聶彩云
(吉首大學(xué)數(shù)學(xué)與統(tǒng)計學(xué)院,湖南 吉首 416000)
含多參數(shù)的Hardy-Hilbert不等式的改進(jìn)*
聶彩云
(吉首大學(xué)數(shù)學(xué)與統(tǒng)計學(xué)院,湖南 吉首 416000)
通過引入多個參數(shù)λ,α,運用權(quán)函數(shù)方法及改進(jìn)的H?lder不等式,改進(jìn)了含多個參數(shù)的離散型Hardy-Hilbert不等式,從而建立了一些新的不等式.
離散型Hardy-Hilbert不等式;權(quán)函數(shù);H?lder不等式
(1)
(2)
這里的常數(shù)因子B(1-rp,1-sq)是最佳常數(shù).
筆者的目的是利用改進(jìn)的H?lder不等式對(2)式進(jìn)行加強,從而建立一些新的不等式.
證明見文獻(xiàn)[2-3].
定義權(quán)函數(shù):
證明見文獻(xiàn)[1].
為了方便起見,再引入一些符號:
(3)
定義向量函數(shù)為
(4)
證明由引理1及引理2得,
即(3)式得證.
由引理1可知,
定理1證明完畢.
注1 (3)式為(2)式的改進(jìn).
[1] 李繼猛,劉 瓊.一個推廣的Hardy-Hilbert不等式及應(yīng)用[J].數(shù)學(xué)學(xué)報:中文版,2009,52(2):237-244.
[2] HE Leping,GAO Mingzhe.A Hilbert Integral Inequality with Hurwitz Zeta Function[J].Journal of Mathematical Inequalities,2013,7(3):377-387.
[3] LIU Tuo,YANG Bicheng,HE Leping.On a Half-Discrete Reverse Mulholland-Type Inequality and an Extension[J/OL].Journal of Inequalities and Applications,2014(1):103[2014-08-10].http://link.springer.com/article/10.1186%2F1029-242X-2014-103/fulltext.html.
(責(zé)任編輯 向陽潔)
ImprovementsofHardy-HilbertInequalitywithManyParameters
NIE Caiyun
(College of Mathematics and Statistics,Jishou University,Jishou 416000,Hunan China)
By introducing many parametersλ,αand using the weight function method and strengthened H?lder inequality,some discrete Hardy-Hilbert inequalities with many parameters are improved,and some new inequalities are built.
discrete Hardy-ilbert inequality;weight function;H?lder inequality
1007-2985(2014)06-0014-03
2014-09-04
聶彩云(1963—),女,湖南永順人,吉首大學(xué)數(shù)學(xué)與統(tǒng)計學(xué)院副教授,主要從事函數(shù)論研究.
O178
A
10.3969/j.issn.1007-2985.2014.06.004