李紅艷
(西藏民族學院醫(yī)學院; 高原環(huán)境與疾病相關基因研究實驗室, 咸陽 712082)
核糖體蛋白的主要作用在于參與核糖體聚集和蛋白質(zhì)合成. 另外在細胞周期[1]、凋亡[2-5]和DNA損傷[6]過程中一些核糖體蛋白也發(fā)揮著一定作用,與核糖體組分作用無關[7]. 研究發(fā)現(xiàn)人類某些疾病的發(fā)生與一些核糖體蛋白表達異常密切相關,如Diamond-Blackfan貧血癥[8],特納綜合征[9],喪失聽力[10]和癌癥[11].S6是真核細胞中核糖體小亞基中一個主要的磷酸化蛋白. 在果蠅中利用P轉(zhuǎn)座子插入突變法建立的S6突變系,果蠅致死. 主要原因是引起了果蠅造血細胞中核的過度復制,導致組織過度生長所致[12]. 但有關S6蛋白在果蠅發(fā)育中的具體作用尚不清楚. 本實驗利用RNAi技術分別在果蠅和果蠅S2細胞中干擾S6基因表達,探討S6蛋白對果蠅發(fā)育的影響及可能機制. 以期為深入了解S6蛋白在果蠅發(fā)育中的作用提供更多的實驗基礎和理論依據(jù).
以果蠅S6cDNA編碼區(qū)為模板進行PCR擴增(上游引物:5-caagcggccgctcggtgacgagtggaagg-3;下游引物:5-ccggaattcgcgaatggaggcagaacg-3). 將PCR產(chǎn)物克隆到SympUAST-w載體上,獲得S6-SympUAST-w質(zhì)粒. 將S6-SympUAST-w質(zhì)粒通過顯微注射法注射到果蠅W1118胚胎中,經(jīng)果蠅篩選和分子鑒定獲取S6RNAi轉(zhuǎn)基因果蠅. 實驗中用到的其他果蠅品系包括act5c-Gal4、Hsp70-Gal4、ey-Gal4、sca-gal4和vg-Gal4. 除特殊說明,果蠅培養(yǎng)在18 ℃或25 ℃玉米粉-蔗糖培養(yǎng)基上.
S6RNAi雄蠅與Hsp70-Gal4雌蠅進行雜交,在培養(yǎng)基上間隔1 h產(chǎn)卵. 產(chǎn)卵后24 h,將幼蟲在37 ℃熱激30 min. 熱激后間隔24 h隨機收集幼蟲,每組10只,直到對照組發(fā)育至蛹期為止. 用帶有CCD攝像頭(萊卡)的MZ16體視顯微鏡對收集到的幼蟲拍照. 通過MetaMorph軟件分析圖片,測量幼蟲體長.
在PBS緩沖液中解剖S6RNAi/vg-Gal4三期幼蟲翅膀disc,解剖好的disc立即放到4 ℃果蠅培養(yǎng)基(Gibco)中,使其維持正常的生理環(huán)境. 再將其轉(zhuǎn)移到一個加有50 μL培養(yǎng)基的載玻片上,用100 μL的培養(yǎng)基清洗1次. 以質(zhì)量濃度為1 μg/mL的吖啶橙(Sigma)室溫染色5 min. 染色后直接用熒光顯微鏡觀察拍照.
通過PCR擴增果蠅S6編碼序列(上游引物[含有一個T7啟動子]:5-taatacgactcactatagggagaatgaagctcaacgtttcctat-3;下游引物:5-taatacgactcactatagggagattacttcttgtcgctggagac-3).PCR產(chǎn)物經(jīng)高純度PCR純化試劑盒純化(Roche Molecular Biochemicals). 以純化的產(chǎn)物為模板,用MEGAscript T7體外轉(zhuǎn)錄試劑盒(Ambion)合成單鏈RNAs(ssRNAs). ssRNAs在95 ℃/5 min,65 ℃中退火30 min,然后自然降溫至室溫,即生成雙鏈RNAs(dsRNAs). dsRNAs經(jīng)乙醇沉淀后重懸在合適體積的無RNase水中. 通過瓊脂糖凝膠電泳對dsRNAs進行定量,保存在-80 ℃?zhèn)溆?
S2細胞系(果蠅S2胚胎細胞)培養(yǎng)在Schneider基本培養(yǎng)基(Gibco)中,補加10%胎牛血清(Gibco)、160 μg/mL青霉素、250 μg/mL鏈霉素和4 mmol/L L-谷氨酸(Sigma). 25 ℃培養(yǎng)在75 cm 的盤里(Corning). 細胞以1∶10的比例每3天傳1代. 在S2細胞中對S6基因進行干擾:細胞以1×106個/mL的密度培養(yǎng)在35 cm大小培養(yǎng)盤的無血清培養(yǎng)基里.S6dsRNAs (5 μg/mL)加到1 mL無血清培養(yǎng)基中,室溫培養(yǎng)1 h. 1 h后,補加2 mL含有10%胎牛血清的正常培養(yǎng)基繼續(xù)培養(yǎng). 分別在處理后的第4和第8天收集經(jīng)過S6RNAi的細胞,用作實驗分析. 在相同條件下,GFPdsRNA用作對照.
根據(jù)RNeasy Mini Kit(Qiagen)試劑盒說明提取第8天S6RNAi組和GFPRNAi組的細胞總RNA. 在進行RT-PCR之前,提取的RNAs用DNase (TaKaRa)進行處理. 純化的RNA用作第一鏈cDNA合成. 用M-MLV反轉(zhuǎn)錄酶(Invitrogen)和oligo-dT引物合成cDNA. 在25 μL反應體系中,每個樣品用1 μL cDNA做模板. PCR反應在相同條件下進行:95 ℃預變性5 min;94 ℃,30 s,60 ℃,30 s,72 ℃,45 s,30個循環(huán);最后72 ℃延伸8 min. 用到的引物見表1.
表1 RT-PCR中用到的引物Table 1 The primers for RT-PCR
所有實驗至少重復3次,通過Excel軟件對結果分析. 數(shù)值以平均值±標準差表示. 顯著性分析用t檢驗,P<0.05表示差異顯著.
果蠅的發(fā)育經(jīng)歷4個時期:卵、幼蟲(一期、二期和三期幼蟲)、蛹和成蠅. 實驗為了實現(xiàn)S6基因在果蠅周身及局部器官刪除,分別用了act5c-Gal4和Hsp70-Gal4驅(qū)動子驅(qū)動S6基因的干擾. 結果對照組發(fā)育正常,而S6RNAi/act5c-Gal4果蠅都死在胚胎期.S6RNAi/Hsp70-Gal4從一期到三期幼蟲發(fā)育延遲,在幼蟲期維持10~12 d,體積比較小,生命力不旺盛,死在蛹期之前. 而對照組在幼蟲期維持6~7 d,正常發(fā)育到蛹期和成蠅,完成一個正常的生命周期. 在48 h初,S6RNAi/Hsp70-Gal4體長與對照組相比沒有明顯變化;72 h后,比對照組果蠅發(fā)育顯著延遲(P<0.05)(圖1A,1B).表明S6蛋白對果蠅早期發(fā)育不可缺少.
圖1 減少S6蛋白表達阻滯果蠅幼蟲發(fā)育
Figure 1 Decreased expression of S6 protein caused theDrosophilalarvae growth arrest
與對照組果蠅比較,用ey-gal4、vg-gal4和sca-gal4驅(qū)動子分別在果蠅眼睛、翅膀和剛毛中刪除S6蛋白表達. 果蠅S6RNAi/ey-gal4眼睛明顯變小(圖2A).S6RNAi/vg-gal4翅膀皺縮(圖2B). 另外果蠅S6RNAi/sca-gal4剛毛變短(圖2C). 可見S6蛋白的正常表達與果蠅器官發(fā)育緊密相關.
果蠅S2細胞在轉(zhuǎn)染了S6dsRNAs后,與對照組比(轉(zhuǎn)染了GFPdsRNAs的),其細胞生長受到阻滯、數(shù)目明顯減少(圖3B). 通過吖啶橙染色發(fā)現(xiàn),在果蠅S6RNAi/vg-gal4三期幼蟲翅膀disc中有明顯凋亡信號. 暗示S6刪除后導致的果蠅表型變化是由細胞凋亡引起的(圖3A).
RT-PCR分析表明:果蠅刪除S6基因后,細胞凋亡相關基因p53,hid,reaper和dcp-1轉(zhuǎn)錄水平升高.Bcl-2(細胞凋亡抑制因子)轉(zhuǎn)錄水平降低(圖4A). 細胞周期相關基因cdc45,cyclinE,MCM5,MCM3,incenp和cyclinB在S6基因干擾后轉(zhuǎn)錄水平也受到了影響(圖4B).
圖2 減少S6蛋白表達對果蠅眼睛(A)、翅膀(B)和剛毛表型(C)的影響
Figure 2 The effect of S6 protein reduction on the eye(A), wing(B) and bristle phenotype(C) in flies
圖3 RNAi干擾S6果蠅翅膀disc(A)和S2細胞數(shù)目(B)
Figure 3 Wing discs of flies(A) and cell mumber of S2 cells(B) in RNAiS6 Drosophila
(A)S6RNAi后,p53、hid、Dcp-1,Bcl-2和reaper轉(zhuǎn)錄水平的變化;(B)S6RNAi后,MCM5、MCM3、cdc45、cyclinB、cyclinE和incenp轉(zhuǎn)錄水平的變化
圖4 S2細胞中減少S6表達對細胞凋亡和細胞周期相關基因表達的影響
Figure 4 The effect ofS6-depletion in S2 cells on the expression of the genes related to apoptosis and cell cycle
為了探討S6基因在果蠅生長發(fā)育中的作用,本文用了不同的驅(qū)動子使S6基因在果蠅中表達減少. 由表型分析可見:S6蛋白對于果蠅正常發(fā)育是必要的,其表達減少會引起細胞增殖受抑和凋亡的發(fā)生. 細胞增殖與細胞凋亡之間的平衡決定了細胞的生長狀態(tài)[13]. 干擾S6基因表達引起:細胞數(shù)目減少、果蠅翅膀disc中有細胞凋亡以及細胞周期與凋亡相關基因的異常表達,這些結果一致暗示:S6基因干擾后引起果蠅表型異常是由細胞凋亡引起的.
P53在細胞凋亡中主要通過使線粒體釋放細胞色素C[14-15],引起caspase活性升高,最終啟動細胞凋亡[9]. 果蠅中2個重要凋亡誘導因子hid和reaper[16-17]可直接或間接激活p53,以誘導凋亡發(fā)生[18]. 另外這2個基因通過caspase引起凋亡[19-20]. Dcp-1是第一個被發(fā)現(xiàn)的果蠅ICE/CED-3蛋白激酶caspase家族成員,也在凋亡中有著重要作用[21]. Bcl-2是凋亡的一個抑制因子[22-24]. 減少Bcl-2表達可以通過釋放細胞色素c激活Dcp-1[15]. 在S6干擾后hid,reaper,Dcp-1和p53轉(zhuǎn)錄水平升高,而Bcl-2轉(zhuǎn)錄水平降低.
細胞凋亡與細胞周期密切相關. 過表達cyclinE激活caspase誘導造血細胞凋亡[25]. MCM3和MCM家族的其他成員在基因復制中有著重要作用[26]. 在細胞周期中,p53負調(diào)控MCM5[27]. 而cdc45與MCM5/cdc46相互作用,共同調(diào)控細胞周期[28]. 另外,cyclin B表達水平降低會導致細胞周期阻滯在G2期,并且是一個p53依賴的負調(diào)控過程[29]. Incenp與Aurora B和survivin相互作用,形成復合物:Aurora B/incenp/survivin,在染色體分離中起作用[30-32]. 研究發(fā)現(xiàn),survivin表達水平升高減少p53表達,因為通過caspases和Survivin調(diào)控了Mdm2分裂,增加了p53降解[33]. 本研究結果證實在S6RNAi后MCM5、MCM3、cdc45、cyclinB和incenp表達減少,而cyclinE和p53增加.
綜上所述,S6干擾后主要是通過細胞凋亡和細胞周期阻滯的方式引起果蠅表型異常的,這將為更深入研究S6的生物學功能提供理論依據(jù),同時也為果蠅的發(fā)育研究提供新的思路.
致謝 感謝清華大學孫方霖教授以及陳蘇同學在實驗中的幫助.
參考文獻:
[1] Volarevic S, Thomas G. Role of S6 phosphorylation and S6 kinase in cell growth[J]. Progress in Nucleic Acid Research and Molecular Biology, 2001, 65: 101-127.
[2] Sonenberg N. Translation factors as effectors of cell growth and tumorigenesis[J]. Current Opinion in Cell Biology, 1993, 5: 955-960.
[3] Chen F W, Davies J P, Ioannou Y A. Differential gene expression in apoptosis: Identification of ribosomal protein 23K, a cell proliferation inhibitor[J]. Molecular Genetics and Metabolism, 1998, 64: 271-282.
[4] Chen F W, Ioannou Y A. Ribosomal proteins in cell proliferation and apoptosis[J]. International Reviews of Immunology, 1999, 18: 429-448.
[5] Lohrum M A, Ludwig R L, Kubbutat M H, et al. Regulation of HDM2 activity by the ribosomal protein L11[J]. Cancer Cell, 2003, 3: 577-587.
[6] Ben-Ishai R, Scharf R, Sharon R, et al. A human cellular sequence implicated in trk oncogene activation is DNA damage inducible[J]. Proceedings of the National Academy of Sciences of the United States of America, 1990, 87: 6039-6043.
[7] Soulet F, Al Saati T, Roga S, et al. Fibroblast growth factor-2 interacts with free ribosomal protein S19[J]. Biochemical and Biophysical Research Communications, 2001, 289: 591-596.
[8] Draptchinskaia N, Gustavsson P, Andersson B, et al. The gene encoding ribosomal protein S19 is mutated in Diamond-Blackfan anaemia[J]. Nature Genetics, 1999, 21: 169-175.
[9] Fisher E M, Beer-Romero P, Brown L G, et al. Homologous ribosomal protein genes on the human X and Y chromosomes: Escape from X inactivation and possible implications for Turner syndrome[J]. Cell, 1990, 63: 1205-1218.
[10] O′Brien T W, O′Brien B J, Norman R A. Nuclear MRP genes and mitochondrial disease[J]. Gene, 2005, 354: 147-151.
[11] Ruggero D, Pandolfi P P. Does the ribosome translate cancer?[J]. Nature Reviews Cancer, 2003, 3: 179-192.
[12] Stewart M J, Denell R. Mutations in theDrosophilagene encoding ribosomal protein S6 cause tissue overgrowth[J]. Molecular and Cellular Biology, 1993, 13: 2524-2535.
[13] Kastan M B, Canman C E, Leonard C J. P53, cell cycle control and apoptosis: Implications for cancer[J]. Cancer and Metastasis Reviews, 1995, 14: 3-15.
[14] Schuler M, Bossy-Wetzel E, Goldstein J C, et al. P53 induces apoptosis by caspase activation through mitochondrial cytochromecrelease[J]. Journal of Biological Chemistry, 2000, 275: 7337-7342.
[15] Chooi W Y, James S M, Burns D K. Decrease in ribosomal proteins 1, 2/3, L4, and L7 inDrosophilamelanogasterin the absence of X rDNA[J]. Molecular Genetics and Genomics, 1982, 187: 364-369.
[16] Grether M E, Abrams J M, Agapite J, et al. The head involution defective gene ofDrosophilamelanogasterfunctions in programmed cell death[J]. Genes & development, 1995, 9: 1694-1708.
[17] White K, Grether M E, Abrams J M, et al. Genetic control of programmed cell death inDrosophila[J]. Science, 1994, 264: 677-683.
[18] Brodsky M H, Weinert B T, Tsang G, et al.DrosophilamelanogasterMNK/Chk2 and p53 regulate multiple DNA repair and apoptotic pathways following DNA damage[J]. Molecular and Cellular Biology, 2004, 24: 1219-1231.
[19] White K, Tahaoglu E, Steller H. Cell killing by theDrosophilagene reaper[J]. Science, 1996, 271: 805-807.
[20] Zhou L, Schnitzler A, Agapite J, et al. Cooperative functions of the reaper and head involution defective genes in the programmed cell death ofDrosophilacentral nervous system midline cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94: 5131-5136.
[21] Li X, Scuderi A, Letsou A, et al. B56-associated protein phosphatase 2A is required for survival and protects from apoptosis inDrosophilamelanogaster[J]. Molecular and Cellular Biology, 2002, 22: 3674-3684.
[22] Sharma S, Haldar C, Chaube S K, et al. Long-term melatonin administration attenuates low-LET gamma-radiation-induced lymphatic tissue injury during the reproductively active and inactive phases of Indian palm squirrels (Funambulus pennanti)[J]. British Journal of Radiology, 2010, 83: 137-151.
[23] Miyashita T, Harigai M, Hanada M, et al. Identification of a p53-dependent negative response element in the bcl-2 gene[J]. Cancer Research, 1994, 54: 3131-3135.
[24] Miyashita T, Krajewski S, Krajewska M, et al. Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo[J]. Oncogene, 1994, 9: 1799-1805.
[25] Mazumder S, Gong B, Almasan A. Cyclin E induction by genotoxic stress leads to apoptosis of hematopoietic cells[J]. Oncogene, 2000, 19: 2828-2835.
[26] Kearsey S E, Maiorano D, Holmes E C, et al. The role of MCM proteins in the cell cycle control of genome duplication[J]. Bioessays, 1996, 18: 183-190.
[27] Agarwal M K, Ruhul Amin A R, Agarwal M L. DNA replication licensing factor minichromosome maintenance deficient 5 rescues p53-mediated growth arrest[J]. Cancer Research, 2007, 67: 116-121.
[28] Hardy C F. Identification of Cdc45p, an essential factor required for DNA replication[J]. Gene, 1997, 187: 239-246.
[29] Krause K, Wasner M, Reinhard W, et al. The tumour suppressor protein p53 can repress transcription of cyclin B[J]. Nucleic Acids Research, 2000, 28: 4410-4418.
[30] Sugihara Y, Honda H, Iida T, et al. Proteomic analysis of rodent ribosomes revealed heterogeneity including ribosomal proteins L10-like, L22-like 1, and L39-like[J]. Journal of Proteome Research, 2010, 9: 1351-1366.
[31] Cheeseman I M, Anderson S, Jwa M, et al. Phospho-regulation of kinetochore-microtubule attachments by the Aurora kinase Ipl1p[J]. Cell, 2002, 111: 163-172.
[32] Bolton M A, Lan W, Powers S E, et al. Aurora B kinase exists in a complex with survivin and INCENP and its kinase activity is stimulated by survivin binding and phosphorylation[J]. Molecular and Cellular Biology, 2002, 13: 3064-3077.
[33] Wang Z, Fukuda S, Pelus L M. Survivin regulates the p53 tumor suppressor gene family[J]. Oncogene, 2004, 23:8146-8153.