。
鹽脅迫對草莓食用品質表現(xiàn)出了明顯的差異。利用對鹽分逆境存在差異的2個草莓品種Elsanta(敏感)和Korona(耐),在0、40、80 mmol/L的NaCl下生長2個月(開花至最后果品收獲),以此鑒定鹽脅迫對草莓品種的影響[16]。一般而言,鹽分降低草莓品質尤其是Elsanta品種,受脅迫植株草莓的糖、有機酸和可溶性固形物含量較低,甜度較低不適合消費者需求;果品的整體外觀明顯下降。而在另一個長期脅迫長達4個月的試驗中[17],結果卻有些變化,平均果重下降,而干物質、總可溶性碳水化合物含量以及甜度指數(shù)保持不變。
2 ?鹽脅迫有利于植物次生代謝物的積累
水果、蔬菜的抗氧化活性對評估其營養(yǎng)價值是重要的。植物在應答鹽分和其他環(huán)境逆境時,一些對抗擊重要疾病如癌癥、心血管疾病的許多高營養(yǎng)價值的次生代謝物在鮮果菜中積累[18]。
輕度的鹽脅迫可改進親脂和親水抗氧化活性。中度鹽分下番茄果中類胡蘿卜素濃度提高40%[18],其原因主要是增強了番茄紅素的含量,其生物合成在逆境下被激活[19];而當根際鹽分高于4 dS/m時,總類胡蘿卜素和番茄紅素的含量逐漸下降[20]。Petersen等[20]、Stamatakis等[21]也有類似的報道。但是,抗氧化代謝途徑的應答在很大程度上依賴于脅迫的水平以及其他栽培/環(huán)境因子。而葉黃素應答鹽分與此不同,其含量隨鹽分而表現(xiàn)出增加的趨勢[21]。
鹽分(0、15、30 mmol/L)和不同成熟階段(綠果期、轉色期、紅果期)對辣椒的幾種抗氧化劑成分影響的溫室試驗研究表明[22],從營養(yǎng)角度看紅果期是最理想的成熟狀態(tài),此時番茄紅素、β-胡蘿卜素和糖含量最高,親脂性和親水性抗氧化劑活性最高。鹽分的影響與成熟狀態(tài)有關:對水溶性抗氧化劑(HAA)、β-胡蘿卜素和糖無影響,但降低抗壞血酸和總酚類化合物,增加了脂溶性抗氧化劑(LAA)和番茄紅素。
另一種高值代謝物抗壞血酸在應答水分逆境和鹽分時分別增加[18,20-21]或減少[23]。Vc增加歸因于植物適應鹽分過程中果品水分含量的減少[20]。由于抗壞血酸包含于幾種代謝途徑中,其合成也與其他因子如N利用存在互作[19]。
耐性不同的2個草莓品種Elsanta(敏感)和Korona(耐)在4個月的長期鹽脅迫(2個營養(yǎng)季用含0、40、 ? 80 mmol/L的NaCl營養(yǎng)液處理)下品質的應答研究[24]表明,中度鹽分增加了抗氧化能力,Korona在鹽逆境下超氧化物歧化酶活性和谷胱甘肽、酚類、花青素含量增加,而抗壞血酸含量下降。品種Elsanta超氧化物歧化酶活性及抗壞血酸含量的變化與品種Korona類似,而抗壞血酸下降更明顯?;ㄉ盏暮肯陆?,酚類似。谷胱甘肽含量在最高NaCl時下降。這些結果表明鹽敏感低的草莓品種可在中度鹽逆境下種植,以優(yōu)化果品品質。
GSLs(芥子油甙)是在主要十字花科蔬菜中植物如花椰菜和甘藍中發(fā)現(xiàn)的次生化合物,鹽逆境對S吸收和積累存在影響,花椰菜花球在應答鹽逆境中S增加,而在葉片中沒有變化;西蘭花中也觀察到中度的增加[25-26]。S是硫代葡萄糖苷和異硫氰酸酯的重要前體,后者表現(xiàn)出抗癌活性體現(xiàn)蕓薹屬植物的營養(yǎng)價值[27]。小白菜在中度鹽分下,總GSLs也表現(xiàn)為增加[28]。在鹽逆境下GSLs增加,表明在低水勢下GSLs參與了滲透調節(jié),可能是耐鹽性的適應性組分[29]。進一步的研究表明,鹽逆境對不同西蘭花品種的影響不同,品種Parthenon的總GSLs含量不受鹽逆境的影響,而品種Naxos則顯著下降,原因在于吲哚GSLs的下降。鹽逆境下Naxos比Parthenon積累過多的aliphatic GSLs,從而使得改品種在鹽逆境下種植更具營養(yǎng)價值[30]。
3 ?鹽分脅迫易引起植株體內微量元素的缺乏
鹽分的一種副作用是微量元素的缺乏,由土壤堿化和離子競爭所引起[31]。鹽逆境引起的微量元素缺乏還產生不正常的植株生長和不規(guī)則的果品發(fā)育。番茄在鹽逆境下產生K、Cu和Zn的缺乏[2]。
逆境誘導的離子積累和分配可解釋不同物種間的特定應答,花椰菜比西蘭花在應答鹽逆境中積累更多的Ca2+,這可保護花椰菜免遭干燒心病以及成熟前的葉片衰老;而西蘭花該病的發(fā)生則相對較多。同樣,Ca2+缺乏也導致生菜、菊苣和茴香的品質變劣[32]。施Zn改進了鹽脅迫下的生長[33],在堿土下比在鹽土、鹽堿土下效果更大[34-35]。
4 ?結論與討論
鹽逆境是主要的非生物逆境之一,對園藝作物產品品質有重要影響。鹽脅迫下鮮果蔬的可溶性固形物增加,酸度、糖含量較高。在中度鹽脅迫下,類胡蘿卜素、番茄紅素、花青素、芥子油甙(GSLs)等高營養(yǎng)價值的次生代謝物在鮮果菜中積累增加,但鹽脅迫易引起植株體內一些微量元素的缺乏。在沿海灘涂鹽堿地開發(fā)果蔬種植時,應充分利用鹽逆境對提高鮮食果蔬品質有利的一面,如加強了一些次生代謝物的積累。對于不利的一面,如引起Ca2+、K+和Zn2+等的缺乏,在果蔬生產中應采取措施,增施相應的肥料,減緩鹽逆境對果蔬生產發(fā)育的影響。鹽逆境與土壤礦質營養(yǎng)的互作,及其對果蔬生長發(fā)育的影響是一個值得探討的研究方向,對濱海鹽土果蔬生產也有參考借鑒作用。
參考文獻
[1] Martinez-Beltran J, Manzur C L. Overview of salinity problems in the world and FAO strategies to address the problem[C].California: Proceedings of the international salinity forum, Riverside,2005:311-313.
[2] Maggio A, De Pascale S, Angelino G, et al. Physiological response of tomato to saline irrigation in long-term salinized soils[J].Eur. J. Agron.,2004,21:149-159.
[3] Savvas D, Lenz F. Influence of NaCl concentration in the nutrient solution on mineral composition of eggplants grown in sand culture[J].Angewandte Botanik,1996,70:124-127.
[4] Kafkafi U, Valoras N, Letey J. Chloride interaction with nitrate and phosphate nutrition in tomato (Lycopersicon esculentum L.)[J].J. Plant Nutr.,1982,5:1369-85.
[5] De Pascale S, Martino A, Raimondi G, et al. Comparative analysis of water and salt stress-induced modifications of quality parameters in cherry tomato [J].J. Hort. Sci. Biotec.,2007,82:283-289.
[6] Mitchell J P, Shennan C, Grattan S R, et al. Tomato fruit yields and quality under water deficit and salinity [J].J. Am. Soc. Hort. Sci.,1991,116:215-221.
[7] Feigin A, Rylski I, Meiri A, et al. Response of melon and tomato plants to chloride-nitrate ratios in saline nutrient solutions[J].J. Plant Nutr.,1987,10:1787-1794.
[8] Martinez V, Cerdá A. Influence of N source on rate of Cl, N, Na, K uptake by cucumber seedlings grown in saline conditions[J].J. Plant Nutr.,1989,12:971-983.
[9] Colla G, Roupahel Y, Cardarelli M, et al. Effect of salinity on yield, fruit quality, leaf gas exchange, and mineral composition of grafted watermelon plants[J].HortScience,2006,41(3):622-627.
[10] Adams P, Ho L C. Effects of constant and fluctuating salinity on the yield, quality and calcium status of tomatoes[J].J. Hortic. Sci.,1989,67:725-732.
[11] Navarro J M, Botella M A, Cerdá A, et al. Yield and fruit quality of melon plants grown under saline conditions in relation to phosphate and calcium nutrition[J].J Hortic Sci Biotech,1999,74:573-578.
[12] Schaffer A A, Rylski I, Fogelman M. Carbohydrate content and sucrose metabolism in developing Solanum muricatum[J].Phytochemistry,1989,28:737-739.
[13] Mendlinger S, Fossen M. Flowering, vegetative growth, yield, and fruit quality in muskmelons under saline conditions[J].Journal of the American Society for Horticultural Science,1993,118(6):868-872.
[14] Navarro J M, Garrido C, Flores P, et al. The effect of salinity on yield and fruit quality of pepper grown in perlite[J].Spanish Journal of Agricultural Research,2010,8(1):142-150.
]15] Tadesse T, Nichols M A, Fisher K J. Nutrient conductivity effects on sweet pepper plants grown using a nutrient film technique 1. Yield and fruit quality[J].New Zeal J Crop Hort,1999,27:229-237.
[16] Keutgen A, Pawelzik E. Modifications of taste-relevant compounds in strawberry fruit under NaCl salinity[J].Food chemistry,2007,105(4):1487-1494.
[17] Keutgen A J, Pawelzik E. Quality and nutritional value of strawberry fruit under long term salt stress[J].Food Chemistry,2008,107(4):1413-1420.
[18] De Pascale S, Maggio A, Fogliano V, et al. Irrigation with saline water improves carotenoids content and antioxidant activity of tomato[J].J. Hort. Sci. Biotec.,2001,76:447-453.
[19] Giuliano G, Bartley G E, Scolnik P A. Regulation of carotenoid biosynthesis during tomato development[J].Plant Cell,1993,5:379-387.
[20] Petersen K K, Willumsen J, Kaack K. Composition and taste of tomatoes as affected by increased salinity and different salinity sources[J].J. Hort. Sci.,1998,73:205-215.
[21] Stamatakis A, Papadantonakis N, Savvas D, et al. Effects of silicon and salinity on fruit yield and quality of tomato grown hydroponically[C].International Symposium on Managing Greenhouse Crops in Saline Environment,2003:141-147.
[22] Navarro J M, Flores P, Garrido C, et al. Changes in the contents of antioxidant compounds in pepper fruits at different ripening stages, as affected by salinity[J].Food Chemistry,2006,96(1):66-73.
[23] Dumas Y, Dadomo M, Di Lucca G, et al. Effects of environmental factors and agricultural techniques on antioxidant content of tomatoes[J].J. Sci. Food Agric.,2003,83:369-382.
[24] Keutgen A J, Pawelzik E. Modifications of strawberry fruit antioxidant pools and fruit quality under NaCl stress[J].Journal of agricultural and food chemistry,2007,55(10):4066-4072.
[25] De Pascale S, Maggio A, Barbieri G. Soil salinization affects growth, yield and mineral composition of cauliflower and broccoli[J].Eur. J. Agron.,2005,23:254-264.
[26] C. López-Berenguer, M. C. Martínez-Ballesta, C. García-Viguera, et al. Leaf water balance mediated by aquaporins under salt stress and associated glucosinolate synthesis in broccoli[J].Plant Science,2008,174(3):321-328.
[27] Barbieri G, Pernice R, Maggio A, et al. Glucosinolates profile of Brassica rapa L. subsp Sylvestris L. Janch. var. esculenta. Hort[J].Food Chem.,2008,107:1687-1691.
[28] Hu K L, Zhu Z J. Effects of different concentrations of sodium chloride on plant growth and glucosinolate content and composition in pakchoi[J].African Journal of Biotechnology,2010,9(28):4428-4433.
[29] López-Berenguer C, Martínez-Ballesta M D C, Moreno D A, et al. Growing hardier crops for better health: salinity tolerance and the nutritional value of broccoli[J].Journal of Agricultural and Food Chemistry,2009,57(2):572-578.
[30] Zaghdoud C, Alcaraz-López C, Mota-Cadenas C, et al. Differential responses of two broccoli (Brassica oleracea L. var Italica) cultivars to salinity and nutritional quality improvement[J].The Scientific World Journal,2012,doi:10.1100/2012/291435.
[31] Grattan S R, Grieve C M. Salinity-mineral nutrient relations in horticultural crops[J].Sci. Hort.,1999,78:127-157.
[32] De Pascale S, Barbieri G. Effects of soil salinity from long-term irrigation with saline-sodic water on yield and quality of winter vegetable crops[J].Sci. Hort.,1995,64:145-157.
[33] El-Sherif A F, Shata S M, Youssef R A. Response of tomato seedlings to zinc application under different salinity levels I. Dry matter, Ca, Mg, K and Na content[J].Egypt. J. Hort.,1990,17:131-142.
[34] Mehrotra N K, Khanna V K, Agarwala S C. Soil-sodicity-induced zinc deficiency in maize[J].Plant Soil,1986,92:63-71.
[35] Shukla U C, Mukhi A K. Ameliorative role of zinc on maize growth (Zea mays L.) under salt-affected soil conditions[J].Plant Soil,1985,87:423-432.