李 雄,王雪芬
(東華大學(xué) 纖維材料改性國家重點(diǎn)實(shí)驗(yàn)室,上海 201620)
隨著人口的增長,日益突出的能源需求和水資源短缺及環(huán)境污染帶來的水環(huán)境惡化,已成為當(dāng)今經(jīng)濟(jì)發(fā)展面臨的難題。膜分離技術(shù)作為一門新型的高分離、濃縮、提純及凈化技術(shù),已在海水淡化、工業(yè)廢水處理、環(huán)境污染治理等領(lǐng)域得到廣泛應(yīng)用,為解決我國缺水危機(jī)、污水排放、提高飲用水質(zhì)等方面發(fā)揮著主要作用,因此,開發(fā)新型和高效節(jié)能的水過濾膜已成為材料領(lǐng)域的一項(xiàng)重任[1-4]?,F(xiàn)有的高分子材質(zhì)分離膜多采用溶液相轉(zhuǎn)化法,然而由該方法所制備的分離膜一般厚度較大,孔隙率較小并且所形成的微孔為閉孔結(jié)構(gòu)。另一方面,以膜兩側(cè)的壓力差為驅(qū)動(dòng)力,根據(jù)膜表面孔徑大小實(shí)現(xiàn)對(duì)原液的凈化、分離和濃縮的目的,膜表面的微孔結(jié)構(gòu)容易引起污染并堵塞而降低通量,這是制膜技術(shù)所需要攻克的兩個(gè)難關(guān)??偟膩砜?,未來水過濾膜技術(shù)的主要問題可以歸納為:①開發(fā)低成本、無環(huán)境污染和高度耐久性的新型材料;②改善膜結(jié)構(gòu),使其具有定向的水通道以滿足低能耗,進(jìn)一步提高水通量和截留率[1,3,5-6]。
靜電紡絲[7-8]是當(dāng)前制備納米纖維等超細(xì)纖維材料最主要的工藝技術(shù)。其主要特點(diǎn)是靜電紡纖維比傳統(tǒng)的紡絲纖維細(xì)得多,直徑一般在數(shù)十納米到幾微米,所形成的無紡布是一種具有納米微孔且孔隙相互貫通的多孔材料,孔隙率可高達(dá)80%左右,并且孔隙可通過調(diào)節(jié)電紡工藝參數(shù)而有效調(diào)控。因靜電紡絲納米纖維無紡布具有纖維纖度細(xì)、表面積大、孔隙率高等形態(tài)特點(diǎn),并具有較高的機(jī)械強(qiáng)度和輕質(zhì)輕量,是非常好的過濾材質(zhì)及過濾支撐材質(zhì),因此,靜電紡納米纖維在分離膜領(lǐng)域倍受各國研究者的關(guān)注[9-15]。眾所周知,我們通常采用選擇性和滲透通量來評(píng)價(jià)分離膜的性能。選擇性亦即膜對(duì)特定物質(zhì)的選擇通透性,常用截留率來表征,主要由分離膜的表面特性所決定;滲透通量是指特定物質(zhì)穿透分離膜的速度。而分離膜的結(jié)構(gòu)與形態(tài)特點(diǎn),如孔隙率、孔徑及其分布、潤濕性、跨膜壓力以及厚度等,對(duì)這兩個(gè)評(píng)價(jià)因素起著決定性的作用。納米纖維膜的結(jié)構(gòu)可控性和易功能化不僅能夠?qū)崿F(xiàn)優(yōu)異的分離效果,更能適用于膜分離技術(shù)的諸多領(lǐng)域,如空氣過濾、微濾、膜蒸餾、復(fù)合超/納濾膜、反滲透等等。
微濾技術(shù)是去除水溶液體系中的微粒狀物質(zhì),在一定壓力驅(qū)動(dòng)下的篩分過濾過程,這在飲用水凈化及污水處理中具有重要的應(yīng)用意義,可以實(shí)現(xiàn)對(duì)微米級(jí)懸浮固體顆粒如絮狀物、細(xì)菌等的高效分離。而靜電紡納米纖維膜因其可控的孔徑及孔徑分布,可望取代傳統(tǒng)的商用微濾膜。一般來說,納米纖維無紡布直接用作過濾介質(zhì)可有效濾除直徑大于300 nm的顆粒[14]。這主要是由于層狀納米纖維無紡布的孔徑分布與纖維直徑和孔隙率存在著一定的相互關(guān)系,即平均孔徑約為纖維平均直徑的3±1倍,最大孔徑約為纖維平均直徑的10±2倍[3]。因此,通過精細(xì)調(diào)控靜電紡絲工藝參數(shù),改變納米纖維的平均直徑,可滿足各類微濾膜所需的孔徑及孔徑分布。其高孔隙率的結(jié)構(gòu)特征顯著提高了水通量,明顯優(yōu)于傳統(tǒng)的相轉(zhuǎn)化法微濾膜[13]。Kaur等人[16]對(duì)比了靜電紡納米纖維無紡布與同種材料的傳統(tǒng)商業(yè)微濾膜的過濾性能,發(fā)現(xiàn)在同等壓力下其水通量比傳統(tǒng)商業(yè)膜高出好幾倍。
Gopal等人[12,17]探討了聚砜(PSU)、聚偏氟乙烯(PVDF)納米纖維膜對(duì)聚苯乙烯(PS)微球的過濾性能,通過改變靜電紡絲工藝參數(shù)調(diào)節(jié)膜的孔徑,并在固定的孔徑下比較對(duì)不同尺寸PS微球的分離效果。隨著PS微球尺寸的減小,納米纖維膜的濾除效果逐漸減弱,由濾網(wǎng)變?yōu)樯顚舆^濾。當(dāng)PS微球的尺寸與膜的平均孔徑相當(dāng)時(shí),膜污染將成為最嚴(yán)重的問題。圖1[12]展示了孔徑為4.0~10.6 μm的PVDF納米纖維膜對(duì)不同尺寸的PS微球的濾除效果,說明其可適用于超濾、納濾以及反滲透的預(yù)濾器。Aussawasathien等人[18]制備的靜電紡尼龍6納米纖維膜和Liu等人[19]制備的戊二醛交聯(lián)聚乙烯醇(PVA)納米纖維膜同樣兼具優(yōu)異的微濾過濾性能。
圖1 PVDF納米纖維膜過濾不同尺寸PS微球的場發(fā)射掃描電鏡照片[12]: (a)過濾前, (b)10 μm, (c)5 μm和(d)1 μmFig.1 FESEM micrographs of PVDF nano-membrane used in separating PS micro-ball with various sizes[12]: (a)before separation, (b) 10 μm, (c) 5 μm, and (d) 1 μm
水凈化技術(shù)是我們?nèi)粘I钪酗嬘盟豢苫蛉钡谋U希畠艋梢匀コ袔в械纳?、有機(jī)質(zhì)的懸浮微粒、寄生蟲、籃氏賈第鞭毛蟲、隱孢子蟲、細(xì)菌、藻類、病毒及真菌等等。一般而言,大多數(shù)水生細(xì)菌的尺寸在0.2 μm以上,而納米纖維膜可控的精細(xì)結(jié)構(gòu)使其有望成為新型商用水凈化用微濾膜。Stony Brook大學(xué)的Chu和Hsiao課題組[20]在這方面做了一系列研究工作,例如將聚丙烯腈(PAN)電紡在聚酯(PET)無紡布上,得到厚度為200 ± 10 μm、平均纖維直徑為100 ± 20 nm、最大孔徑為0.62 ± 0.03 μm以及平均孔徑為0.22 ± 0.01 μm的PAN/PET復(fù)合納米纖維膜,該膜能夠高效過濾分離大腸桿菌懸浮液,并呈現(xiàn)比同孔徑的商用微濾膜(Model GSWP,Millipore)更高的滲透通量。圖2[20]展示了PAN/PET復(fù)合納米纖維微濾膜過濾大腸桿菌懸浮液后的SEM照片。他們還采用二乙烯基、三乙烯基單體[21]或超細(xì)纖維素納米晶須[3,22-23](~5 nm)表面改性PAN納米纖維膜,得到的功能化PAN/PET復(fù)合納米纖維微濾膜,不僅能夠高效濾除大腸桿菌,對(duì)一些病毒(如噬菌體)和重金屬離子(如Cr、Pb離子),同樣能夠?qū)崿F(xiàn)高效吸附分離。圖3為超細(xì)纖維素納米晶須改性PAN納米纖維膜的結(jié)構(gòu)示意圖[22],從圖中可以看出交聯(lián)的納米結(jié)構(gòu)網(wǎng)絡(luò)改善了膜整體的機(jī)械性能,同時(shí)為膜表面帶來荷負(fù)電的特性。圖4是加入納米晶須的電紡納米纖維支架示意圖[22]。
圖2 PAN/PET電紡納米纖維膜過濾大腸桿菌懸浮液后斷面的SEM照片[20]Fig.2 SEM image of cross-section of electrospun PAN/PET nano-membrane after filtering suspending fluid with colon bacillus[20]
圖3 超細(xì)纖維素納米晶須改性PAN納米纖維膜的結(jié)構(gòu)示意圖:(a)纖維素納米晶須的TEM照片(插圖為電子衍射圖), (b)未改性及(c)改性PAN納米纖維膜的SEM照片[22]Fig.3 Structural micrographs of PAN nanofibrous membrane modified by ultra-fine cellulose nanowhiskers:(a) TEM image of cellulose nanowhiskers (The inset shows the electron diffraction pattern), (b)SEM images of un-modified, and (c)modified PAN electrospun nanofibrous membrane[22]
圖4 納米晶須改性的電紡PAN納米纖維支架示意圖:(a)未摻入納米晶須的PAN納米纖維支架,(b)摻入納米晶須形成蓬松交聯(lián)網(wǎng)絡(luò),(c)納米晶須收縮后形成的纖維束[22]Fig.4 Schematic diagram of electrospun PAN nanofibrous scaffold modified by nanowhiskers:(a) PAN nanofibrous scaffold before nanowhiskers infusing, (b) infused nanowhiskers forming loose cross-linked mesh, and (c) nanowhiskers collapsed onto the scaffold, forming filber bundles[22]
Veleirinho等人[24]制備出具有良好機(jī)械性能的聚對(duì)苯二甲酸乙二酯納米纖維材料,并將其作為膜應(yīng)用到蘋果汁凈化處理中,發(fā)現(xiàn)該材料具有良好的流通性,處理時(shí)間比傳統(tǒng)的過濾處理快近20倍。綜上所述,各項(xiàng)水凈化的研究工作表明,靜電紡絲納米纖維膜作為微濾用多孔膜是非常有潛力的。
膜蒸餾是一種熱驅(qū)動(dòng)條件下采用高疏水微孔膜,并以膜兩側(cè)蒸汽壓差為傳質(zhì)動(dòng)力的膜分離過程。當(dāng)不同溫度的水溶液被疏水微孔膜分隔開時(shí),由于膜的疏水性和表面張力的作用,兩側(cè)的水溶液均不能透過膜孔進(jìn)入另一側(cè),但由于熱溶液與膜界面的水蒸汽壓高于冷側(cè),水蒸汽就會(huì)透過膜孔從暖側(cè)進(jìn)入冷側(cè)而冷凝,這與常規(guī)蒸餾中的蒸發(fā)、傳質(zhì)、冷凝過程十分相似,所以稱之為膜蒸餾[25-26]。膜蒸餾技術(shù)用膜多為相轉(zhuǎn)化法平板膜和中空纖維膜,相比于成熟的反滲透技術(shù),低水通量和膜孔易潤濕是膜蒸餾過程中的兩大弊端[27-28],這也是導(dǎo)致膜蒸餾沒有被大規(guī)模工業(yè)化應(yīng)用的主要原因。
采用靜電紡絲技術(shù)制備具有超大表面積體積比、高孔隙率、相互貫通的開孔結(jié)構(gòu)以及膜厚度可控的納米纖維多孔膜,可改善膜蒸餾用膜低水通量的缺陷;而結(jié)合自然界中超疏水表面的生物結(jié)構(gòu)特性,采用低表面能疏水材料對(duì)靜電紡絲納米纖維進(jìn)行物理化學(xué)修飾和構(gòu)造表面粗糙度,可達(dá)到超疏水的表面特征,從而避免膜蒸餾長時(shí)間運(yùn)作過程中易產(chǎn)生的膜孔潤濕的現(xiàn)象。靜電紡納米纖維多孔膜應(yīng)用于膜蒸餾最早于2008年由Feng等人[29]提出,他們將靜電紡制得的PVDF納米纖維膜首次應(yīng)用于氣隙膜蒸餾,對(duì)濃度為1%,3%,6%(質(zhì)量分?jǐn)?shù))的NaCl溶液進(jìn)行氣隙膜蒸餾脫鹽處理,得到的水達(dá)到了可飲用的級(jí)別。在溫差為60 ℃,流量為0.1 GPM的條件下,獲得最大水通量為11~12 kg·m-2·h-1,截留效果高達(dá)98.7%~99.9%。此后,很多研究者[30-39]開始將各類改性的PVDF納米纖維膜應(yīng)用于膜蒸餾脫鹽,獲取的脫鹽效率漸趨可觀。然而,可電紡的疏水材料很有限,近幾年來的研究熱點(diǎn)也大都圍繞在PVDF材質(zhì),僅Nunes等人[40]通過自制芳香族氟化聚唑后電紡成膜用于膜蒸餾,以及Zhou等人[41]通過燒結(jié)PVA/PTFE(聚四氟乙烯)納米纖維前驅(qū)體制備PTFE電紡膜用于真空膜蒸餾脫鹽。因此,如何拓寬膜蒸餾用電紡膜材料的來源是目前膜蒸餾領(lǐng)域亟待解決的問題。最近,Li等人[42]制備了一種具有新型雙重仿生多級(jí)結(jié)構(gòu)的PS超疏水納米纖維多孔膜,應(yīng)用于直接接觸膜蒸餾脫鹽(如圖5所示)。在溫差為50 ℃的條件下,對(duì)35 g/L的NaCl溶液進(jìn)行脫鹽,在保證高脫鹽率的前提下,滲透通量達(dá)到了51±4.5 kg·m-2·h-1。
圖5 雙重仿生PS超疏水納米纖維多孔膜用于直接接觸膜蒸餾[42]Fig.5 Dual-biomimetic superhydrophobic electrospun PS nanofibrous membranes for direct contact membrane distillation[42]
復(fù)合膜是近年來開發(fā)的一種新型分離膜,它是由很薄且致密的功能阻隔層與微孔支撐層復(fù)合而成。通常是先制備多孔支撐膜,然后再在其表面形成一層非常薄的致密阻隔層。其中支撐層是通過相轉(zhuǎn)化法制得的不對(duì)稱多孔膜,這種膜孔隙率較低,而且孔與孔之間多是閉孔結(jié)構(gòu),這也將直接導(dǎo)致過濾時(shí)水通量低的缺陷,而如果采用高孔隙率的電紡膜為多孔基膜,則這種納米纖維基復(fù)合濾膜的水通量將得到顯著的提高。阻隔層可選用不同的材質(zhì)改變膜表層的親合性,因而可有效地提高膜的分離效率和抗污染性,其制備方法主要有表面涂覆、界面聚合、層層自組裝等。
聚乙烯醇(PVA)[43]和殼聚糖(CS)[44-45]因其良好的親水性和抗污染性能,經(jīng)交聯(lián)改性后常被用作為功能涂層材料。而自然界中的一些多糖類物質(zhì)(如纖維素、甲殼素)經(jīng)離子液體再生處理可形成超細(xì)的納米纖維(~5 nm),同樣可作為納米纖維基復(fù)合濾膜功能阻隔層的材料來源[46-47]。Wang等人[48]首次制備了由靜電紡絲納米纖維多孔膜和功能涂層組成的新型膜分離材料—超薄納米纖維基復(fù)合濾膜(Thin Film Nanofibrous Composite Filtration Membrane),并成功用于油水乳液廢水過濾體系,與傳統(tǒng)的商用復(fù)合納濾膜(如NF45、NF270)相比較,在保證高截留率的前提下,水滲透通量從30 L/m2·h可提高至340 L/m2·h,提高10倍之多。圖6展示了基于PAN納米纖維膜涂覆CS涂層的CS/PAN/PET復(fù)合超濾膜[44]。另在交聯(lián)PVA[48-50]或PEG[51]的功能涂層里,摻雜氧化改性多壁碳納米管(MWCNTs)或超細(xì)纖維素納米纖維(CNs),摻雜的涂層在界面處可形成定向的水通道,從而進(jìn)一步提高過濾水通量。圖7是各類功能阻隔層摻雜MWCNTs復(fù)合膜的SEM照片,可以清晰地辨別出復(fù)合膜的各層次結(jié)構(gòu)。此外,Ritcharoen等人[52]采用殼聚糖/海藻酸鈉、殼聚糖/聚苯乙烯磺酸鈉作為組裝的聚電解質(zhì)對(duì)在醋酸纖維素納米纖維多孔基膜表面通過層層組裝制備復(fù)合納濾膜,但由于組裝層數(shù)較多,組裝效率較低。
圖6 復(fù)合超濾膜各層的SEM照片[44]Fig.6 SEM images of each layer in the three-tier composite membrane for ultrafiltration[44]
納米纖維多孔基膜的高孔隙率和相互貫通的開孔結(jié)構(gòu),在顯著改善流通性的同時(shí),造成在制備復(fù)合膜的過程中存在表面涂覆的鑄膜液容易下滲和涂層厚度控制困難兩大技術(shù)問題,嚴(yán)重阻礙了納米纖維基復(fù)合濾膜規(guī)?;墓I(yè)應(yīng)用。Tang等人[53]采用紫外光固化的方法制備親水凝膠涂層作為功能阻隔層來降低鑄膜液下滲進(jìn)入多孔基膜的量。Yoon等人[54]和Ma等人[55]采用鑄膜液的凝固浴浸泡納米纖維多孔基膜來降低鑄膜液下滲。
圖7 在功能阻隔層中摻雜MWCNT的復(fù)合膜斷面的SEM照片: (a)Pebax涂覆PVA納米纖維膜, (b)10% MWCNT/PVA(質(zhì)量分?jǐn)?shù))凝膠復(fù)合體系涂覆PVA納米纖維膜, (c)功能涂層的局部放大圖, (d)10% MWCNT/PVA凝膠復(fù)合體系涂覆PVA納米纖維膜的表面[48]Fig.7 SEM images of cross-section of composite membranes: (a) electrospun PVA coated with pure Pebax, (b) electrospun PVA coated with 10% MWCNT/PVA hydrogel nanocomposite, (c) magnificated image of area circled in figure b, and (d) surface of electrospun PVA coated with 10% MWCNT/PVA hydrogel nanocomposite[48]
最近,Wang等人在表面功能阻隔層制備技術(shù)方面取得了較大突破,提出了納米纖維垂溶法制備復(fù)合濾膜的新技術(shù),即將表面功能膜材料采用靜電紡絲法沉積在納米纖維多孔基膜表面,然后將表面功能層垂溶成膜獲得表面超薄阻隔層的方法。例如將表面功能膜材料PVA采用靜電紡絲或靜電噴霧技術(shù)沉積在PAN納米纖維多孔基膜表面,得到PVA/PAN雙層膜,然后采用溶劑水蒸氣對(duì)PVA層進(jìn)行熏蒸垂溶或采用非溶劑丙酮與溶劑水的混合溶劑進(jìn)行溶液垂溶,PVA功能層則溶融形成致密的PVA膜。一方面避免了傳統(tǒng)的表面涂覆方法在制備復(fù)合濾膜時(shí)存在的鑄膜液下滲問題,同時(shí)可方便地通過調(diào)控PVA的沉積時(shí)間,來控制最終所獲得的PVA功能選擇層的厚度。圖8和圖9分別是溶劑熏蒸垂溶[56]和混合溶劑溶液垂溶[57]制備超薄PVA/PAN納米纖維基復(fù)合濾膜的示意圖。此外,PVA摻雜氧化改性多壁碳納米管(MWCNTs)[58]得到的功能阻隔層,因其自由體積的增加可顯著提高復(fù)合濾膜的過濾水通量。PVA/PAN及PVA-MWCNTs/PAN復(fù)合濾膜在低操作壓力下可對(duì)油水乳液進(jìn)行高效分離。并且該納米纖維垂溶技術(shù)具有普適性,同樣適用于其它的功能聚合物膜材料,可操作性和可控性強(qiáng),且可方便實(shí)現(xiàn)制備過程的連續(xù)化,具有規(guī)?;I(yè)應(yīng)用前景。
圖8 溶劑熏蒸垂溶制備超薄PVA/PAN納米纖維基復(fù)合濾膜的示意圖[56]Fig.8 Schematic diagram of the fabrication process for thin film nanofibrous composite membranes based on PAN electrospun nanofibrous substrate and cross-linked PVA barrier layer[56]
圖9 混合溶劑溶液垂溶制備超薄PVA/PAN納米纖維基復(fù)合濾膜的示意圖[57]Fig.9 Schematic diagram of the fabrication process for thin film composite membranes based on PAN nanofibrous substrate and cross-linked PVA barrier layer[57]
界面聚合是一類制備超薄功能阻隔層簡易而有效的方法,例如哌嗪(PIP)與均苯三甲酰氯(TMC)可通過界面聚合反應(yīng)制備聚酰胺(PA)功能阻隔層?;诩{米纖維多孔膜的PA復(fù)合納濾膜在對(duì)二價(jià)鹽離子的過濾性能測試中呈現(xiàn)出比傳統(tǒng)復(fù)合納濾膜和商用納濾膜(如NF90、NF270)更優(yōu)的脫鹽性能[59-61]。圖10是界面聚合法制備的PA/PVDF復(fù)合膜的表面及斷面的SEM照片[62]。
圖10 界面聚合法制備的PA/PVDF復(fù)合膜的SEM照片: (a)斷面,(b)表面[62]Fig.10 SEM micrographs of the composite membrane fabricated by interface condensating process: (a)the cross-section and (b)the surface[62]
相比于傳統(tǒng)的過濾介質(zhì),納米纖維基濾膜在膜分離技術(shù)領(lǐng)域呈現(xiàn)出諸多優(yōu)勢,但仍然面臨許多需要解決的問題,包括高質(zhì)量納米纖維和納米纖維基復(fù)合材料的規(guī)?;苽洌m合靜電紡絲材料的選取,功能化所需的物理化學(xué)手段以及精細(xì)的制備方法的完善和改進(jìn)。近年來,如何獲取納米纖維精細(xì)結(jié)構(gòu)的研究有大量的報(bào)道,如更小的纖維直徑、多孔納米纖維、粘連纖維以及納米纖維表面改性等。值得注意的是,制備具有各種特性的多功能納米纖維,如核殼納米纖維、雙組份/多組份納米纖維、多級(jí)結(jié)構(gòu)粗糙化納米纖維等,有望在過濾應(yīng)用方面發(fā)揮特殊作用。通過化學(xué)接枝、等離子體處理等表面改性方法定制設(shè)計(jì)納米纖維膜的表面特性,有望獲取更高性能的分離用膜。
功能化靜電紡納米纖維膜在過濾、凈化中的應(yīng)用,基于在科技領(lǐng)域的重要性,在未來必將得到進(jìn)一步深入的研究。由于靜電紡絲技術(shù)固有的多功能性,催生了性能優(yōu)異的納米纖維非織造布,這是傳統(tǒng)過濾、凈化介質(zhì)性能的一項(xiàng)重要的技術(shù)進(jìn)步?;诩{米纖維多孔膜的高通量和高選擇性分離膜的制備及相關(guān)規(guī)律的研究,將對(duì)膜分離技術(shù)帶來質(zhì)的變化,對(duì)膜科學(xué)與技術(shù)的發(fā)展具有重要意義。
參考文獻(xiàn) References
[1] Shannon M A,Bohn P W,Elimelech M,etal. Science and Technology for Water Purification in the Coming Decades[J].Nature,2008(452):301-310.
[2] Montgomery M A,Elimelech M. Water and Sanitation in Developing Countries: Including Health in the Equation[J].EnvironmentalScience&Technology,2007(41):17-24.
[3] Ma H,Burger C,Hsiao B S,etal. Ultra-Fine Cellulose Nanofibers: New Nano-Scale Materials for Water Purification[J].JournalofMaterialsChemistry,2011(21):7 507-7 510.
[4] Xu Youyi(徐又一),Xu Zhikang(徐志康).PolymerMembraneMaterials(高分子膜材料)[M]. Beijing: Chemical Industry Press,2005.
[5] Sirkar K K. Membrane Separation Technologies: Current Developments[J].ChemicalEngineeringCommunications,1997(157):145-184.
[6] Ulbricht M. Advanced Functional Polymer Membranes[J].Polymer,2006(47):2 217-2 262.
[7] Reneker D H,Chun I. Nanometre Diameter Dibres of Polymer, Produced by Electrospinning[J].Nanotechnology,1996(7):216-223.
[8] Li D,Xia Y. Electrospinning of Nanofibers: Reinventing the Wheel[J].AdvancedMaterials,2004(16):1 151-1 170.
[9] Yoon K,Hsiao B S,Chu B. Functional Nanofibers for Environmental Applications[J].JournalofMaterialsChemistry,2008(18):5 326-5 334.
[10] Thavasi V,Singh G,Ramakrishna S. Electrospun Nanofibers in Energy and Environmental Applications[J].Energy&EnvironmentalScience,2008(1):205-221.
[11] Ramakrishna S,F(xiàn)ujihara K,Teo W E,etal. Electrospun Nanofibers: Solving Global Issues[J].MaterialsToday,2006(9):40-50.
[12] Gopal R,Kaur S,Ma Z,etal. Electrospun Nanofibrous Filtration Membrane[J].JournalofMembraneScience,2006(281):581-586.
[13] Barhate R,Loong C K,Ramakrishna S. Preparation and Characterization of Nanofibrous Filtering Media[J].JournalofMembraneScience,2006(283):209-218.
[14] Barhate R,Ramakrishna S. Nanofibrous Filtering Media: Filtration Problems and Solutions from Tiny Materials[J].JournalofMembraneScience,2007(296):1-8.
[15] Kaur S,Gopal R,Ng W J,etal. Next-Generation Fibrous Media for Water Treatment[J].MRSBulletin,2008(33):21-26.
[16] Kaur S,Ma Z,Gopal R,etal. Plasma-Induced Graft Copolymerization of Poly (Methacrylic Acid) on Electrospun Poly (Vinylidene Fluoride) Nanofiber Membrane[J].Langmuir,2007(23):13 085-13 092.
[17] Gopal R,Kaur S,F(xiàn)eng C Y,etal. Electrospun Nanofibrous Polysulfone Membranes as Pre-Filters: Particulate Removal[J].JournalofMembraneScience,2007(289):210-219.
[18] Aussawasathien D,Teerawattananon C,Vongachariya A. Separation of Micron to Sub-Micron Particles from Water: Electrospun Nylon-6 Nanofibrous Membranes as Pre-Filters[J].JournalofMembraneScience,2008(315):11-19.
[19] Liu Y,Wang R,Ma H,etal. High-Flux Microfiltration Filters Based on Electrospun Polyvinylalcohol Nanofibrous Membranes[J].Polymer,2013(54):548-556.
[20] Wang R,Liu Y,Li B,etal. Electrospun Nanofibrous Membranes for High Flux Microfiltration[J].JournalofMembraneScience,2012(392):167-174.
[21] Ma H,Hsiao B S,Chu B. Functionalized Electrospun Nanofibrous Microfiltration Membranes for Removal of Bacteria and Viruses[J].JournalofMembraneScience,2014(452):446-452.
[22] Ma H,Burger C,Hsiao B S,etal. Nanofibrous Microfiltration Membrane Based on Cellulose Nanowhiskers[J].Biomacromolecules,2011(13):180-186.
[23] Wang R,Guan S,Sato A,etal. Nanofibrous Microfiltration Membranes Capable of Removing Bacteria, Viruses and Heavy Metal Ions[J].JournalofMembraneScience,2013(446):376-382.
[24] Veleirinho B,Lopes-da-Silva J. Application of ElectrospunPoly(Ethylene Terephthalate) Nanofiber Mat to Apple Juice Clarification[J].ProcessBiochemistry,2009(44):353-356.
[25] Wu Yonglie(吳庸烈). 膜蒸餾—一種新型膜分離技術(shù)[J].ChineseJournalofAppliedChemistry(應(yīng)用化學(xué)),1986(3):1-5.
[26] Wu Yonglie(吳庸烈). 膜蒸餾技術(shù)及其應(yīng)用進(jìn)展[J].MembraneScienceandTechnology(膜科學(xué)與技術(shù)),2003(23):67-79.
[27] Lawson K W,Lloyd D R. Membrane Distillation[J].JournalofMembraneScience,1997(124):1-25.
[28] El-Bourawi M S,Ding Z,Ma R,etal. A Framework for Better Understanding Membrane Distillation Separation Process[J].JournalofMembraneScience,2006(285):4-29.
[29] Feng C,Khulbe K C,Matsuura I,etal. Production of Drinking Water from Saline Water by Air-Gap Membrane Distillation Using Polyvinylidene Fluoride Nanofiber Membrane[J].JournalofMembraneScience,2008(311):1-6.
[30] Prince J A,Singh G,Rana D,etal. Preparation and Characterization of Highly Hydrophobic Poly(Vinylidene Fluoride)-Clay Nanocomposite Nanofiber Membranes (PVDF-Clay NNMs) for Desalination Using Direct Contact Membrane Distillation[J].JournalofMembraneScience,2012(397-398):80-86.
[31] Su C I,Shih J H,Huang M S,etal. A Study of Hydrophobic Electrospun Membrane Applied in Seawater Desalination by Membrane Distillation[J].FibersandPolymers,2012(13):698-702.
[32] Essalhi M,Khayet M. Self-Sustained Webs of Polyvinylidene Fluoride Electrospun Nanofibers at Different Electrospinning Times: 2. Theoretical Analysis, Polarization Effects and Thermal Efficiency[J].JournalofMembraneScience,2013(433):180-191.
[33] Essalhi M,Khayet M. Self-Sustained Webs of Polyvinylidene Fluoride Electrospun Nanofibers at Different Electrospinning Times: 1. Desalination by Direct Contact Membrane Distillation[J].JournalofMembraneScience,2013(433):167-179.
[34] Lalia B S,Guillen-Burrieza E,Arafat H A,etal. Fabrication and Characterization of Polyvinylidenefluoride-co-Hexafluoropropylene (PVDF-HFP) Electrospun Membranes for Direct Contact Membrane Distillation[J].JournalofMembraneScience,2013(428):104-115.
[35] Liao Y,Wang R,F(xiàn)ane A G. Engineering Superhydrophobic Surface on Poly (Vinylidene Fluoride) Nanofiber Membranes for Direct Contact Membrane Distillation[J].JournalofMembraneScience,2013(440):77-87.
[36] Liao Y,Wang R,Tian M,etal. Fabrication of Polyvinylidene Fluoride (PVDF) Nanofiber Membranes by Electrospinning for Direct Contact Membrane Distillation[J].JournalofMembraneScience,2013(425):30-39.
[37] Essalhi M,Khayet M. Self-Sustained Webs of Polyvinylidene Fluoride Electrospun Nano-Fibers: Effects of Polymer Concentration and Desalination by Direct Contact Membrane Distillation[J].JournalofMembraneScience,2014(454):133-143.
[38] Lalia B S,Guillen E,Arafat H A,etal. Nanocrystalline Cellulose Reinforced PVDF-HFP Membranes for Membrane Distillation Application[J].Desalination,2014(332):134-141.
[39] Tijing L D,Choi J S,Lee S,etal. Recent Progress of Membrane Distillation Using Electrospun Nanofibrous Membrane[J].JournalofMembraneScience,2014(453):435-462.
[40] Maab H,F(xiàn)rancis L,Al-Saadi A,etal. Synthesis and Fabrication of Nanostructured Hydrophobic Polyazole Membranes for Low-Energy Water Recovery[J].JournalofMembraneScience,2012(423-424):11-19.
[41] Zhou T,Yao Y,Xiang R,etal. Formation and Characterization of Polytetrafluoroethylene Nanofiber Membranes for Vacuum Membrane Distillation[J].JournalofMembraneScience,2014(453):402-408.
[42] Li X,Wang C,Yang Y,etal. Dual-Biomimetic Superhydrophobic Electrospun Polystyrene Nanofibrous Membranes for Membrane Distillation[J].ACSAppliedMaterials&Interfaces,2014(6):2 423-2 430.
[43] Wang X,F(xiàn)ang D,Yoon K,etal. High Performance Ultrafiltration Composite Membranes Based on Poly (Vinyl Alcohol) Hydrogel Coating on Crosslinked Nanofibrous Poly (Vinyl Alcohol) Scaffold[J].JournalofMembraneScience,2006(278):261-268.
[44] Yoon K,Kim K,Wang X,etal. High Flux Ultrafiltration Membranes Based on Electrospun Nanofibrous PAN Scaffolds and Chitosan Coating[J].Polymer,2006(47):2 434-2 441.
[45] Zhao Z,Zheng J,Wang M,etal. High Performance Ultrafiltration Membrane Based on Modified Chitosan Coating and Electrospun Nanofibrous PVDF Scaffolds[J].JournalofMembraneScience,2012(394):209-217.
[46] Ma H,Burger C,Hsiao B S,etal. Ultrafine Polysaccharide Nanofibrous Membranes for Water Purification[J].Biomacromolecules,2011(12):970-976.
[47] Ma H,Hsiao B S,Chu B. Thin-Film Nanofibrous Composite Membranes Containing Cellulose or Chitin Barrier Layers Fabricated by Ionic Liquids[J].Polymer,2011(52):2 594-2 599.
[48] Wang X,Chen X,Yoon K,etal. High Flux Filtration Medium Based on Nanofibrous Substrate With Hydrophilic Nanocomposite Coating[J].EnvironmentalScience&Technology,2005(39):7 684-7 691.
[49] Ma H,Burger C,Hsiao B S,etal. Highly Permeable Polymer Membranes Containing Directed Channels for Water Purification[J].ACSMacroLetters,2012(1):723-726.
[50] Ma H,Yoon K,Rong L,etal. Thin-Film Nanofibrous Composite Ultrafiltration Membranes Based on Polyvinyl Alcohol Barrier Layer Containing Directional Water Channels[J].Industrial&EngineeringChemistryResearch,2010(49):11 978-11 984.
[51] Wang Z,Ma H,Hsiao B S,etal. Nanofibrous Ultrafiltration Membranes Containing Cross-Linked Poly (Ethylene Glycol) and Cellulose Nanofiber Composite Barrier Layer[J].Polymer,2014(55):366-372.
[52] Ritcharoen W,Supaphol P,Pavasant P. Development of Polyelectrolyte Multilayer-Coated Electrospun Cellulose Acetate Fiber Mat as Composite Membranes[J].EuropeanPolymerJournal,2008(44):3 963-3 968.
[53] Tang Z,Wei J,Yung L,etal. UV-Cured Poly (Vinyl Alcohol) Ultrafiltration Nanofibrous Membrane Based on Electrospun Nanofiber Scaffolds[J].JournalofMembraneScience,2009(328):1-5.
[54] Yoon K,Hsiao B S,Chu B. High Flux Ultrafiltration Nanofibrous Membranes Based on Polyacrylonitrile Electrospun Scaffolds and Crosslinked Polyvinyl Alcohol Coating[J].JournalofMembraneScience,2009(338):145-152.
[55] Ma H,Yoon K,Rong L,etal. High-Flux Thin-Film Nanofibrous Composite Ultrafiltration Membranes Containing Cellulose Barrier Layer[J].JournalofMaterialsChemistry,2010(20):4 692-4 704.
[56] Wang X F,Zhang K,Yang Y,etal. Development of Hydrophilic Barrier Layer on Nanofibrous Substrate as Composite Membrane Via a Facile Route[J].JournalofMembraneScience,2010(356):110-116.
[57] You H,Yang Y,Li X,etal. Low Pressure High Flux Thin Film Nanofibrous Composite Membranes Prepared by Electrospraying Technique Combined with Solution Treatment[J].JournalofMembraneScience,2012(394):241-247.
[58] You H,Li X,Yang Y,etal. High Flux Low Pressure Thin Film Nanocomposite Ultrafiltration Membranes Based on Nanofibrous Substrates[J].SeparationandPurificationTechnology,2013(108):143-151.
[59] Yoon K,Hsiao B S,Chu B. High Flux Nanofiltration Membranes Based on Interfacially Polymerized Polyamide Barrier Layer on Polyacrylonitrile Nanofibrous Scaffolds[J].JournalofMembraneScience,2009(326):484-492.
[60] Yung L,Ma H,Wang X,etal. Fabrication of Thin-Film Nanofibrous Composite Membranes by Interfacial Polymerization Using Ionic Liquids as Additives[J].JournalofMembraneScience,2010(365):52-58.
[61] Kaur S,Sundarrajan S,Rana D,etal. Influence of Electrospun Fiber Size On the Separation Efficiency of Thin Film Nanofiltration Composite Membrane[J].JournalofMembraneScience,2012(392):101-111.
[62] Zhang H,Zheng J,Zhao Z,etal. Role of Wettability in Interfacial Polymerization Based on PVDF Electrospun Nanofibrous Scaffolds[J].JournalofMembraneScience,2013(442):124-130.