陳慧瑩,袁慧書(shū)
北京大學(xué)醫(yī)學(xué)部第三附屬醫(yī)院放射科,北京 100191
長(zhǎng)期以來(lái),骨髓脂肪組織被認(rèn)為僅僅用于“填充”骨量減少后多出的髓腔空間[1-2],并未受到應(yīng)有的重視。近期則發(fā)現(xiàn),髓腔脂肪細(xì)胞與成骨細(xì)胞具有同源性,均來(lái)自髓腔間充質(zhì)細(xì)胞(mesenchymal stromal cells,MSCs),而MSCs向兩者的分化是一個(gè)微調(diào)過(guò)程,受體內(nèi)外多種因素影響[3-5]。同時(shí),脂肪組織作為有分泌功能的器官,在維持正常成骨活動(dòng)所需的骨髓微環(huán)境中有重要作用,其分泌的不同脂肪因子可對(duì)MSCs甚至造血功能細(xì)胞產(chǎn)生正性或負(fù)性的影響[6-9]。有基于動(dòng)物實(shí)驗(yàn)的研究認(rèn)為髓腔脂肪成分對(duì)骨髓代謝環(huán)境可能具有雙向作用,即青春期具有“棕色脂肪”特征的脂肪組織可以創(chuàng)造利于成骨活動(dòng)的骨髓微環(huán)境,而年齡增長(zhǎng)和糖尿病可削弱這種作用[10-11]。但目前為止,骨髓脂肪組織的作用尚未完全明確,脂肪含量的變化在疾病中代表的意義也多在探索之中。基于此,磁共振脂肪定量技術(shù)被引入骨髓脂肪含量的測(cè)量,為臨床和科研提供了一項(xiàng)有效、無(wú)創(chuàng)的評(píng)價(jià)工具。
目前文獻(xiàn)報(bào)道的應(yīng)用在骨髓脂肪定量測(cè)量的磁共振技術(shù)包括T1加權(quán)磁共振成像(T1 weighted magnetic resonance imaging,T1WI-MRI)技術(shù)、磁共振波譜(magnetic resonance spectroscopy,MRS)技術(shù),以及基于化學(xué)移位的水脂分離(Dixon &IDEAL)技術(shù)。
在獲得測(cè)量部位的原始軸位T1WI圖像后,應(yīng)用圖像分析軟件在灰度圖上將骨髓脂肪的劃分閾值設(shè)為與皮下脂肪同一水平,人工劃分出骨髓脂肪組織的區(qū)域,再通過(guò)下式獲得髓腔脂肪的容積:
式中,V代表脂肪容積(volume),Ai代表掃描的橫截面積,t為層厚,h為層間隔,N為總層數(shù)[12-14]。T1WI技術(shù)比較穩(wěn)定,掃描時(shí)間短,但后處理過(guò)程比較繁瑣,且計(jì)算方法比較粗糙,實(shí)際應(yīng)用較少。
MRS技術(shù)被認(rèn)為是非入侵性組織脂肪定量的金標(biāo)準(zhǔn),應(yīng)用最為廣泛[15-18]。MRS測(cè)定的并非骨髓的絕對(duì)脂肪含量,而是脂肪比(fat fraction,F(xiàn)F),即感興趣區(qū)內(nèi)脂肪信號(hào)幅度占總信號(hào)幅度(脂肪信號(hào)及水信號(hào),Sfat &Swater)的百分比,通過(guò)以下公式算得:
Fat fraction =Sfat/(Sfat + Swater)
由于測(cè)得的是脂肪信號(hào)與水信號(hào)的相對(duì)比值,任何直接或間接影響組織內(nèi)脂肪含量或水含量的變化都會(huì)導(dǎo)致測(cè)量值的變動(dòng),故目前尚未看到準(zhǔn)確的關(guān)于MRS技術(shù)所得脂肪比的組織學(xué)驗(yàn)證,MRS作為“金標(biāo)準(zhǔn)”的依據(jù)主要體現(xiàn)在理論和計(jì)算方法上。
MRS的缺點(diǎn)在于掃描條件要求高,時(shí)間長(zhǎng),尤其在骨骼系統(tǒng)不甚穩(wěn)定,且后處理過(guò)程十分繁瑣,限制該技術(shù)的發(fā)展應(yīng)用[16]。
Dixon法利用水和脂肪的化學(xué)位移不同,分別采集到兩者的同相位(in phase)和反相位(out of phase)圖像,進(jìn)一步通過(guò)圖像加減獲得純水像和純脂像。在此基礎(chǔ)上對(duì)水像和脂像進(jìn)行量化,通過(guò)公式:脂像/(水像+脂像)即可獲得脂肪比(FF)[15,19]。IDEAL(iterative decomposition of water and fat with echo asymmetry and least-squares)技術(shù)由Dixon技術(shù)發(fā)展而來(lái)[20-21],結(jié)合了非對(duì)稱(chēng)采集技術(shù)與迭代最小二乘水脂分離算法,在其基礎(chǔ)上對(duì)T2*衰減、脂肪的多譜峰分布等進(jìn)行校正[22-23],理論上可以得到更精確的數(shù)值。IDEAL技術(shù)在脂肪肝的定量測(cè)量上與MRS方法取得了較高的一致性[23],在骨髓脂肪含量的測(cè)量上也有初步應(yīng)用[24],且在操作過(guò)程、掃描時(shí)間及數(shù)據(jù)后處理上優(yōu)于MRS技術(shù),有望替代MRS成為新的參考技術(shù)。
盡管現(xiàn)有的磁共振脂肪定量技術(shù)沒(méi)有得到確切的組織學(xué)方法驗(yàn)證,但在骨骼病變中,脂肪含量的變化似乎比脂肪絕對(duì)含量更有意義,至少并未影響現(xiàn)階段人們將其應(yīng)用到臨床和科研中的熱情。目前主要的研究方向是在骨質(zhì)疏松中的應(yīng)用,但對(duì)其他原發(fā)或累及骨骼系統(tǒng)的疾病也有零星報(bào)道。
圖1 腰椎骨髓脂肪比在酶學(xué)治療期間升高。A:治療前,女,47歲;B~E治療中,獲得數(shù)據(jù)的時(shí)間和L3~5平均脂肪比在下方給出;F:脂肪比比色刻度尺,由黑色(F=0.00)經(jīng)黃色(0.50)至白色(1.00);G:48歲女性健康志愿者的脂肪比圖。圖片引自參考文獻(xiàn)[19]Fig.1 Increase in bone marrow fat fraction in the lumbar spine during enzyme therapy in patient 2(female).A: Just before therapy, at the age of 47 years.B—E: During therapy, acquisition dates and averaged F values of L3—5 are given.F: Color fat fraction scale from black (F= 0.00) through yellow (0.50) to white (1.00).G: fat fraction image of a healthy female volunteer, aged 48.Photograph from reference [19].
骨質(zhì)疏松癥是以骨強(qiáng)度下降、骨折風(fēng)險(xiǎn)性增加為特征的骨骼系統(tǒng)的疾病[25-26]。骨強(qiáng)度包含骨密度和骨質(zhì)量?jī)蓚€(gè)方面:骨密度是個(gè)體峰值骨量和骨丟失量?jī)烧叩木C合,骨質(zhì)量則是包括骨骼構(gòu)筑、骨代謝轉(zhuǎn)換、骨骼的積累性破壞(顯微骨折)和骨的礦化程度在內(nèi)的總稱(chēng)。目前診斷骨質(zhì)疏松的“金標(biāo)準(zhǔn)”是應(yīng)用雙能X線(xiàn)骨密度儀(dual-energy X-ray absorptiometry,DXA)測(cè)量股骨及腰椎部位的骨密度(bone mineral density,BMD)[27-28]。盡管BMD是反映骨強(qiáng)度最重要的指標(biāo),單獨(dú)應(yīng)用DXA BMD評(píng)價(jià)骨質(zhì)疏松、預(yù)測(cè)骨折風(fēng)險(xiǎn)的敏感度卻不高[29],且在越來(lái)越重視早期干預(yù)的現(xiàn)在,DXA BMD對(duì)骨質(zhì)疏松病程進(jìn)展的監(jiān)測(cè)和對(duì)各種預(yù)防措施、治療手段效果的評(píng)估也不能滿(mǎn)足臨床的需求。新發(fā)展的定量斷層掃描測(cè)量法(quantitative computed tomography,QCT)相比DXA能夠測(cè)得更準(zhǔn)確的BMD,但同樣無(wú)法提供骨質(zhì)量的信息[30-32],而能反應(yīng)骨小梁結(jié)構(gòu)的高分辨QCT技術(shù)(high resolution-QCT,HR-QCT)、顯微CT技術(shù)(micro CT,μCT)和高分辨核磁共振技術(shù)(HRMRI)或因輻射劑量大,或因設(shè)備昂貴、掃描時(shí)間長(zhǎng)等問(wèn)題,在臨床上的推廣應(yīng)用也存在較大阻力[33-35]。在此背景下,應(yīng)用磁共振脂肪定量技術(shù)測(cè)量骨髓脂肪含量,為評(píng)價(jià)骨質(zhì)疏松提供了一項(xiàng)新的診斷思路。
2.1.1 骨質(zhì)疏松的診斷及骨折風(fēng)險(xiǎn)的評(píng)估
早期已有大量證據(jù)表明隨年齡增長(zhǎng)存在骨量下降和髓腔內(nèi)脂肪增多現(xiàn)象[1-2,36],近期發(fā)現(xiàn)髓腔脂肪細(xì)胞與成骨細(xì)胞具有同源性,并能夠影響骨髓成骨微環(huán)境,被認(rèn)為可以反映部分骨質(zhì)量的情況?,F(xiàn)有的研究大部分支持骨髓脂肪含量(bone marrow fat,BMF)與低骨量相關(guān),并證實(shí)存在椎體骨折的患者有較高的BMF(48.8%~57.3%、33.6%~52.8%)[12-13,16-18]。而Schellinger等[37]一項(xiàng)關(guān)于MRS BMF與DXA BMD間的對(duì)比研究則認(rèn)為,椎體高BMF并不總伴有低BMD,BMF在反映骨強(qiáng)度下降的能力方面不亞于DXA BMD,但綜合參考兩者(BMF/BMD ratio)更具診斷方面的優(yōu)勢(shì)。鑒于DXA對(duì)BMD的測(cè)量精度易受腰椎退變及主動(dòng)脈鈣化的影響[32],Schellinger等[37]的這一結(jié)果并不具備充分的說(shuō)服力。所幸Bredella等[38]應(yīng)用QCT技術(shù)測(cè)得更準(zhǔn)確的BMD,同樣證實(shí)BMF獨(dú)立于BMD,而與內(nèi)臟脂肪含量及IGF-1相關(guān),這可能部分解釋了代謝綜合征患者中即使骨量正常也存在較高的骨折風(fēng)險(xiǎn)[39]。理論上BMF不僅可以間接反映BMD下降,還能提供部分骨質(zhì)量的信息,但不同文獻(xiàn)報(bào)道的骨折組BMF存在一定交叉,BMF能否作為預(yù)測(cè)骨質(zhì)疏松性骨折的獨(dú)立風(fēng)險(xiǎn)因素,目前的證據(jù)仍顯單薄。
2.1.2 骨質(zhì)疏松藥物療效監(jiān)測(cè)及作用機(jī)制探究
固醇類(lèi)藥物可以導(dǎo)致骨質(zhì)疏松,但其機(jī)制尚不完全明確。研究發(fā)現(xiàn)固醇類(lèi)藥物誘導(dǎo)的骨質(zhì)疏松早期即存在骨髓脂肪細(xì)胞體積增大和血流灌注減低的現(xiàn)象[40-42],而理論上這一變化可以十分敏感地被MRS或水脂分離脂肪定量技術(shù)檢測(cè)到。Li等[43]的一項(xiàng)動(dòng)物實(shí)驗(yàn)證實(shí),使用甲潑尼龍的新西蘭白兔在第4周開(kāi)始出現(xiàn)顯著的骨量下降和骨髓脂肪比增高(+36.1%)現(xiàn)象,并一直持續(xù)到第12周(+75.2%),而經(jīng)過(guò)唑來(lái)膦酸鹽治療的白兔其脂肪比則降回至基線(xiàn)水平。這一結(jié)果不僅提示(至少部分提示)了唑來(lái)膦酸鹽治療糖皮質(zhì)激素誘導(dǎo)的骨質(zhì)疏松的作用機(jī)制,還提示磁共振脂肪定量技術(shù)可用于臨床患者,監(jiān)測(cè)唑來(lái)膦酸鹽治療骨質(zhì)疏松的反應(yīng)。
雌激素是骨質(zhì)疏松的一線(xiàn)用藥,可直接影響MSCs向成骨細(xì)胞和脂肪細(xì)胞的分化[44]。Liu等[45]研究表明絕經(jīng)期女性骨量下降同時(shí)伴隨骨髓脂肪含量增高現(xiàn)象,Syed等[46]證實(shí)經(jīng)過(guò)雌激素治療一年的絕經(jīng)期骨質(zhì)疏松癥患者,其骨髓脂肪含量未再上升,甚至出現(xiàn)下降。盡管未見(jiàn)到磁共振脂肪定量技術(shù)直接應(yīng)用于監(jiān)測(cè)雌激素治療骨質(zhì)疏松的報(bào)道,但Syed等[46]的結(jié)果強(qiáng)烈提示,磁共振脂肪定量技術(shù)可以用于該項(xiàng)目的檢測(cè)。
2.2.1 再生障礙性貧血的診斷及評(píng)估
再生障礙性貧血(aplastic anemia, AA)是由于各種因素導(dǎo)致骨髓造血功能衰竭,外周血全血細(xì)胞減少的一組異質(zhì)性疾病,骨髓穿刺顯示有核細(xì)胞增生減低,脂肪滴增多為其特征[47]。Xu等[48]應(yīng)用MRS技術(shù)測(cè)量6例再生障礙性貧血患者的腰椎及髂骨的骨髓脂肪比,發(fā)現(xiàn)高達(dá)74.69%~91.51%,強(qiáng)烈提示磁共振脂肪定量測(cè)量技術(shù)可作為診斷再生障礙性貧血的輔助檢查。尤其在行骨髓穿刺較為麻煩的兒童患者,理論上結(jié)合外周血細(xì)胞全血細(xì)胞減低和骨髓脂肪比增高,可對(duì)AA進(jìn)行診斷。即使骨髓脂肪比不能完全取代骨髓穿刺在診斷中的價(jià)值,在診斷后的治療過(guò)程中,也可結(jié)合外周血檢查,用于評(píng)估骨髓造血功能的恢復(fù)情況。
2.2.2 血液系統(tǒng)惡性腫瘤的評(píng)估
血液系統(tǒng)惡性腫瘤包括白血病、淋巴瘤及多發(fā)性骨髓瘤等,白血病及多發(fā)性骨髓瘤主要侵犯骨髓,而淋巴瘤累及骨髓患者,也可出現(xiàn)相應(yīng)的髓內(nèi)改變[47]。理論上,髓內(nèi)腫瘤細(xì)胞的大量浸潤(rùn)會(huì)侵占正常脂肪組織占據(jù)的空間,而Xu等[48]的研究也證實(shí),26例急性白血病患者中,MRS測(cè)得的椎體及髂骨的脂肪比均為0%。在同一研究中,非腫瘤性疾病如珠蛋白生成障礙性貧血的脂肪比也顯著降低(5.02%),提示骨髓脂肪比降低在區(qū)分血液系統(tǒng)腫瘤及某些非腫瘤性病變,以及不同類(lèi)型的腫瘤病變間并無(wú)特異性,在診斷方面的價(jià)值不大。但其可用于評(píng)估疾病在診斷及治療后的轉(zhuǎn)歸,同樣在兒童患者中有較大的應(yīng)用潛力。
戈謝病是由于溶酶體內(nèi)的酸性β-葡萄糖苷酶缺乏,葡萄糖腦苷脂貯積在各器官的單核巨噬細(xì)胞系統(tǒng)而致病[49]。其中,I型戈謝病可出現(xiàn)戈謝細(xì)胞(Gaucher cells)向骨髓的浸潤(rùn),出現(xiàn)骨痛、骨質(zhì)疏松等骨骼系統(tǒng)癥狀[49-50]。I型戈謝病可通過(guò)酶學(xué)替代療法得到有效的治療[51],但在磁共振脂肪定量技術(shù)應(yīng)用之前,并沒(méi)有敏感可靠的方法評(píng)價(jià)I型戈謝病患者中骨髓病變對(duì)酶學(xué)治療的反應(yīng)。由于戈謝細(xì)胞的浸潤(rùn),I型戈謝病患者存在骨髓脂肪含量下降情況(FF,0.08%~0.40%和27%~43%)[19],而這一改變理論上可被有效的酶學(xué)治療糾正。Hollak等[19]應(yīng)用Dixon化學(xué)移位成像技術(shù)監(jiān)測(cè)骨髓脂肪比變化,發(fā)現(xiàn)12位應(yīng)用酶學(xué)替代治療4~5年的患者中,有11例骨髓脂肪比恢復(fù)到正常水平,而未經(jīng)治療的患者仍維持在一個(gè)較低的水平。研究同時(shí)指出,11位取得良好結(jié)果的患者中有6位提高了治療劑量,但并未明確影響骨髓脂肪比的變化。這一結(jié)果充分表明,磁共振脂肪定量技術(shù)可較為敏感地評(píng)估I型戈謝病對(duì)酶學(xué)替代療法的治療反應(yīng)。
磁共振脂肪定量技術(shù)的一大缺點(diǎn)是設(shè)備昂貴,即使在理論和研究較為成熟的骨質(zhì)疏松領(lǐng)域,指望該項(xiàng)技術(shù)取代傳統(tǒng)的DXA測(cè)量方法,大范圍用于骨質(zhì)疏松的篩查與診斷顯然也是不實(shí)際的。盡管如此,基于現(xiàn)有的理論和研究,磁共振脂肪定量技術(shù)作為一項(xiàng)無(wú)創(chuàng)的檢查手段,至少在以下方面中具有一定優(yōu)勢(shì):(1)預(yù)測(cè)骨質(zhì)疏松骨折風(fēng)險(xiǎn),尤其在代謝綜合征患者;(2)因各種原因需要長(zhǎng)期或大量使用固醇類(lèi)藥物的患者,需要監(jiān)測(cè)骨骼狀態(tài);(3)再生障礙性貧血的無(wú)創(chuàng)診斷,尤其在兒童患者或有骨髓穿刺相對(duì)禁忌證的患者;(4)藥物療效的監(jiān)測(cè),如需要進(jìn)行藥物治療的骨質(zhì)疏松、血液系統(tǒng)惡性腫瘤等;(5)基礎(chǔ)研究,如某些藥物作用機(jī)制的探究、新藥研發(fā)等。
磁共振脂肪定量技術(shù)作為一種可定量的檢查方法,一改以往磁共振影像中依靠肉眼定性信號(hào)強(qiáng)度的診斷思路,在某些疾病的診斷與鑒別診斷、治療與轉(zhuǎn)歸過(guò)程的評(píng)估上具有一定的獨(dú)到之處。經(jīng)過(guò)校正的IDEAL技術(shù)免去了MRS繁瑣的掃描操作及數(shù)據(jù)后處理過(guò)程,大大縮短了掃描時(shí)間,更為該項(xiàng)檢查在未來(lái)臨床上的常規(guī)化提供了可能。盡管骨髓脂肪組織的作用尚未完全清楚,脂肪含量受疾病進(jìn)程及體內(nèi)外因素影響而發(fā)生變化的規(guī)律和意義尚在探索之中,現(xiàn)有的關(guān)于骨髓脂肪含量隨年齡增長(zhǎng)的生理性變化規(guī)律的資料也不甚完善,尤其缺乏較為重要的低年齡部分;但正因如此,骨髓脂肪含量變化在骨骼疾病中的應(yīng)用具有非常廣闊的探索空間,磁共振脂肪定量技術(shù)無(wú)論作為現(xiàn)階段科學(xué)研究的手段還是未來(lái)獨(dú)立的臨床檢測(cè)項(xiàng)目,都有十分樂(lè)觀的應(yīng)用前景。
[References]
[1]Gimble JM.The function of adipocytes in the bone marrow stroma.New Biologist, 1990, 2(4): 304-312.
[2]Gimble JM, Robinson CE, Wu X, et al.The function of adipocytes in the bone marrow stroma: an update.Bone, 1996, 19(5): 421-428.
[3]Beresford JN, Bennett JH, Devlin C, et al.Evidence for an inverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow stromal cell cultures.J Cell Science, 1992, 102(2):341-351.
[4]Bianco P, Riminucci M, Gronthos S, et al.Bone marrow stromal stem cells: nature, biology, and potential applications.Stem Cells, 2001,19(3): 180-192.
[5]Oreffo RO, Cooper C, Mason C, et al.Mesenchymal stem cells.Stem Cell Rev, 2005, 1(2): 169-178.
[6]Rosen CJ, Ackert-Bicknell C, Rodriguez J P, et al.Marrow fat and the bone microenvironment: developmental, functional, and pathological implications.Crit Rev Eukaryot Gene Expr, 2009, 19(2): 109-124.
[7]Cornish J, MacGibbon A, Lin JM, et al.Modulation of osteoclastogenesis by fatty acids.Endocrinology, 2008, 149(11): 5688-5695.
[8]Naveiras O, Nardi V, Wenzel PL, et al.Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment.Nature,2009, 460(7252): 259-263.
[9]Dazzi F, Ramasamy R, Glennie S, et al.The role of mesenchymal stem cells in haemopoiesis.Blood Rev, 2006, 20(3): 161-171.
[10]Kawai M, de Paula FJ, Rosen CJ.New insights into osteoporosis: the bone–fat connection.J Int Med, 2012, 272(4): 317-329.
[11]Krings A, Rahman S, Huang S, et al.Bone marrow fat has brown adipose tissue characteristics, which are attenuated with aging and diabetes.Bone, 2012, 50(2): 546-552.
[12]Shen W, Chen J, Punyanitya M, et al.MRI-measured bone marrow adipose tissue is inversely related to DXA-measured bone mineral in Caucasian women.Osteoporos Int, 2007, 18(5): 641-647.
[13]Shen W, Chen J, Gantz M, et al.MRI-measured pelvic bone marrow adipose tissue is inversely related to DXA-measured bone mineral in younger and older adults.European J Clin Nutrit, 2012, 66(9):983-988.
[14]Shen W, Gong XQ, Weiss J, et al.Comparison among T1-Weighted magnetic resonance imaging,modified dixon method, and magnetic resonance spectroscopy in measuring bone marrow fat.J Obesity,2013: 298675.
[15]Layer G, Traber F, Block W, et al.1H MR spectroscopy of the lumbar spine in diffuse osteopenia due to plasmacytoma or osteoporosis.Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr, 1998, 169(6):596–600.
[16]Schwartz AV, Sigurdsson S, Hue TF, et al.Vertebral bone marrow fat associated with lower trabecular BMD and prevalent vertebral fracture in older adults.J Clin Endocrinol Metab, 2013, 98(6): 2294-300.
[17]Schellinger D, Lin CS, Hatipoglu HG, et al.Potential value of vertebral proton MR spectroscopy in determining bone weakness.Am J Neuroradiol, 2001, 22(8): 1620-1627.
[18]Li GW, Chang SX, Bao H, et al.Primary application of marrow fat contents in determining the risk of osteoporotic vertebral fracture.J Pract Radiol, 2012, 28(1): 74-77.李冠武, 常時(shí)新, 鮑紅, 等.骨髓脂肪含量對(duì)預(yù)測(cè)骨質(zhì)疏松性椎體骨折風(fēng)險(xiǎn)的初步應(yīng)用.實(shí)用放射學(xué)雜志, 2012, 28(1): 74-77.
[19]Hollak C, Maas M, Akkerman E, et al.Dixon quantitative chemical shift imaging is a sensitive tool for the evaluation of bone marrow responses to individualized doses of enzyme supplementation therapy in type 1 Gaucher disease.Blood Cells Mol Dis, 2001, 27(6):1005-1012.
[20]Reeder SB, Pineda AR, Wen Z, et al.Iterative decomposition of water and fat with echo asymmetry and least- squares estimation (IDEAL):application with fast spin- echo imaging.Magn Reson Med, 2005,54(3): 636-644.
[21]Reeder SB, Wen Z, Yu H, et al.Multicoil Dixon chemical species separation with an iterative least- squares estimation method.Magn Reson Med, 2004, 51(1): 35-45.
[22]Yu H, Shimakawa A, Hines CD, et al.Combination of complex- based and magnitude- based multiecho water- fat separation for accurate quantification of fat-fraction.Magn Reson Med, 2011, 66(1): 199-206.
[23]Meisamy S, Hines CD, Hamilton G, et al.Quantification of hepatic steatosis with T1-independent, T2*-corrected MR imaging with spectral modeling of fat: blinded comparison with MR spectroscopy.Radiology, 2011, 258(3): 767-775.
[24]Pichardo JC, Milner RJ, Bolch WE.MRI measurement of bone marrow cellularity for radiation dosimetry.J Nuclear Med, 2011,52(9): 1482-1489.
[25]Peck WA, Burckhardt P, Christiansen C, et al.Consensus development conference: diagnosis, prophylaxis, and treatment of osteoporosis.Am J Med, 1993, 94(6): 646-650.
[26]Qin L, Zhang G.NIH consensus development panel on osteoporosis prevention diagnosis and therapy (translated text).Chin J Osteopor,2002, 8(1): 90-93.秦嶺, 張戈.美國(guó)國(guó)家衛(wèi)生院有關(guān)骨質(zhì)疏松癥的預(yù)防、診斷和治療的共識(shí)文件(譯文).中國(guó)骨質(zhì)疏松雜志, 2002, 8(1): 90-93.
[27]WHO Study Group on Assessment of Fracture Risk, its Application to Screening for Postmenopausal Osteoporosis.Assessment of fracture risk and its application to screening for postmenopausal osteoporosis.World Health Organization, 1994.
[28]Cheng XG, Liu ZH.Official positions of the International Society for Clinical Densitometry and Executive Summary of the 2005 Position Development Conference (translated text).Chin J Osteopor, 2006,12(2): 205-9.程曉光,劉忠厚.國(guó)際臨床骨密度學(xué)會(huì)共識(shí)文件(2005年版).中國(guó)骨質(zhì)疏松雜志, 2006, 12(2): 205-209.
[29]Schuit SC, Van der Klift M, Weel A, et al.Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study.Bone, 2004, 34(1): 195-202.
[30]Adams JE.Quantitative computed tomography.Eur J Radiol, 2009,71(3): 415-424.
[31]Lochmüller EM, Bürklein D, Kuhn V, et al.Mechanical strength of the thoracolumbar spine in the elderly: prediction from in situ dual-energy X-ray absorptiometry, quantitative computed tomography (QCT),upper and lower limb peripheral QCT, and quantitative ultrasound.Bone, 2002, 31(1): 77-84.
[32]Yu AH, Chen XS, Sun WJ, et a1.Effects of Height, Weight and body mass index on bone mineral density measurements using DXA and QCT.Chin J Med Imag, 2011, 12(9): 909-911.于愛(ài)紅, 陳祥述, 孫偉杰, 等.體重、身高及體重指數(shù)與雙能X線(xiàn)骨密度儀和定量CT測(cè)量腰椎骨密度的關(guān)系.中國(guó)醫(yī)學(xué)影像學(xué)雜志,2011, 12(9): 909-911.
[33]Boutrey S, Bouxsein ML, Munoz F.et a1.In vivo assessment of trabeeular bone microarehitecture by high-resolution peripheral quantitative computed tomography.J Clin Endocrinol Metsb, 2005,90(12): 6508-6515.
[34]Mittra E, Rubin C, Gruber B, et al.Evaluation of trabecular mechanical and microstructural properties in human calcaneal bone of advanced age using mechanical testing, μCT, and DXA.J Biomechanics, 2008,41(2): 368-375.
[35]Shi Y.The research on assessment of the osteoporosis and its response to the therapy using HRMRI.Suzhou: Soochow University, 2005.史勇.HRMRI評(píng)價(jià)骨質(zhì)疏松癥及其治療結(jié)果的研究.蘇州: 蘇州大學(xué), 2005.
[36]Justesen J, Stenderup K, Ebbesen EN, et al.Adipocyte tissue volume in bone marrow is increased with aging and in patients with osteoporosis.Biogerontology, 2001, 2(3): 165-171.
[37]Schellinger D, Lin CS, Lim J, et al.Bone marrow fat and bone mineral density on proton MR spectroscopy and dual-energy X-ray absorptiometry: their ratio as a new indicator of bone weakening.AJR Am J Roentgenol, 2004, 183(6): 1761-1765.
[38]Bredella MA, Torriani M, Ghomi RH, et al.Vertebral bone marrow fat is positively associated with visceral fat and inversely associated with IGF‐1 in obese women.Obesity, 2011, 19(1): 49-53.
[39]Von Muhlen D, Safii S, Jassal SK, et al.Associations between the metabolic syndrome and bone health in older men and women: the Rancho Bernardo Study.Osteopor Int, 2007, 18(10): 1337-1344.
[40]Miyanishi K, Yamamoto T, Irisa T, et al.Bone marrow fat cell enlargement and a rise in intraosseous pressure in steroid-treated rabbits with osteonecrosis.Bone, 2002, 30(1): 185-190.
[41]Motomura G, Yamamoto T, Miyanishi K, et al.Bone marrow fat-cell enlargement in early steroid-induced osteonecrosis: a histomorphometric study of autopsy cases.Pathol Res Pract, 2005,200(11): 807-811.
[42]Li GW, Xu Z, Chen QW, et al.The temporal characterization of marrow lipids and adipocytes in a rabbit model of glucocorticoidinduced osteoporosis.Skeletal Radiol, 2013, 42(9): 1235-1244.
[43]Li GW, Chang SX, Fan JZ, et al.Marrow adiposity recovery after early zoledronic acid treatment of glucocorticoid-induced bone loss in rabbits assessed by magnetic resonance spectroscopy.Bone, 2013,52(2): 668-675.
[44]Heim M, Frank O, Kampmann G, et al.The phytoestrogen genistein enhances osteogenesis and represses adipogenic differentiation of human primary bone marrow stromal cells.Endocrinology, 2004,145(2): 848-859.
[45]Liu Y, Tang G, Tang R, et al.Assessment of bone marrow changes in postmenopausal women with varying bone densities: magnetic resonance spectroscopy and diffusion magnetic resonance imaging.Chin Med J (English Edition), 2010, 123(12): 1524.
[46]Syed FA, Oursler MJ, Hefferanm TE, et al.Effects of estrogen therapy on bone marrow adipocytes in postmenopausal osteoporotic women.Osteopor Int, 2008, 19(9): 1323-1330.
[47]Wang HY.Internal Medicine.Beijing: Peking University Medical Press, 2005: 832-835, 884-939.王海燕.內(nèi)科學(xué).北京: 北京大學(xué)醫(yī)學(xué)出版社, 2005: 832-835,884-939.
[48]Xu L, Chen Y, He GW, et al.Magnetic resonance imaging and spectroscopy of the bone marrow in children with common hematological diseases.Zhonghua Yi Xue Za Zhi, 2012, 92(9):587-591.
[49]Beutler E.Gaucher disease.Adv Genet, 1995, 32: 17-49.
[50]Stowens DW, Teitelbaum SL, Kahn AJ, et al.Skeletal complications of Gaucher disease.Medicine, 1985, 64(5): 310-322.
[51]Barton NW, Brady RO, Dambrosia JM, et al.Replacement therapy for inherited enzyme deficiency: macrophage-targeted glucocerebrosidase for Gaucher’s disease.N Engl J Med, 1991, 324(21): 1464-1470.