劉曉芳,張?jiān)?,趙海森,王翔宇,韓 志,王 鶴
(1.華北電力大學(xué) 新能源電力系統(tǒng)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京 102206;2.中國(guó)電力科學(xué)研究院,北京 100192)
電壓不平衡是電力系統(tǒng)中一種普遍的電能質(zhì)量偏差現(xiàn)象,包含幅值與相角不平衡因素,且主要由電網(wǎng)中三相負(fù)荷分布不均造成。異步電機(jī)運(yùn)行在此狀態(tài)下會(huì)產(chǎn)生損耗增加、溫升過(guò)高、壽命縮短及輸出轉(zhuǎn)矩減小等不良影響[1-3]。為了探索電壓不平衡條件下異步電機(jī)安全運(yùn)行及節(jié)能控制策略,有必要針對(duì)電壓不平衡時(shí)相角因素對(duì)異步電機(jī)定子三相電流、各項(xiàng)損耗及轉(zhuǎn)矩性能的影響進(jìn)行研究。
已有大量文獻(xiàn)對(duì)三相電壓不平衡對(duì)異步電機(jī)運(yùn)行性能及損耗的影響開(kāi)展了相關(guān)研究。文獻(xiàn)[4]指出復(fù)數(shù)電壓不平衡度 CVUF(Complex Voltage Unbalance Factor)同時(shí)包含幅值和相角不平衡因素,分析了CVUF相角對(duì)異步電機(jī)運(yùn)行性能的影響,最終提出在分析異步電機(jī)不平衡運(yùn)行問(wèn)題時(shí)必須考慮CVUF相角對(duì)其的影響;文獻(xiàn)[5]建立了三相感應(yīng)電動(dòng)機(jī)瞬態(tài)模型,使用四階龍格庫(kù)塔方法計(jì)算了不同CVUF時(shí)感應(yīng)電動(dòng)機(jī)的起動(dòng)過(guò)程,研究了CVUF與最大轉(zhuǎn)矩、起動(dòng)時(shí)間、穩(wěn)態(tài)三相電流不平衡因數(shù)、轉(zhuǎn)速及其波動(dòng)、轉(zhuǎn)矩波動(dòng)的關(guān)系;文獻(xiàn)[6]指出美國(guó)電氣制造商協(xié)會(huì)(NEMA)與國(guó)際電工委員會(huì)(IEC)對(duì)電壓不平衡度(VUF)的定義均不是最精確的,基于這些定義對(duì)電機(jī)運(yùn)行性能的分析也是不準(zhǔn)確的,因此有必要制定一個(gè)更精確的VUF定義;文獻(xiàn)[7]對(duì)電壓不平衡條件下異步電機(jī)的損耗、溫升、噪聲、振動(dòng)、轉(zhuǎn)矩脈動(dòng)、轉(zhuǎn)差率、軸電壓、軸電流和加速轉(zhuǎn)矩進(jìn)行了分析,并指出電壓不平衡導(dǎo)致轉(zhuǎn)子損耗增加,且定子電流不平衡會(huì)引起定子各相繞組溫度分布不均,同時(shí)造成加速轉(zhuǎn)矩減小及2倍頻的轉(zhuǎn)矩脈動(dòng);文獻(xiàn)[8]使用對(duì)稱分量法及MATLAB仿真得到如下結(jié)論:綜合IEC中VUF定義與電壓不平衡情況可以精確地評(píng)估電壓不平衡對(duì)異步電機(jī)總銅耗、輸入功率、功率因數(shù)及總輸出轉(zhuǎn)矩的影響程度,但同時(shí)也要考慮CVUF相角對(duì)三相繞組最大電流及降額因數(shù)的影響,并定義了一種區(qū)分電壓不平衡狀況的過(guò)欠系數(shù),它有助于對(duì)電壓不平衡條件下異步電機(jī)的運(yùn)行性能進(jìn)行更為準(zhǔn)確的評(píng)估。綜上,已有研究在參考的VUF評(píng)估標(biāo)準(zhǔn)上存在一定分歧[6],或并沒(méi)有考慮電機(jī)實(shí)際運(yùn)行時(shí)三相繞組電壓矢量和為0[9],或沒(méi)有同時(shí)考慮VUF與正序電壓(或平均電壓)[5],且大部分文獻(xiàn)中所采用的傳統(tǒng)磁路分析方法與等值電路理論由于無(wú)法計(jì)及飽和及諧波等因素而存在較大誤差。
針對(duì)以上問(wèn)題,本文利用對(duì)稱分量法計(jì)算并分別表示出電機(jī)繞組三相電壓幅值、兩相電壓相位與CVUF幅值及相角的關(guān)系,并針對(duì)一臺(tái)5.5kW Y132S-4異步電機(jī),建立了基于時(shí)步有限元的損耗計(jì)算模型,分析了CVUF相角對(duì)定子三相電流、各項(xiàng)損耗及轉(zhuǎn)矩性能的影響。需要說(shuō)明的是,由于電壓不平衡情況較為復(fù)雜,包括CVUF幅值kv(負(fù)序電壓和正序電壓幅值之比)、CVUF相角θv、正序電壓及負(fù)載率4個(gè)影響因素,且經(jīng)試驗(yàn)測(cè)得上述電機(jī)在kv=0.05及75%負(fù)載下運(yùn)行時(shí)最大單相電流已超過(guò)額定電流,故文中僅針對(duì) 75%負(fù)載、kv≤0.05[10]及正序電壓為 380 V的情況開(kāi)展研究。
國(guó)內(nèi)外通常采用以下VUF計(jì)算方法,即線電壓不平衡度(LVUF)、相電壓不平衡度(PVUF)、VUF 和CVUF。 文中采用 IEC 精確定義[11],如式(1)所示。
1.2.1 三相繞組電壓幅值與CVUF間的關(guān)系
在給定CVUF及正序電壓UP的情況下,可以根據(jù)對(duì)稱分量法以及基爾霍夫電壓定律反求出該電壓不平衡狀態(tài)時(shí)的三相繞組電壓。例如,在kv=0.05、-180°≤θv≤180°、350 V≤≤410 V條件下,三相繞組電壓 Uab、Ubc、Uca幅值的三維關(guān)系如圖1所示,其中三維圖形表面上的經(jīng)線、緯線分別表示CVUF相角θv和正序電壓幅值,圖中已將為350 V、380 V、410V的3條緯線標(biāo)出。從圖中可以看出:kv=0.05時(shí)所對(duì)應(yīng)的三相不平衡電壓組合情況有很多種,因此使用其中某一組電壓去衡量該CVUF幅值下電機(jī)的運(yùn)行性能會(huì)引起較大的誤差。
圖1 kv=0.05 且-180°≤θv≤180°時(shí)三相繞組電壓幅值Fig.1 Three-phase winding voltage amplitudes when kv=0.05 and -180°≤θv≤180°
1.2.2 三相繞組電壓相位與CVUF間的關(guān)系
假設(shè)Uab相位始終為參考相位,且值為0°,可將電壓不平衡時(shí)Ubc相位θbc與 kv、θv關(guān)系表示成圖 2所示。 圖 2(a)為 θv相同時(shí) θbc隨 kv的變化規(guī)律,僅以4組θv進(jìn)行說(shuō)明,可見(jiàn):θbc隨kv呈線性規(guī)律變化,且 θv=-100°時(shí),θbc隨 kv的變化率較大;而在 θv=-30°時(shí),θbc隨 kv的變化率近似為 0。 圖 2(b)為 kv相同時(shí)θbc隨 θv的變化規(guī)律,可以看出:θbc隨 θv呈正弦規(guī)律變化,且變化幅度隨kv的增大而增大。同理可得Uca相位θca隨kv、θv的變化規(guī)律。 此外,在保持kv相同前提下,對(duì)正序電壓在350~410 V時(shí)的兩相電壓相位進(jìn)行計(jì)算時(shí),發(fā)現(xiàn)不同正序電壓下每一θv所對(duì)應(yīng)的兩相電壓相位均相等。因此可認(rèn)為:任何給定kv條件下,所求兩相電壓相位與正序電壓大小均無(wú)關(guān)。
圖2 恒定 θv(kv)下 θbc隨 kv(θv)變化規(guī)律Fig.2 Relationship between θbcand kv(θv)when θv(kv) is constant
綜上,結(jié)合圖1與圖2,可得任意kv、θv及正序電壓條件下的三相繞組電壓幅值與相位,如CVUF=0.05∠50°且正序電壓為 380 V 時(shí),Uab=392.5∠0°V,Ubc=386.9∠-124.8°V,Uca=361.3∠-241.6°V,且每個(gè)CVUF對(duì)應(yīng)多種三相不平衡電壓組合,按照正序電壓大小可將其分為欠電壓不平衡與過(guò)電壓不平衡。
本文以一臺(tái)5.5 kW Y132S-4異步電機(jī)為例,其基本參數(shù)如表 1 所示,繞組為△接法。表中,U′N、PN、IN、nN分別為電機(jī)額定電壓、額定功率、額定電流和額定轉(zhuǎn)速;p為電機(jī)極對(duì)數(shù)?;诒?參數(shù),建立了如圖3所示的有限元模型,其中左半部分為電機(jī)定轉(zhuǎn)子基本結(jié)構(gòu),右半部分為有限元剖分網(wǎng)格圖。
與傳統(tǒng)計(jì)算方法相比,本文采用的時(shí)步有限元損耗計(jì)算模型可以在計(jì)及飽和及諧波等因素前提下,對(duì)電機(jī)內(nèi)部任意單元的磁通密度和電流密度進(jìn)行計(jì)算,在損耗計(jì)算方面具有明顯優(yōu)勢(shì),其中定子銅耗、轉(zhuǎn)子銅耗以及鐵耗均采用文獻(xiàn)[13]中的計(jì)算方法;且由于本文所分析電機(jī)為斜槽轉(zhuǎn)子,電機(jī)內(nèi)部磁場(chǎng)沿軸向分布不同,故利用文獻(xiàn)[14]中的多截面場(chǎng)-路耦合時(shí)步有限元法進(jìn)行計(jì)算。
表1 5.5 kW Y132S-4電機(jī)參數(shù)及尺寸Tab.1 Parameters and size of 5.5 kW Y132S-4 motor
圖3 5.5 kW異步電機(jī)有限元結(jié)構(gòu)及剖分圖Fig.3 FEM structure and subdivisions of 5.5 kW motor
對(duì)異步電機(jī)定子繞組施加 kv=0.05、-180°≤θv≤180°條件下的三相不平衡電壓,經(jīng)時(shí)步有限元計(jì)算得到每組電壓下定子三相電流隨θv的變化規(guī)律如圖4所示。從圖4中可以看出:電壓不平衡時(shí),三相電流IA、IB、IC有效值隨θv均呈正弦變化規(guī)律,且三者出現(xiàn)最大值時(shí)的θv互差120°。經(jīng)計(jì)算驗(yàn)證,kv分別取值 0.01、0.02、0.03、0.04 條件下,三相電流變化規(guī)律與此相同,故不再贅述。
圖4 kv=0.05且75%負(fù)載時(shí)定子三相電流與θv的關(guān)系曲線Fig.4 Curves of three-phase stator current vs.θvwhen kvis 0.05 and load is 75%
受溫升限制,電機(jī)長(zhǎng)期運(yùn)行時(shí)繞組電流應(yīng)不超過(guò)額定電流,而電壓不平衡會(huì)引起繞組電流出現(xiàn)不平衡,為了確保不平衡電壓下電機(jī)安全穩(wěn)定運(yùn)行,就需要限制單相最大電流不超過(guò)額定電流,據(jù)此可確定電機(jī)安全運(yùn)行區(qū)域如圖4中所示。圖中,當(dāng)某相定子電流出現(xiàn)最大值時(shí)的θv為電機(jī)最壞運(yùn)行點(diǎn),任意兩相定子電流相同且不超過(guò)額定電流時(shí)的θv為電機(jī)最佳運(yùn)行點(diǎn),可以看出在 -180°≤θv≤180°范圍內(nèi),有3個(gè)安全運(yùn)行區(qū)域且每個(gè)安全區(qū)域內(nèi)存在1個(gè)最佳運(yùn)行點(diǎn),而在安全區(qū)域外有3個(gè)最壞運(yùn)行點(diǎn)。圖4中所示kv=0.05且電機(jī)帶75%負(fù)載時(shí),最壞與最佳運(yùn)行點(diǎn)時(shí)的 θv分別為:-80°、40°、160°與- 140°、-20°、100°。
需特殊說(shuō)明的是,本文僅針對(duì)系統(tǒng)中允許的較低CVUF幅值進(jìn)行研究,為處理方便,對(duì)電機(jī)正、負(fù)序等效電路作簡(jiǎn)化處理,由電機(jī)學(xué)理論分析可知:電機(jī)最壞、最佳運(yùn)行點(diǎn)時(shí)的 θv分別由式(2)、(3)決定。
其中,ZP、ZN分別為從異步電機(jī)定子繞組端看進(jìn)去的正、負(fù)序等效阻抗;angle為阻抗角的運(yùn)算命令,如Z=R+jX,則 angle(Z)=arctan(X/R)。 ZP、ZN可分別由圖 5(a)、(b)所示的正、負(fù)序等效電路[15]計(jì)算得到,結(jié)果分別如式(4)、(5)所示。
其中,R1、X1、R′2、X′2、Rm、Xm、s分別為定子電阻、定子電抗、轉(zhuǎn)子電阻、轉(zhuǎn)子電抗、激磁電阻、激磁電抗和轉(zhuǎn)差率。
圖5 異步電機(jī)正、負(fù)序等效電路Fig.5 Positive and negative sequence equivalent circuits of asynchronous motor
經(jīng)空載與堵轉(zhuǎn)試驗(yàn)可知,文中所分析5.5kW異步電機(jī)的正、負(fù)序等效阻抗 ZP、ZN分別為(47.2+j30.5)Ω、(3.5+j11.9)Ω,因此 angle(ZN)-angle(ZP)=40.5°,為圖4中的最壞運(yùn)行點(diǎn),故計(jì)算結(jié)果與理論分析是一致的。該最壞運(yùn)行狀態(tài)時(shí)θv的含義為:此時(shí)A相的正、負(fù)序電流分量接近同相致使該相電流達(dá)到最大值。
綜上,電壓不平衡時(shí),應(yīng)根據(jù)電機(jī)參數(shù)求得最佳、最壞運(yùn)行點(diǎn),盡量使其工作在最佳運(yùn)行點(diǎn),以使在該CVUF幅值下電機(jī)帶載能力下降程度最少。另外,在設(shè)計(jì)電機(jī)負(fù)序電流保護(hù)電路時(shí),若只考慮kv影響時(shí),則可能會(huì)由于電機(jī)運(yùn)行在最壞運(yùn)行點(diǎn)且單相最大電流已超額定電流,保護(hù)電路未發(fā)出動(dòng)作命令而導(dǎo)致電機(jī)過(guò)熱運(yùn)行。
進(jìn)一步對(duì)電機(jī)在 kv取 0.01、0.02、0.03、0.04 且正序電壓380 V條件下的三相不平衡電壓進(jìn)行75%負(fù)載計(jì)算,得到其三相電流隨θv的變化關(guān)系,最終繪出 Imax/IN與 kv、θv的關(guān)系曲面如圖 6 所示。 其中,Imax為每一θv對(duì)應(yīng)的最大相電流,IN為額定相電流。由圖6可知:定子最大相電流隨kv的減小而減小,且在kv=0.04時(shí)最壞運(yùn)行點(diǎn)所對(duì)應(yīng)的最大相電流已達(dá)到額定電流。因此,對(duì)于文中分析的5.5 kW異步電機(jī)在該狀況下運(yùn)行時(shí),其CVUF幅值應(yīng)不超過(guò)0.04。
圖6 Imax/IN 隨 kv、θv的變化關(guān)系Fig.6 Imax /INvarying along with kvand θv
圖7 kv=0.05時(shí)各項(xiàng)損耗及總損耗隨θv變化關(guān)系曲線Fig.7 Curves of losses vs.θvwhen kvis 0.05
利用時(shí)步有限元法也可計(jì)算得到異步電機(jī)內(nèi)部各項(xiàng)損耗,例如,電機(jī)帶75%負(fù)載、kv=0.05且正序電壓為380 V時(shí),定子銅耗pCu1、轉(zhuǎn)子銅耗pCu2、鐵耗及附加損耗 pFe、總損耗p∑隨θv的變化規(guī)律如圖7所示。從圖7可知:定子銅耗變化相對(duì)較大,但也低于5 W,其最大值、最小值對(duì)應(yīng)的θv分別近似對(duì)應(yīng)圖4中的最佳運(yùn)行點(diǎn)100°與最壞運(yùn)行點(diǎn)-80°;此外,對(duì)kv取 0.01、0.02、0.03、0.04 時(shí)的損耗也進(jìn)行計(jì)算,發(fā)現(xiàn)定子銅耗隨θv的變化幅度隨kv增加而增加,但在相同kv條件下,定子銅耗隨θv的變化規(guī)律與圖7類似;轉(zhuǎn)子銅耗、鐵耗變化較小,為1W左右。上述變化僅占電機(jī)總損耗的1.1%。
針對(duì)以上各項(xiàng)損耗變化規(guī)律進(jìn)行分析可知,異步電機(jī)在kv=0.05、正序電壓380 V且?guī)?5%負(fù)載時(shí)有以下特點(diǎn)。
a.從圖7中可以看到定子銅耗最大與最小值對(duì)應(yīng)的 θv分別為 110°、-70°,且兩者相差 5W 左右,對(duì)這2種情況下所對(duì)應(yīng)的定子三相電流進(jìn)行傅里葉分解可得其基波及各次諧波幅值大小,其對(duì)比結(jié)果如表2所示,表中,IA、IB、IC及Iav分別為三相不平衡電流及其平均值的幅值,Ieq為三相不平衡電流的等效有效值。由表中數(shù)據(jù)可知,2種情況下三相不平衡電流均不相等,但3次諧波占基波的比重及Ieq均接近相等,而定子銅耗與定子三相電流有效值的平方和近似成正比,所以定子銅耗變化不大。同樣可對(duì)θv取其他值時(shí)的定子三相電流進(jìn)行對(duì)比分析,結(jié)果均與此相同。
表2 θv為-70°、110°時(shí)定子三相電流的傅里葉分解結(jié)果Tab.2 Fourier transformation results of three-phase stator currents when θv=-70°and 110°
b.轉(zhuǎn)子銅耗主要與轉(zhuǎn)差率成正比,從圖7中可知轉(zhuǎn)子銅耗變化在1 W左右,計(jì)算結(jié)果顯示不同θv時(shí)轉(zhuǎn)速接近相等,例如,θv為-80°、100°時(shí)的轉(zhuǎn)速差別最大,分別為 1458.4、1456.7 r/min;從轉(zhuǎn)子電流角度分析時(shí),對(duì)轉(zhuǎn)子槽頂某位置在 θv為 -70°、110°時(shí)的電流密度波形及其傅里葉分析進(jìn)行對(duì)比,結(jié)果如圖8所示,其中J表示電流密度。由圖8可知2種情況下轉(zhuǎn)子槽2、6、18等偶次諧波電流密度變化較小,故轉(zhuǎn)子銅耗基本不變。
c.忽略定子壓降的前提下,可認(rèn)為鐵耗與定子繞組端電壓的平方近似成正比,電壓不平衡時(shí)則主要由正序電壓或三相電壓平均值決定。從圖7可見(jiàn)鐵耗變化在0.8 W內(nèi),且無(wú)明顯變化規(guī)律。從鐵芯磁通密度角度分析,對(duì)定、轉(zhuǎn)子鐵芯齒頂某位置在θv為-70°、110°時(shí)的磁通密度波形及其傅里葉分析進(jìn)行對(duì)比,結(jié)果分別如圖 9、10 所示,圖中,Br、Bt分別為徑向磁通密度與切向磁通密度。由圖9可以看出定子鐵芯Br與Bt基波磁通密度幅值相差很小,因此定子鐵耗變化不大;由圖10可以看出轉(zhuǎn)子鐵芯Br與Bt的2、6、12、18等偶次諧波磁通密度變化也較小,因此轉(zhuǎn)子鐵耗變化不大,兩者綜合導(dǎo)致總鐵耗基本不變。
圖8 轉(zhuǎn)子槽頂?shù)湫臀恢锰庪娏髅芏炔ㄐ渭捌涓道锶~變換結(jié)果對(duì)比Fig.8 Comparison of current density waveforms and corresponding Fourier transformation results when rotor slot is at typical position
綜上可知:電壓不平衡時(shí),在CVUF幅值、正序電壓及負(fù)載相同的前提下,定子三相不平衡電流有效值、轉(zhuǎn)子電流密度各次諧波含量及定轉(zhuǎn)子鐵芯磁通密度各次諧波含量總體變化均較小,因此各項(xiàng)損耗隨θv變化不大,因此在工程實(shí)際中,θv對(duì)各項(xiàng)損耗影響可忽略。此外,經(jīng)計(jì)算驗(yàn)證,保持負(fù)載及正序電壓相同條件下,kv為 0.01、0.02、0.03、0.04 與 kv為0.05時(shí)的各項(xiàng)損耗隨θv的變化規(guī)律均相同,且各項(xiàng)損耗變化量隨kv的減小而減小。
圖9 定子鐵芯典型位置處磁通密度波形及其傅里葉變換結(jié)果對(duì)比Fig.9 Comparison of flux density waveforms and corresponding Fourier transformation results when stator core is at typical position
圖10 轉(zhuǎn)子鐵芯典型位置處磁通密度波形及其傅里葉變換結(jié)果對(duì)比Fig.10 Comparison of flux density waveforms and corresponding Fourier transformation results when rotor core is at typical position
電壓不平衡時(shí),負(fù)序磁場(chǎng)將導(dǎo)致異步電機(jī)輸出轉(zhuǎn)矩減小,為分析CVUF相角對(duì)電機(jī)轉(zhuǎn)矩性能的影響,在kv=0.05且正序電壓380 V前提下,本文選取θv分別為 90°、0°、-90°、-180°4 種條件下的三相不平衡電壓,并利用時(shí)步有限元法對(duì)電機(jī)的滿載起動(dòng)過(guò)程進(jìn)行了計(jì)算,最終得到這4種情況下的轉(zhuǎn)矩-轉(zhuǎn)速特性曲線及穩(wěn)態(tài)轉(zhuǎn)矩波形,并將其與電壓平衡時(shí)進(jìn)行對(duì)比,結(jié)果分別如圖 11(a)、(b)所示。
由圖11(a)可知:電壓不平衡時(shí),異步電機(jī)的最大、最小轉(zhuǎn)矩均有不同程度的減小,如 θv為 0°、-90°、-180°、90°時(shí),最大轉(zhuǎn)矩分別為 101.0、101.3、101.1、101.1N·m,相對(duì)平衡時(shí)均減小了約3.8%;最小轉(zhuǎn)矩分別為72.5、71.4、71.9、72.8N·m,相對(duì)于平衡時(shí)分別減小了 1.4%、3.0%、2.3%、1.1%;但是4種不平衡條件下的最大、最小轉(zhuǎn)矩差別較小,最大轉(zhuǎn)矩接近相等,且最小轉(zhuǎn)矩差值保持在1.9%以內(nèi)。另外,圖11(a)中轉(zhuǎn)矩-轉(zhuǎn)速特性曲線在電機(jī)起動(dòng)初始階段有一定的波動(dòng),這主要是由電機(jī)內(nèi)部5、7次諧波磁場(chǎng)綜合引起的。綜上,可認(rèn)為CVUF幅值及正序電壓相同條件下,CVUF相角對(duì)異步電機(jī)的最大、最小轉(zhuǎn)矩影響較小。
圖11 kv=0.05且正序電壓380 V與平衡時(shí)轉(zhuǎn)矩性能對(duì)比Fig.11 Comparison of torque performances between balanced condition and condition that kv=0.05,positive-sequence voltage is 380 V
由圖11(b)中可知:電壓不平衡時(shí),異步電機(jī)穩(wěn)態(tài)電磁轉(zhuǎn)矩存在較大的2倍頻脈動(dòng)分量,例如θv為 0°、-90°、-180°、90°時(shí)的 2 倍頻脈動(dòng)分量分別為12.7、12.8、12.5、12.1 N·m,差值保持在 5%以內(nèi);另外,受定轉(zhuǎn)子開(kāi)槽影響,電磁轉(zhuǎn)矩波形中也含有一定的17次諧波分量,例如,電壓平衡時(shí)電磁轉(zhuǎn)矩為2.5 N·m,電壓不平衡情況下,θv為 0°、-90°、-180°、90°時(shí)電磁轉(zhuǎn)矩分別為 2.7、2.5、2.5、2.3 N·m,與電壓平衡時(shí)均相差較小。綜上,可認(rèn)為CVUF相角對(duì)電機(jī)起動(dòng)性能及穩(wěn)態(tài)轉(zhuǎn)矩脈動(dòng)分量影響均較小。
采用在電機(jī)繞組進(jìn)線端串聯(lián)電抗器的方式制造某幾種電壓不平衡條件,利用時(shí)步有限元法模擬實(shí)測(cè)得到的三相不平衡電壓及負(fù)載,并對(duì)仿真與實(shí)測(cè)結(jié)果進(jìn)行對(duì)比。例如,在電機(jī)帶75%負(fù)載且CVUF為0.03∠-73.6°時(shí),定子繞組的實(shí)測(cè)與仿真三相電流波形分別如圖12(a)、(b)所示。其中實(shí)測(cè)三相電流 ia、ib、ic的有效值分別為 5.14、4.70、6.54 A,仿真三相電流 ia、ib、ic的有效值分別為 5.07、4.70、6.53 A,因此實(shí)測(cè)與仿真定子三相電流近似相等。
根據(jù)GB1032—2012《三相異步電動(dòng)機(jī)試驗(yàn)法》中B法可實(shí)測(cè)并計(jì)算得到電機(jī)內(nèi)部各項(xiàng)損耗[16],并將其與有限元損耗計(jì)算結(jié)果進(jìn)行對(duì)比。表3中所示為75%負(fù)載、kv=0.05時(shí)各項(xiàng)損耗的仿真與實(shí)測(cè)結(jié)果對(duì)比,由表中可看出電壓不平衡時(shí),仿真與實(shí)測(cè)各項(xiàng)損耗存在一定誤差,但總體接近一致。
綜上,實(shí)測(cè)與仿真得到的定子電流及各項(xiàng)損耗基本一致,驗(yàn)證了時(shí)步有限元方法及文中分析結(jié)論的正確性。
圖12 三相定子電流的實(shí)測(cè)與仿真結(jié)果對(duì)比Fig.12 Comparison of three-phase stator currentsbetween measured and simulative results
表3 75%負(fù)載及kv=0.05時(shí)仿真與實(shí)測(cè)各項(xiàng)損耗對(duì)比Tab.3 Comparison of losses between measured and simulative results when load rate is 75%and kvis 0.05
本文針對(duì)一臺(tái)5.5 kW異步電機(jī)建立了基于時(shí)步有限元的損耗計(jì)算模型,在給定kv=0.05、正序電壓380 V及75%負(fù)載條件下,分析了CVUF相角對(duì)定子電流、損耗及轉(zhuǎn)矩性能的影響,并驗(yàn)證了文中分析結(jié)果的正確性,主要結(jié)論如下。
a.定子三相電流隨CVUF相角均呈正弦變化規(guī)律,為避免繞組過(guò)熱且使電機(jī)保持較高帶載能力,應(yīng)避開(kāi)最壞運(yùn)行點(diǎn)。
b.CVUF相角對(duì)定子銅耗的影響相對(duì)較大,但工程實(shí)際中其對(duì)各項(xiàng)損耗的影響均可忽略不計(jì)。
c.電壓不平衡會(huì)造成異步電機(jī)最大、最小轉(zhuǎn)矩均有不同程度的減小,且穩(wěn)態(tài)電磁轉(zhuǎn)矩中會(huì)出現(xiàn)較大的脈動(dòng)分量,但相同CVUF幅值及正序電壓條件下的CVUF相角對(duì)其影響均較小。
由于電壓不平衡情況較為復(fù)雜,且與負(fù)載組合狀況較多,本文僅針對(duì)75%負(fù)載及正序電壓380V條件下的不平衡電壓進(jìn)行了計(jì)算分析,對(duì)于其他正序電壓及負(fù)載條件下的分析將在后續(xù)研究中開(kāi)展。