• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      人類腫瘤病毒介導(dǎo)缺氧信號(hào)致病機(jī)制的研究進(jìn)展

      2014-06-27 09:58:06張黎明朱彩霞蔡啟良
      微生物與感染 2014年3期
      關(guān)鍵詞:宿主通路誘導(dǎo)

      張黎明,朱彩霞,蔡啟良

      復(fù)旦大學(xué)基礎(chǔ)醫(yī)學(xué)院教育部/衛(wèi)生部醫(yī)學(xué)分子病毒學(xué)重點(diǎn)實(shí)驗(yàn)室,上海 200032

      隨著腫瘤病因?qū)W的研究不斷深入,人們發(fā)現(xiàn)病毒感染與多種腫瘤的發(fā)生和發(fā)展密切相關(guān)。病毒入侵宿主細(xì)胞后常引發(fā)多個(gè)關(guān)鍵細(xì)胞信號(hào)通路的調(diào)控紊亂,其中對(duì)作為腫瘤微環(huán)境細(xì)胞應(yīng)激反應(yīng)關(guān)鍵信號(hào)通路之一的缺氧信號(hào)(hypoxia signaling)的調(diào)控尤為重要。現(xiàn)已證實(shí),許多常見人類腫瘤病毒編碼的毒蛋白可篡改宿主細(xì)胞缺氧信號(hào)通路,從而促進(jìn)細(xì)胞生長(zhǎng)、抗凋亡,以及病毒自身的復(fù)制與繁殖。本文就各種常見腫瘤病毒如何通過(guò)調(diào)控缺氧誘導(dǎo)因子(hypoxia-inducible factor,HIF)信號(hào)通路而應(yīng)對(duì)缺氧微環(huán)境誘發(fā)腫瘤發(fā)生發(fā)展分子機(jī)制的最新研究進(jìn)展進(jìn)行綜述。

      1 缺氧信號(hào)通路

      缺氧信號(hào)可分為缺氧微環(huán)境應(yīng)激及其效應(yīng)蛋白HIF信號(hào),兩者在致病過(guò)程中相輔相成、密不可分。腫瘤細(xì)胞的快速生長(zhǎng)需新生血管以提供足夠氧氣。然而,新生血管的有效覆蓋往往遠(yuǎn)低于氧氣擴(kuò)散所需范圍,導(dǎo)致氧氣供應(yīng)不能滿足腫瘤細(xì)胞生長(zhǎng)和代謝的需要[1]。在缺氧條件下,腫瘤組織及其周邊的免疫細(xì)胞、內(nèi)皮細(xì)胞、上皮細(xì)胞、成纖維細(xì)胞等共同形成腫瘤內(nèi)缺氧微環(huán)境(intratumoral hypoxic microenvironment)[2-5]。細(xì)胞如何感應(yīng)缺氧微環(huán)境、何種信號(hào)通路參與細(xì)胞的缺氧應(yīng)答等一直是科學(xué)家關(guān)注的熱點(diǎn)。目前較清楚的分子機(jī)制是:細(xì)胞通過(guò)HIF及其信號(hào)通路應(yīng)答缺氧環(huán)境 (圖1)[6]。HIF主要以異二聚體形式存在,包括α和β兩個(gè)亞基。其中α亞基存在HIF-1α、HIF-2α和HIF-3α異構(gòu)體。HIF-1α在細(xì)胞中普遍表達(dá),而HIF-2α和HIF-3α只在某些特定的細(xì)胞類型中表達(dá)[7]。HIF-1由相對(duì)分子質(zhì)量120 000左右的α亞單位(HIF-lα)和91 000~94 000的β亞單位﹝HIF-1β或芳香烴受體核轉(zhuǎn)位蛋白(aryl hydrocarbon receptor nuclear translocator,ARNT)﹞組成,兩者均屬堿性螺旋-環(huán)-螺旋(basic helix-loop-helix, bHLH)轉(zhuǎn)錄因子超家族中的PAS(Per-ARNT-Sim)亞族蛋白,該超家族中每個(gè)成員在其N端均含有與其他亞單位聚合所必需的bHLH-PAS結(jié)構(gòu)域[8]。HIF-1α與HIF-2α很多功能相同,但在某些特定細(xì)胞中功能截然相反[9],HIF-3α可對(duì)HIF-1α和HIF-2α介導(dǎo)的基因轉(zhuǎn)錄活性起負(fù)調(diào)節(jié)作用[10]。HIF的轉(zhuǎn)錄活性主要是通過(guò)調(diào)節(jié)HIF-α的穩(wěn)定性來(lái)實(shí)現(xiàn)的,其中HIF-1α和HIF-2α已證實(shí)受脯氨酰羥化酶(prolyl hydroxylase,PHD)和HIF-1抑制因子(factor inhibiting HIF-1,F(xiàn)IH)的負(fù)調(diào)節(jié)。在常氧條件下(氧氣量>8%~10%),PHD可誘發(fā)HIF-1α第402位和564位(HIF-2α第405和531位)的脯氨酸羥基化[7]。該羥基化修飾主要發(fā)生在HIF-1α的氧依賴性降解結(jié)構(gòu)域(oxygen-dependent degradation domain, ODDD)。羥基化修飾后的ODDD可與腫瘤抑制蛋白VHL (von-Hippel-Lindau)特異結(jié)合[6]。HIF-1α與VHL結(jié)合后,VHL通過(guò)募集延伸因子B、延伸因子C、Cul2和Rbx1形成E3泛素化連接酶,并與泛素偶聯(lián)酶(ubiquitin-conjugating enzyme,E2)和泛素激活酶(ubiquitin-activating enzyme,E1)形成蛋白酶復(fù)合體,介導(dǎo)HIF-1α的泛素化修飾,促使HIF-1α降解[11]。同時(shí),F(xiàn)IH可使HIF-1α的C端反式激活結(jié)構(gòu)域(transactivation domain, TAD)的第803位天冬氨酸殘基羥基化,阻止轉(zhuǎn)錄輔助激活因子cAMP反應(yīng)元件結(jié)合蛋白的結(jié)合蛋白(cAMP response element binding protein binding protein,CBP)/P300與HIF-1α結(jié)合,抑制HIF-1α下游靶基因的轉(zhuǎn)錄激活表達(dá)[12]。相反,在缺氧條件下逃避PHD羥基化修飾的HIF-1α通過(guò)多種癌基因信號(hào)通路 (如Src、Ras、蛋白激酶C等) 介導(dǎo)磷酸化修飾而穩(wěn)定存在, 同時(shí)穩(wěn)定積累的HIF-1α進(jìn)入細(xì)胞核后與靶基因啟動(dòng)子的反式激活缺氧應(yīng)答元件(hypoxia response element,HRE;即5′-RACGTG-3′)結(jié)合,并在ARNT、CBP/P300和DNA聚合酶Ⅱ復(fù)合體等共同作用下激活血管內(nèi)皮生長(zhǎng)因子(vascular endothelial growth factor,VEGF)、葡萄糖轉(zhuǎn)運(yùn)蛋白1(glucose transporter 1,Glut1)等靶基因的轉(zhuǎn)錄表達(dá)[13]。

      圖1 不同人類腫瘤病毒及其抗原篡改的缺氧信號(hào)靶點(diǎn)Fig.1 Hypoxia signaling targets deregulated by different oncogenic viruses and their antigens

      2 病毒對(duì)HIF信號(hào)通路調(diào)控的分子機(jī)制

      越來(lái)越多的研究表明,缺氧應(yīng)激在病毒誘發(fā)腫瘤發(fā)生中發(fā)揮重要作用。多種DNA 和RNA病毒對(duì)宿主細(xì)胞的缺氧信號(hào)及其缺氧微環(huán)境應(yīng)答均有調(diào)控作用,但病毒如何利用這種缺氧微環(huán)境篡改HIF信號(hào)通路以達(dá)到促進(jìn)病毒感染和誘發(fā)腫瘤發(fā)生發(fā)展等問題,目前尚不清楚。以下就已報(bào)道的病毒與缺氧信號(hào)相互調(diào)控的機(jī)制進(jìn)行綜述(圖1)。

      2.1 DNA病毒介導(dǎo)HIF信號(hào)通路的紊亂調(diào)節(jié)

      與缺氧相關(guān)的人類DNA病毒主要包括小DNA病毒﹝如腺病毒(adenovirus, AdV)、乙型肝炎病毒(hepatitis B virus,HBV)、人乳頭瘤病毒(human papillomavirus,HPV)等﹞和大DNA病毒﹝如單純皰疹病毒(herpes simplex virus,HSV)、人巨細(xì)胞病毒(human cytomegalovirus,HCMV)、EB病毒(Epstein-Barr virus,EBV)、卡波西肉瘤皰疹病毒(Kaposi’s sarcoma-associated herpesvirus,KSHV)等﹞。

      2.1.1腺病毒腺病毒感染宿主細(xì)胞后可引起與缺氧應(yīng)激類似的染色體變化,并抵抗細(xì)胞凋亡。其主要機(jī)制是腺病毒感染后表達(dá)的E1A抗原能激活P53,P53作用于下游的P21,抑制細(xì)胞周期蛋白依賴性激酶(cyclin-dependent kinase,CDK),導(dǎo)致細(xì)胞生長(zhǎng)阻滯;同時(shí),P53積累使Puma和Noxa上調(diào),從而誘導(dǎo)細(xì)胞凋亡[14]。但是,腺病毒編碼的E1B55K蛋白能抑制P53,促進(jìn)HIF-1α表達(dá)上調(diào),并抑制P53介導(dǎo)的細(xì)胞生長(zhǎng)阻滯和凋亡;同時(shí),E1B19K蛋白能結(jié)合Bak,阻止Bak激活、Bax/Bak復(fù)合體和多聚體形成,并抑制細(xì)胞凋亡,從而有利于腺病毒復(fù)制完成[15]。另一方面,在缺乏Bak時(shí),Bax可代替Bak誘導(dǎo)細(xì)胞凋亡,但E1B19K亦能與Bax結(jié)合,從而全面阻止細(xì)胞凋亡[16]。

      2.1.2HBVHBV X蛋白(HBV X protein,HBx)能在轉(zhuǎn)錄水平強(qiáng)烈誘導(dǎo)轉(zhuǎn)移相關(guān)蛋白1(metastasis-associated protein 1,MTA1)和組蛋白去乙?;?histone deacetylase,HDAC)基因的表達(dá)。在HBx共表達(dá)時(shí),MTA1能介導(dǎo)HIF-1α蛋白ODDD的脫乙?;?,阻止HIF-1α與PHD及腫瘤抑制蛋白VHL的特異性結(jié)合,從而提高HIF-1α的穩(wěn)定性。累積的HIF-1α通過(guò)多種信號(hào)通路上調(diào)下游靶基因表達(dá)。此外,通過(guò)HBx誘導(dǎo)碳酸酐酶9(carbonic anhydrase 9,CA9)的表達(dá),HBV能應(yīng)對(duì)缺氧微環(huán)境下的pH值變化,促進(jìn)感染細(xì)胞存活。此過(guò)程主要由HIF-1α與位于CA9基因轉(zhuǎn)錄起始位點(diǎn)上游-10/-3 bp的功能HRE結(jié)合并誘導(dǎo)其啟動(dòng)子的轉(zhuǎn)錄活性,以增加CA9的表達(dá)量[17,18]。

      2.1.3HPV高危毒株HPV16的癌基因E6和E7在HPV自然感染中同時(shí)表達(dá)。E6蛋白通過(guò)抑制P53表達(dá)激活HIF-1α的轉(zhuǎn)錄活性[19],E7蛋白則通過(guò)其N端的結(jié)構(gòu)域與HIF-1α結(jié)合并增強(qiáng)HIF-1α的轉(zhuǎn)錄活性[20]。雖然HDAC能穩(wěn)定和提高HIF-1α的轉(zhuǎn)錄功能,但HDAC可同時(shí)誘導(dǎo)HIF-1α下游靶基因去乙?;种破浒谢虻霓D(zhuǎn)錄表達(dá)。近期研究發(fā)現(xiàn),E7蛋白能同時(shí)結(jié)合HDAC,從而阻止HDAC對(duì)HIF-1α下游靶基因轉(zhuǎn)錄表達(dá)的抑制作用[21]。

      2.1.4HSVHSV感染細(xì)胞后,雙鏈RNA依賴性蛋白激酶(double-stranded RNA-dependent protein kinase,PKR)被磷酸化,并活化真核起始因子2α(eukaryotic initiation factor 2α,eIF-2α)蛋白磷酸化,從而使相關(guān)蛋白合成關(guān)閉,導(dǎo)致HSV-1復(fù)制停止。在缺氧環(huán)境中HSV感染細(xì)胞后,由于缺氧能逐級(jí)激活細(xì)胞外信號(hào)調(diào)節(jié)激酶1/2(extracellular signal regulated kinase 1/2,ERK1/2)和絲裂原活化蛋白激酶的激酶(mitogen-activated protein kinase kinase,MEK)磷酸化,并抑制PKR磷酸化,使相關(guān)蛋白合成打開,增強(qiáng)HSV-1的復(fù)制[22]。

      2.1.5HCMVHCMV感染細(xì)胞后,可導(dǎo)致宿主細(xì)胞中HIF-1α表達(dá)增高。經(jīng)紫外線輻射而失活的HCMV與宿主細(xì)胞孵育后,也會(huì)導(dǎo)致宿主細(xì)胞中HIF-1α特異RNA水平增高,說(shuō)明HIF-1α高表達(dá)與毒基因表達(dá)無(wú)關(guān)。但是,經(jīng)紫外線輻射的HCMV誘導(dǎo)產(chǎn)生的HIF-1α不如正常條件下HCMV感染后細(xì)胞產(chǎn)生的HIF-1α穩(wěn)定,表明HCMV感染細(xì)胞后并不是單純提高HIF-1α表達(dá),而是同時(shí)增強(qiáng)HIF-1α穩(wěn)定性。此外,研究表明 HCMV感染細(xì)胞9 h后才出現(xiàn)HIF-1α表達(dá)升高,顯示其感染宿主細(xì)胞后并不直接誘導(dǎo)HIF-1α表達(dá)[23]。隨后通過(guò)特異性的HCMV感染抑制劑實(shí)驗(yàn)進(jìn)一步證明,HIF-1α的激活與磷脂酰肌醇3激酶(phosphatidylinositol 3 kinase,PI3K)/蛋白激酶B(protein kinase B,Akt)/哺乳類雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)和PI3K激酶(PI3K kinase,PIKK)/Akt/mTOR兩個(gè)信號(hào)通路有關(guān),其中Akt的激活對(duì)HIF-1α的誘導(dǎo)是必需的[24]。

      2.1.6EBV在缺氧微環(huán)境中,缺氧應(yīng)激可誘導(dǎo)EBV感染細(xì)胞進(jìn)入G0/G1期。細(xì)胞進(jìn)入G0/G1期后,EBV即刻早期基因BZLF1的轉(zhuǎn)錄將被激活,表達(dá)其相應(yīng)的ZEBRA蛋白(即Zta蛋白),同時(shí)驅(qū)動(dòng)EBV從潛伏期進(jìn)入裂解復(fù)制期[25]。相反,EBV在Ⅱ型或Ⅲ型潛伏感染中,潛伏性膜蛋白1(latent membrane protein 1,LMP1)表達(dá)可顯著上調(diào)HIF-1α的表達(dá)量,LMP1通過(guò)抑制P42/P44絲裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)通路及促進(jìn)細(xì)胞內(nèi)活性氧(reactive oxygen species,ROS)生成來(lái)降低H2O2含量和誘導(dǎo)HIF-1α表達(dá)[26]。此外,在鼻咽癌上皮細(xì)胞中亦發(fā)現(xiàn)LMP1可通過(guò)提高泛素化通路中E3泛素蛋白連接酶Siah1的穩(wěn)定性,提高HIF-1α的表達(dá)及活性。主要機(jī)制是EBV感染細(xì)胞中高水平表達(dá)的Siah1蛋白可誘導(dǎo)PHD1/PHD3復(fù)合體降解,阻礙VHL/HIF-1α復(fù)合體形成,促使HIF-1α與其他輔助蛋白形成聚合物,并結(jié)合其下游靶基因啟動(dòng)子HRE,以激活VEGF、胰島素樣生長(zhǎng)因子2(insulin-like growth factor 2,ILGF2)等細(xì)胞因子表達(dá),引發(fā)宿主細(xì)胞的轉(zhuǎn)化[27]。

      2.1.7KSHVKSHV又稱人皰疹病毒8型(human herpesvirus 8,HHV-8),在感染宿主細(xì)胞中存在2個(gè)生活時(shí)期——潛伏期和裂解復(fù)制期。缺氧環(huán)境可促使?jié)摲腥镜腒SHV從潛伏期轉(zhuǎn)向細(xì)胞裂解復(fù)制期。缺氧誘導(dǎo)產(chǎn)生的KSHV相關(guān)蛋白使HIF-1α表達(dá)增多,KSHV的rta基因啟動(dòng)子激活,導(dǎo)致Rta大量表達(dá)并促使KSHV進(jìn)入細(xì)胞裂解期[28]。另外, Dalton-Griffin和Wilson等證明X-盒結(jié)合蛋白1(X-box binding protein 1,XBP1)對(duì)rta(ORF50)基因啟動(dòng)子亦起激活作用。rta基因啟動(dòng)子內(nèi)存在XBP1相關(guān)反應(yīng)元件(XBP1-related response element,XRE),在急性缺氧條件下被激活而使XBP1高水平表達(dá),驅(qū)使KSHV進(jìn)入細(xì)胞裂解期[29]。研究還表明,KSHV基因組中ORF34和ORF50基因啟動(dòng)子區(qū)均存在HIF-1α的特異結(jié)合元件HRE,HRE與HIF-1α或HIF-2α結(jié)合即可激活毒蛋白R(shí)ta表達(dá)并誘導(dǎo)KSHV進(jìn)入裂解復(fù)制期[30]。此外,本課題組前期研究結(jié)果表明,缺氧環(huán)境中KSHV編碼的潛伏相關(guān)核抗原(latency-associated nuclear antigen,LANA)能在轉(zhuǎn)錄和翻譯水平提高HIF-1α表達(dá),而HIF-1α與ORF50啟動(dòng)子區(qū)域的HRE結(jié)合使Rta表達(dá),從而使KSHV進(jìn)入細(xì)胞裂解期[31,32]。LANA能上調(diào)Aurora A的表達(dá)水平,而高表達(dá)的Aurora A可誘導(dǎo)P53磷酸化,增強(qiáng)LANA與P53的相互作用,促進(jìn)LANA介導(dǎo)的P53泛素化和降解,從而影響HIF-1α蛋白翻譯后的穩(wěn)定性[33];另外,LANA還可通過(guò)EC5S泛素化修飾作用,促使腫瘤抑制蛋白P53和VHL降解,而低水平的P53和VHL蛋白不能有效抑制HIF-1α[34],從而促進(jìn)宿主細(xì)胞存活和快速生長(zhǎng)。

      2.2 RNA病毒介導(dǎo)HIF信號(hào)通路的紊亂調(diào)節(jié)

      目前與人類腫瘤相關(guān)并篡改缺氧信號(hào)的RNA病毒主要有3種。

      2.2.1人T細(xì)胞白血病病毒1型人T細(xì)胞白血病病毒1型 (human T-cell leukaemia virus type 1,HTLV-1)感染可引起成熟T細(xì)胞失活,導(dǎo)致相關(guān)白血病。HTLV-1編碼的Tax蛋白可激活PI3K/Akt信號(hào)途徑,該信號(hào)途徑的激活與HTLV-1感染T細(xì)胞的存活密切相關(guān)[35]。其中HIF-1α作為該信號(hào)途徑中的關(guān)鍵蛋白,在HTLV-1感染T細(xì)胞中受Tax蛋白正調(diào)控而激活。Tax不僅促進(jìn)HIF-1α的大量表達(dá)和累積,還可提高HIF-1α的DNA結(jié)合效率。在PI3K/Akt突變T細(xì)胞中,HTLV-1感染后表達(dá)的Tax蛋白未能有效激活HIF-1α的表達(dá)及其DNA結(jié)合能力[36]。因此,Tax主要激活PI3K/Akt信號(hào)途徑,繼而激活HIF-1,以促進(jìn)HTLV-1相關(guān)腫瘤的發(fā)生發(fā)展。

      2.2.2丙型肝炎病毒大量數(shù)據(jù)表明,丙型肝炎病毒(hepatitis C virus,HCV)感染可導(dǎo)致慢性肝炎、肝硬化和肝癌。在HCV陽(yáng)性患者肝癌組織中可檢測(cè)到HCV負(fù)鏈RNA,且通常與HBV合并感染。Papaevangelous等發(fā)現(xiàn),缺氧應(yīng)激不僅顯著上調(diào)抗缺氧應(yīng)激、糖代謝和細(xì)胞分裂的基因表達(dá),還大大提高HCV在人體肝臟細(xì)胞內(nèi)的復(fù)制效率。但是,該過(guò)程并不影響病毒入侵宿主細(xì)胞及其RNA轉(zhuǎn)錄翻譯[37]。此外,Abe等亦發(fā)現(xiàn)在缺氧應(yīng)激作用下,HCV核心蛋白可通過(guò)調(diào)節(jié)核因子κB (nuclear factor κB,NF-κB)和HIF-1α轉(zhuǎn)錄活性而上調(diào)VEGF的表達(dá)。表明缺氧應(yīng)激與HCV復(fù)制及其致瘤性密切相關(guān)[38]。

      2.2.3人類免疫缺陷病毒轉(zhuǎn)錄激活因子4(activating transcription factor 4,ATF4)是細(xì)胞感受外界各種應(yīng)激(包括代謝和缺氧)并向胞內(nèi)傳遞信號(hào)的重要調(diào)控因子。人類免疫缺陷病毒1型(human immunodeficiency virus type 1,HIV-1)可上調(diào)ATF4的表達(dá),并通過(guò)ATF4改變胞內(nèi)蛋白的折疊狀態(tài),傳遞各種應(yīng)激信號(hào)。同時(shí),HIV編碼的反式轉(zhuǎn)錄激活因子(trans-activator of transcription,Tat) 與ATF4直接作用,以加強(qiáng)HIV-1在細(xì)胞內(nèi)的復(fù)制,繼而激活長(zhǎng)末端重復(fù)序列(long terminal repeat,LTR)[39]。此外,HIV感染可誘發(fā)缺氧應(yīng)激引起的肺動(dòng)脈高壓(pulmonary hypertension,PH)。隨后機(jī)制研究發(fā)現(xiàn),HIV蛋白酶抑制劑可通過(guò)干擾Akt磷酸化途徑阻斷HIV在缺氧條件下誘發(fā)的PH現(xiàn)象[40]。

      3 缺氧應(yīng)激對(duì)病毒感染及其致宿主細(xì)胞病變的作用

      3.1 缺氧應(yīng)激與病毒應(yīng)答

      缺氧微環(huán)境雖可影響病毒在宿主細(xì)胞內(nèi)的復(fù)制,但病毒同時(shí)啟動(dòng)一系列信號(hào)級(jí)聯(lián)反應(yīng)來(lái)應(yīng)對(duì)缺氧微環(huán)境的刺激。例如,缺氧應(yīng)激不僅引起EBV感染細(xì)胞的細(xì)胞周期G0/G1停滯,誘導(dǎo)EBV早期蛋白Zta表達(dá),還可增加EBV基因組的拷貝數(shù)[25,41],同時(shí)可啟動(dòng)EBV和KSHV的裂解復(fù)制期。另外,缺氧應(yīng)激亦可對(duì)病毒感染宿主的各個(gè)過(guò)程產(chǎn)生影響。以HBV為例,X區(qū)是HBV結(jié)構(gòu)和功能上重疊最多的區(qū)段,X區(qū)的變異可影響HBV的復(fù)制、表達(dá)及其致癌作用[42]。Lee等發(fā)現(xiàn),在缺氧條件下培養(yǎng)HBV感染的肝細(xì)胞時(shí),與肝癌發(fā)生密切相關(guān)的X基因表達(dá)升高、HBV增強(qiáng)子Ⅰ活性增強(qiáng),進(jìn)而激活VEGF表達(dá)及誘導(dǎo)肝癌組織中血管生成[43]。Yoo等亦發(fā)現(xiàn),X蛋白可通過(guò)激活MAPK磷酸化途徑,增加HIF-1α的穩(wěn)定性和轉(zhuǎn)錄活性。在X基因的轉(zhuǎn)基因鼠肝臟中,HIF-1α和VEGF的表達(dá)明顯增高,HIF-1α與X蛋白相互作用可影響HIF-1α靶基因的轉(zhuǎn)錄活性,與肝癌的發(fā)生有關(guān)[44]。另一個(gè)例子是,缺氧應(yīng)激對(duì)HPV感染宿主細(xì)胞的周期調(diào)控亦有影響。Amellem等發(fā)現(xiàn),HPV18的E7蛋白可破壞缺氧應(yīng)激誘導(dǎo)的細(xì)胞周期停滯[45]。另外,雖然缺氧條件可增強(qiáng)HCV復(fù)制,但并不影響病毒入侵宿主細(xì)胞及其RNA翻譯[46]。在HCV感染患者體內(nèi),與缺氧應(yīng)激相關(guān)的基因如金屬硫蛋白1H(metallothionein 1H,MT1H)、熱休克蛋白70/90(heat shock protein 70/90,Hsp70/90)表達(dá)明顯增高,而基質(zhì)金屬蛋白酶7(matrix metalloproteinase 7,MMP-7)表達(dá)降低,表明HCV感染宿主細(xì)胞過(guò)程與缺氧信號(hào)途徑相關(guān)[47]。更有意思的是,HCMV感染可抑制宿主細(xì)胞因缺氧應(yīng)激導(dǎo)致的細(xì)胞復(fù)制終止,其主要機(jī)制是HCMV感染可激活mTOR的2個(gè)效應(yīng)因子eIF4E結(jié)合蛋白(eIF4E binding protein,4E-BP)和eIF4G的磷酸化[23]。

      3.2 缺氧應(yīng)激與染毒細(xì)胞轉(zhuǎn)化

      缺氧應(yīng)激可通過(guò)多種形式作用于細(xì)胞,包括導(dǎo)致細(xì)胞生理特征和致病性等相關(guān)基因(如血管活性物質(zhì)和基質(zhì)蛋白)表達(dá)水平的變化。這些活性物質(zhì)和基質(zhì)蛋白可影響血管結(jié)構(gòu)和周圍組織的組成。從基因水平來(lái)看,缺氧可誘導(dǎo)與血管收縮神經(jīng)和平滑肌絲裂原相關(guān)的基因〔如血小板衍生生長(zhǎng)因子B(platelet-derived growth factor B,PDGF-B)、內(nèi)皮素1(endothelin 1)、VEGF、血小板反應(yīng)蛋白1(thrombospondin 1) 〕,以及基質(zhì)蛋白編碼基因〔如膠原酶Ⅳ(collagenase Ⅳ)、MMP-9、血小板反應(yīng)蛋白1〕的表達(dá)[48]。同時(shí),缺氧也可抑制抗有絲分裂效應(yīng)因子內(nèi)皮型一氧化氮合酶(endothelial nitric oxide synthase,eNOS)的表達(dá)。缺氧應(yīng)激對(duì)細(xì)胞的作用有時(shí)間依賴性,細(xì)胞暴露于缺氧的時(shí)間不同,產(chǎn)生的影響也不同:短期暴露可導(dǎo)致生理性和可逆性的血管和周圍組織的結(jié)構(gòu)改變;長(zhǎng)期暴露則導(dǎo)致不可逆的血管結(jié)構(gòu)改變及平滑肌的增生和纖維化[49]。

      鑒于腫瘤細(xì)胞的發(fā)生源于能促進(jìn)細(xì)胞快速生長(zhǎng)和存活的蛋白信號(hào)通路的紊亂調(diào)節(jié),其中癌細(xì)胞的擴(kuò)散依賴于營(yíng)養(yǎng)成分和氧氣的供應(yīng),而氧氣限量對(duì)控制新血管生成、葡萄糖代謝、細(xì)胞存活和腫瘤細(xì)胞轉(zhuǎn)移起關(guān)鍵作用[50]。缺氧微環(huán)境應(yīng)激對(duì)病毒介導(dǎo)腫瘤產(chǎn)生的影響主要是通過(guò)改變?nèi)毖跣盘?hào)所誘導(dǎo)的血管生成、厭氧代謝(anaerobic metabolism),以及其他促腫瘤細(xì)胞存活信號(hào)通路的蛋白表達(dá)水平[51]。同時(shí),缺氧和病毒感染共存情況不僅易導(dǎo)致細(xì)胞DNA損傷,誘導(dǎo)突變及遺傳不穩(wěn)定,還能導(dǎo)致DNA修復(fù)功能損失。由于DNA損傷和DNA修復(fù)抑制給染毒腫瘤細(xì)胞自我復(fù)制及永生而適應(yīng)應(yīng)激微環(huán)境提供了可能,任何有利于染毒細(xì)胞適應(yīng)缺氧微環(huán)境應(yīng)激的突變(如細(xì)胞周期阻滯、分化、抗凋亡和增加血管生成等)均具有一定優(yōu)勢(shì)。染毒細(xì)胞突變株的缺氧應(yīng)激選擇比非突變株具有更快的生長(zhǎng)能力和適應(yīng)能力,最后成為優(yōu)勢(shì)株而引發(fā)腫瘤的產(chǎn)生。由此可見,缺氧應(yīng)激和HIF 信號(hào)對(duì)細(xì)胞的廣泛損傷足以表明其在病毒誘導(dǎo)細(xì)胞轉(zhuǎn)化方面起關(guān)鍵作用。

      4 結(jié)語(yǔ)

      綜上所述,病毒入侵可誘導(dǎo)腫瘤的產(chǎn)生,但不同病毒入侵細(xì)胞的機(jī)制不同。缺氧應(yīng)激可通過(guò)改變病毒在體內(nèi)的復(fù)制翻譯及特定基因的表達(dá)情況而影響腫瘤的發(fā)生。另外,細(xì)胞在缺氧條件下會(huì)通過(guò)HIF信號(hào)通路作出一系列的生物學(xué)應(yīng)答來(lái)適應(yīng)缺氧條件。本文總結(jié)了缺氧信號(hào)、病毒感染與相關(guān)腫瘤發(fā)生發(fā)展的關(guān)系(包括缺氧應(yīng)激造成DNA損傷、DNA修復(fù)功能喪失等)、不同腫瘤病毒應(yīng)答缺氧應(yīng)激的分子機(jī)制,以及缺氧應(yīng)激對(duì)病毒入侵感染宿主細(xì)胞的影響等研究進(jìn)展?;谌毖跣盘?hào)通路中不同病毒誘發(fā)腫瘤的應(yīng)答途徑相似, 相應(yīng)的缺氧信號(hào)可能成為相關(guān)疾病診斷及治療的潛在標(biāo)簽、靶點(diǎn)和策略。

      [1] Carmeliet P, Jain RK. Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases [J]. Nat Rev Drug Discov, 2011, 10(6):417-427.

      [2] Casazza A, Di Conza G, Wenes M, Finisguerra V, Deschoemaeker S, Mazzone M. Tumor stroma: a complexity dictated by the hypoxic tumor microenvironment [J]. Oncogene, 2013. doi: 10.1038/onc.2013.121. [Epub ahead of print].

      [3] Dewi FR, Fatchiyah F. Methylation impact analysis of erythropoietin (EPO) gene to hypoxia inducible factor-1alpha (HIF-1alpha) activity [J]. Bioinformation, 2013, 9(15):782-787.

      [4] Buller KM, Wixey JA, Pathipati P, Carty M, Colditz PB, Williams CE, Scheepens A. Selective losses of brainstem catecholamine neurons after hypoxia-ischemia in the immature rat pup [J]. Pediatr Res, 2008, 63(4):364-369.

      [5] Kimura S, Kitadai Y, Tanaka S, Kuwai T, Hihara J, Yoshida K, Toge T, Chayama K. Expression of hypoxia-inducible factor (HIF)-1alpha is associated with vascular endothelial growth factor expression and tumour angiogenesis in human oesophageal squamous cell carcinoma [J]. Eur J Cancer, 2004, 40(12): 1904-1912.

      [6] Harris AL. Hypoxia—a key regulatory factor in tumour growth [J]. Nat Rev Cancer, 2002, 2(1):38-47.

      [7] Bertout JA, Patel SA, Simon MC. The impact of O2availability on human cancer [J]. Nat Rev Cancer, 2008, 8(12): 967-975.

      [8] Semenza GL, Wang GL. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation [J]. Mol Cell Biol, 1992, 12(12):5447-5454.

      [9] Keith B, Johnson RS, Simon MC. HIF1alpha and HIF2alpha: sibling rivalry in hypoxic tumour growth and progression [J]. Nat Rev Cancer, 2012, 12(1):9-22.

      [10] Makino Y, Cao R, Svensson K, Bertilsson G, Asman M, Tanaka H, Cao Y, Berkenstam A, Poellinger L. Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression [J]. Nature, 2001, 414(6863):550-554.

      [11] Stebbins CE, Kaelin WG Jr, Pavletich NP. Structure of the VHL-ElonginC-ElonginB complex: implications for VHL tumor suppressor function [J]. Science, 1999, 284(5413):455-461.

      [12] Lando D, Peet DJ, Gorman JJ, Whelan DA, Whitelaw ML, Bruick RK. FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor [J]. Genes Dev, 2002, 16(12):1466-1471.

      [13] Yamashita K, Discher DJ, Hu J, Bishopric NH, Webster KA. Molecular regulation of the endothelin-1 gene by hypoxia. Contributions of hypoxia-inducible factor-1, activator protein-1, GATA-2, AND p300/CBP [J]. J Biol Chem, 2001, 276(16):12645-12653.

      [14] Kester HA, Sonneveld E, van der Saag PT, van der Burg B. Prolonged progestin treatment induces the promoter of CDK inhibitor p21 Cip1,Waf1 through activation of p53 in human breast and endometrial tumor cells [J]. Exp Cell Res, 2003, 284(2):264-273.

      [15] Cuconati A, Degenhardt K, Sundararajan R, Anschel A, White E. Bak and Bax function to limit adenovirus replication through apoptosis induction [J]. J Virol, 2002, 76(9):4547-4558.

      [16] White E. Mechanisms of apoptosis regulation by viral oncogenes in infection and tumorigenesis [J]. Cell Death Differ, 2006, 13(8):1371-1377.

      [17] Holotnakova T, Tylkova L, Takacova M, Kopacek J, Petrik J, Pastorekova S, Pastorek J. Role of the HBx oncoprotein in carbonic anhydrase 9 induction [J]. J Med Virol, 2010, 82(1):32-40.

      [18] Yoo YG, Na TY, Seo HW, Seong JK, Park CK, Shin YK, Lee MO. Hepatitis B virus X protein induces the expression of MTA1 and HDAC1, which enhances hypoxia signaling in hepatocellular carcinoma cells [J]. Oncogene, 2008, 27(24):3405-3413.

      [19] Finzer P, Krueger A, St?hr M, Brenner D, Soto U, Kuntzen C, Krammer PH, R?sl F. HDAC inhibitors trigger apoptosis in HPV-positive cells by inducing the E2F-p73 pathway [J]. Oncogene, 2004, 23(28):4807-4817.

      [20] Ganguly N, Parihar SP. Human papillomavirus E6 and E7 oncoproteins as risk factors for tumorigenesis [J]. J Biosci, 2009, 34(1):113-123.

      [21] McLaughlin-Drubin ME, Munger K. The human papillomavirus E7 oncoprotein [J]. Virology, 2009, 384(2):335-344.

      [22] Dambach MJ, Trecki J, Martin N, Markovitz NS. Oncolytic viruses derived from the gamma34.5-deleted herpes simplex virus recombinant R3616 encode a truncated UL3 protein [J]. Mol Ther, 2006, 13(5):891-898.

      [23] Kudchodkar SB, Yu Y, Maguire TG, Alwine JC. Human cytomegalovirus infection induces rapamycin-insensitive phosphorylation of downstream effectors of mTOR kinase [J]. J Virol, 2004, 78(20):11030-11039.

      [24] McFarlane S, Nicholl MJ, Sutherland JS, Preston CM. Interaction of the human cytomegalovirus particle with the host cell induces hypoxia-inducible factor 1 alpha [J]. Virology, 2011, 414(1):83-90.

      [25] Jiang JH, Wang N, Li A, Liao WT, Pan ZG, Mai SJ, Li DJ, Zeng MS, Wen JM, Zeng YX. Hypoxia can contribute to the induction of the Epstein-Barr virus (EBV) lytic cycle [J]. J Clin Virol, 2006, 37(2):98-103.

      [26] Wakisaka N, Kondo S, Yoshizaki T, Murono S, Furukawa M, Pagano JS. Epstein-Barr virus latent membrane protein 1 induces synthesis of hypoxia-inducible factor 1 alpha [J]. Mol Cell Biol, 2004, 24(12):5223-5234.

      [27] Kondo S, Seo SY, Yoshizaki T, Wakisaka N, Furukawa M, Joab I, Jang KL, Pagano JS. EBV latent membrane protein 1 up-regulates hypoxia-inducible factor 1alpha through Siah1-mediated down-regulation of prolyl hydroxylases 1 and 3 in nasopharyngeal epithelial cells [J]. Cancer Res, 2006, 66(20):9870-9877.

      [28] Lu J, Verma SC, Cai Q, Saha A, Dzeng RK, Robertson ES. The RBP-Jkappa binding sites within the RTA promoter regulate KSHV latent infection and cell proliferation [J]. PLoS Pathog, 2012, 8(1):e1002479.

      [29] Dalton-Griffin L, Wilson SJ, Kellam P. X-box binding protein 1 contributes to induction of the Kaposi’s sarcoma-associated herpesvirus lytic cycle under hypoxic conditions [J]. J Virol, 2009, 83:(14):7202-7209.

      [30] Haque M, Davis DA, Wang V, Widmer I, Yarchoan R. Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) contains hypoxia response elements: relevance to lytic induction by hypoxia [J]. J Virol, 2003, 77(12):6761-6768.

      [31] Cai Q, Lan K, Verma SC, Si H, Lin D, Robertson ES. Kaposi’s sarcoma-associated herpesvirus latent protein LANA interacts with HIF-1 alpha to upregulate RTA expression during hypoxia: Latency control under low oxygen conditions [J]. J Virol, 2006, 80(16):7965-7975.

      [32] Carroll PA, Kenerson HL, Yeung RS, Lagunoff M. Latent Kaposi’s sarcoma-associated herpesvirus infection of endothelial cells activates hypoxia-induced factors [J]. J Virol, 2006, 80(21):10802-10812.

      [33] Cai Q, Xiao B, Si H, Cervini A, Gao J, Lu J, Upadhyay SK, Verma SC, Robertson ES. Kaposi’s sarcoma herpesvirus upregulates Aurora A expression to promote p53 phosphorylation and ubiquitylation [J]. PLoS Pathog, 2012, 8(3):e1002566.

      [34] Cai QL, Knight JS, Verma SC, Zald P, Robertson ES. EC5S ubiquitin complex is recruited by KSHV latent antigen LANA for degradation of the VHL and p53 tumor suppressors [J]. PLoS Pathog, 2006, 2(10):e116.

      [35] Matsuoka M, Jeang KT. Human T-cell leukaemia virus type 1 (HTLV-1) infectivity and cellular transformation [J]. Nat Rev Cancer, 2007, 7(4):270-280.

      [36] Hamamura RS, Ohyashiki JH, Kurashina R, Kobayashi C, Zhang Y, Takaku T, Ohyashiki K. Induction of heme oxygenase-1 by cobalt protoporphyrin enhances the antitumour effect of bortezomib in adult T-cell leukaemia cells [J]. Br J Cancer, 2007, 97(8):1099-1105.

      [37] Papaevangelou V, Pollack H, Rochford G, Kokka R, Hou Z, Chernoff D, Hanna B, Krasinski K, Borkowsky W. Increased transmission of vertical hepatitis C virus (HCV) infection to human immunodeficiency virus (HIV)-infected infants of HIV- and HCV-coinfected women [J]. J Infect Dis, 1998, 178(4):1047-1052.

      [38] Abe M, Sato Y. cDNA microarray analysis of the gene expression profile of VEGF-activated human umbilical vein endothelial cells [J]. Angiogenesis, 2001, 4(4):289-298.

      [39] Caselli E, Benedetti S, Gentili V, Grigolato J, Di Luca D. Short communication: activating transcription factor 4 (ATF4) promotes HIV type 1 activation [J]. AIDS Res Hum Retroviruses, 2012, 28(8):907-912.

      [40] Gary-Bobo G, Houssaini A, Amsellem V, Rideau D, Pacaud P, Perrin A, Brégeon J, Marcos E, Dubois-Randé JL, Sitbon O, Savale L, Adnot S. Effects of HIV protease inhibitors on progression of monocrotaline- and hypoxia-induced pulmonary hypertension in rats [J]. Circulation, 2010, 122(19):1937-1947.

      [41] Wu FY, Chen H, Wang SE, ApRhys CM, Liao G, Fujimuro M, Farrell CJ, Huang J, Hayward SD, Hayward GS. CCAAT/enhancer binding protein alpha interacts with ZTA and mediates ZTA-induced p21(CIP-1) accumulation and G1cell cycle arrest during the Epstein-Barr virus lytic cycle [J]. J Virol, 2003, 77(2):1481-1500.

      [42] Li J, Xu Z, Zheng Y, Johnson DL, Ou JH. Regulation of hepatocyte nuclear factor 1 activity by wild-type and mutant hepatitis B virus X proteins [J]. J Virol, 2002, 76(12):5875-5881.

      [43] Lee SW, Lee YM, Bae SK, Murakami S, Yun Y, Kim KW. Human hepatitis B virus X protein is a possible mediator of hypoxia-induced angiogenesis in hepatocarcinogenesis [J]. Biochem Biophys Res Commun, 2000, 268(2):456-461.

      [44] Yoo YG, Oh SH, Park ES, Cho H, Lee N, Park H, Kim DK, Yu DY, Seong JK, Lee MO. Hepatitis B virus X protein enhances transcriptional activity of hypoxia-inducible factor-1alpha through activation of mitogen-activated protein kinase pathway [J]. J Biol Chem, 2003, 278(40):39076-39084.

      [45] Amellem O, Sandvik JA, Stokke T, Pettersen EO. The retinoblastoma protein-associated cell cycle arrest in S-phase under moderate hypoxia is disrupted in cells expressing HPV18 E7 oncoprotein [J]. Br J Cancer, 1998, 77(6):862-872.

      [46] Wilson GK, Brimacombe CL, Rowe IA, Reynolds GM, Fletcher NF, Stamataki Z, Bhogal RH, Sim?es ML, Ashcroft M, Afford SC, Mitry RR, Dhawan A, Mee CJ, Hübscher SG, Balfe P, McKeating JA. A dual role for hypoxia inducible factor-1alpha in the hepatitis C virus lifecycle and hepatoma migration [J]. J Hepatol, 2012, 56(4):803-809.

      [47] Saadoun D, Bieche I, Authier FJ, Laurendeau I, Jambou F, Piette JC, Vidaud M, Maisonobe T, Cacoub P. Role of matrix metalloproteinases, proinflammatory cytokines, and oxidative stress-derived molecules in hepatitis C virus-associated mixed cryoglobulinemia vasculitis neuropathy [J]. Arthritis Rheum, 2007, 56(4):1315-1324.

      [48] Faller DV. Endothelial cell responses to hypoxic stress [J]. Clin Exp Pharmacol Physiol, 1999, 26(1):74-84.

      [49] Adnot S, Raffestin B, Eddahibi S, Braquet P, Chabrier PE. Loss of endothelium-dependent relaxant activity in the pulmonary circulation of rats exposed to chronic hypoxia [J]. J Clin Invest, 1991, 87(1):155-162.

      [50] Pouyssegur J, Dayan F, Mazure NM. Hypoxia signalling in cancer and approaches to enforce tumour regression [J]. Nature, 2006, 441(7092):437-443.

      [51] Vaupel P. The role of hypoxia-induced factors in tumor progression [J]. Oncologist, 2004, 9(Suppl 5):10-17.

      猜你喜歡
      宿主通路誘導(dǎo)
      齊次核誘導(dǎo)的p進(jìn)制積分算子及其應(yīng)用
      同角三角函數(shù)關(guān)系及誘導(dǎo)公式
      病原體與自然宿主和人的生態(tài)關(guān)系
      科學(xué)(2020年3期)2020-11-26 08:18:22
      龜鱉類不可能是新冠病毒的中間宿主
      續(xù)斷水提液誘導(dǎo)HeLa細(xì)胞的凋亡
      中成藥(2017年12期)2018-01-19 02:06:52
      大型誘導(dǎo)標(biāo)在隧道夜間照明中的應(yīng)用
      表現(xiàn)為扁平苔蘚樣的慢性移植物抗宿主病一例
      Kisspeptin/GPR54信號(hào)通路促使性早熟形成的作用觀察
      人乳頭瘤病毒感染與宿主免疫機(jī)制
      proBDNF-p75NTR通路抑制C6細(xì)胞增殖
      华坪县| 普兰县| 河津市| 江津市| 七台河市| 峨眉山市| 旌德县| 大宁县| 广水市| 沂水县| 新乐市| 铜川市| 屯留县| 隆子县| 大田县| 裕民县| 高州市| 镶黄旗| 河源市| 姜堰市| 宜章县| 哈尔滨市| 渭源县| 泽普县| 大庆市| 天水市| 宁城县| 牡丹江市| 武乡县| 彭泽县| 循化| 石首市| 马鞍山市| 桂东县| 和田市| 通城县| 宜章县| 洛宁县| 德格县| 蓝田县| 韶山市|