張磊磊,付前剛,李賀軍
(西北工業(yè)大學(xué) 超高溫結(jié)構(gòu)復(fù)合材料重點實驗室,陜西 西安 710072 )
?
第一作者:張磊磊,男,1982年生,副教授
fuqiangang@nwpu.edu.cn
超高溫材料的研究現(xiàn)狀與展望
張磊磊,付前剛,李賀軍
(西北工業(yè)大學(xué) 超高溫結(jié)構(gòu)復(fù)合材料重點實驗室,陜西 西安 710072 )
摘要:超高溫材料是航天飛行器長時飛行、大氣層再入飛行和跨大氣層飛行不可或缺的關(guān)鍵材料,其直接影響了航天飛行器的研制進程并對飛行試驗的成敗起到了至關(guān)重要的作用。綜述了C/C復(fù)合材料、陶瓷基復(fù)合材料、碳化物超高溫陶瓷、硼化物超高溫陶瓷及氮化物超高溫陶瓷等超高溫材料近年來的最新研究成果,重點評述了C/C復(fù)合材料的組織形成機理、疲勞特性、基體改性及抗氧化行為,Cf/SiC及SiCf/SiC陶瓷基復(fù)合材料和超高溫陶瓷在制備工藝、力學(xué)性能、抗氧化和抗燒蝕等方面的國內(nèi)外研究現(xiàn)狀,探討了常用幾種超高溫材料的優(yōu)缺點并分析了其研究重點,提出了超高溫材料當(dāng)前研究中存在的主要問題,指出了超高溫材料未來的研究目標(biāo)和發(fā)展方向。
關(guān)鍵詞:C/C復(fù)合材料;碳化物;硼化物;氮化物;超高溫陶瓷
1前言
飛行器長時飛行、大氣層再入飛行和跨大氣層飛行的極端環(huán)境對結(jié)構(gòu)材料的性能要求越來越苛刻。目前,傳統(tǒng)的金屬材料的使用溫度已經(jīng)接近其極限,不能完全滿足使用要求。新型結(jié)構(gòu)材料問題已顯露端倪,其重要性也進一步凸顯,直接影響飛行器研制進程,決定飛行試驗的成敗。超高溫材料因具有高熔點、高比強度、高熱導(dǎo)、高電導(dǎo)、耐腐蝕以及較好的化學(xué)穩(wěn)定性等眾多優(yōu)異特性,使其成為可以應(yīng)用于極端環(huán)境下飛行器的高溫結(jié)構(gòu)材料。目前常用的超高溫材料有C/C復(fù)合材料、陶瓷基復(fù)合材料,碳化物超高溫陶瓷、硼化物超高溫陶瓷及氮化物超高溫陶瓷。本文綜述了近年來在超高溫材料領(lǐng)域的研究進展和突破,同時對未來研究的重點進行了展望。
2超高溫材料
2.1C/C復(fù)合材料
C/C復(fù)合材料具有高比強、高比模、低膨脹系數(shù)、耐燒蝕和耐沖刷的優(yōu)異特性,尤其是C/C復(fù)合材料的強度隨著溫度的升高不降反升的獨特性能,使得其用作飛行器熱防護系統(tǒng)具有其他材料難以比擬的優(yōu)勢。在2014年國際新材料發(fā)展趨勢高層論壇上,航天材料及工藝研究所的李仲平院士強調(diào)了C/C復(fù)合材料在臨近空間高超聲速飛行器熱結(jié)構(gòu)材料體系中的重要作用,西北工業(yè)大學(xué)的李賀軍教授介紹了C/C復(fù)合材料抗氧化抗燒蝕方面的最新研究成果,航天動力研究院的侯曉研究員詳細介紹了C/C復(fù)合材料擴張段的發(fā)展情況,中南大學(xué)的黃啟忠教授總結(jié)了C/C復(fù)合材料化學(xué)氣相沉積工藝的研究進展,航天材料與工藝研究所的馮志海研究員分析了C/C復(fù)合材料中碳纖維的結(jié)構(gòu)與性能。
2.1.1C/C復(fù)合材料的組織形成機理
通過調(diào)控C/C復(fù)合材料的熱解炭織構(gòu)可優(yōu)化其力學(xué)性能、熱物理性能和氧化燒蝕性能,從而保證C/C復(fù)合材料在實際服役環(huán)境中綜合性能最優(yōu)化,因此研究熱解炭織構(gòu)的形成機理具有重要的意義[1-2]。
Bokros[3-4]以甲烷作為氣源沉積熱解炭,系統(tǒng)研究了沉積溫度(1 000~2 400 ℃)、氣體組成、滯留時間、顆粒表面積等因素對熱解炭結(jié)構(gòu)的影響。Lieberman和Pierson[5-6]首次建立起熱解炭的織構(gòu)與氣相化學(xué)組分的聯(lián)系,對熱解炭的織構(gòu)形成機理研究具有重要意義。Féron等[7-8]采用丙烷為前驅(qū)氣體進行研究,發(fā)現(xiàn)了熱解炭織構(gòu)由中織構(gòu)(MT)-高織構(gòu)(HT)-中織構(gòu)(MT)的轉(zhuǎn)變規(guī)律。Bourrat[9]和Bouchard[10]等在高定向熱解石墨表面沉積了熱解炭,測試了熱解炭的結(jié)構(gòu)及熱解炭和高定向熱解石墨表面的接觸角,發(fā)現(xiàn)隨著氣體滯留時間的延長,熱解炭織構(gòu)發(fā)生MT-HT的轉(zhuǎn)變,同時接觸角變小,認為轉(zhuǎn)變是由于氣氛中的大分子芳香烴比例增加引起的。Zhang等[11]采用化學(xué)氣相滲透(CVI)工藝,以甲烷為前驅(qū)體,在更大的壓力范圍內(nèi)研究了熱解炭織構(gòu)的變化規(guī)律,提出了Particle-filler模型。黃啟忠等[12]對熱解碳點狀織構(gòu)的形核和生長機理進行了深入研究,豐富了熱解碳的織構(gòu)種類,開辟了熱解碳沉積機理的新領(lǐng)域。作者所在課題組深入細致研究了化學(xué)氣相沉積過程中溫度、壓力和滯留時間等因素對熱解碳組織的影響規(guī)律,較為全面地解釋了不同類型熱解碳組織的形成機理,在此基礎(chǔ)上實現(xiàn)了基體組織控制,制備出室溫彎曲強度超過500 MPa,800 ℃彎曲強度超過700 MPa的高性能C/C復(fù)合材料,并成功應(yīng)用于噴管實驗件(圖1)、導(dǎo)向葉片等構(gòu)件的制備。
圖1 C/C復(fù)合材料噴管實驗件Fig.1 C/C composite nozzle sample
2.1.2C/C復(fù)合材料的疲勞行為
C/C復(fù)合材料在循環(huán)加載后出現(xiàn)剩余強度升高的現(xiàn)象,即“疲勞強化”現(xiàn)象,目前的研究主要集中于C/C復(fù)合材料疲勞增強機理和疲勞后材料物理性能(如熱學(xué)、電學(xué)和內(nèi)耗性能)的變化規(guī)律。
Ken等[13]研究了層壓C/C復(fù)合材料循環(huán)加載后的剩余強度,提出“界面損傷”有助于提高C/C復(fù)合材料強度。Yang[14]和Zaman[15]等的研究發(fā)現(xiàn)C/C復(fù)合材料經(jīng)循環(huán)加載之后,纖維/基體界面顯著弱化,認為界面弱化是造成C/C復(fù)合材料疲勞增強的主要原因。關(guān)于疲勞實驗參數(shù)對C/C復(fù)合材料疲勞性能的影響,Liao等[16]發(fā)現(xiàn)3D-C/C復(fù)合材料經(jīng)過拉拉循環(huán)加載后,剩余強度隨循環(huán)周次的增加而增加;Xue等[17]發(fā)現(xiàn)高的疲勞應(yīng)力水平會使材料內(nèi)部產(chǎn)生較多損傷,只有當(dāng)應(yīng)力水平低于疲勞極限時才出現(xiàn)疲勞增強現(xiàn)象。針對C/C復(fù)合材料構(gòu)件局部區(qū)域的應(yīng)力集中問題,Ken等[18]對缺口C/C試樣進行了拉-拉疲勞測試,發(fā)現(xiàn)試樣的剩余強度隨疲勞應(yīng)變的增加而增加;Anggit等[19]進一步指出缺口C/C試樣的疲勞極限受纖維方向、缺口形狀和應(yīng)力比的影響,而對缺口深度不敏感。有關(guān)C/C復(fù)合材料熱物理性能在循環(huán)加載后的變化規(guī)律,文獻[20-22]進行了深入研究,典型的不同循環(huán)加載次數(shù)之后的熱膨脹系數(shù)變化曲線如圖2所示。此外,通過對材料在循環(huán)加載過程中電學(xué)[15,23]和內(nèi)耗性能[24]進行監(jiān)控,可以間接評價材料內(nèi)部缺陷積累和性能衰變規(guī)律。
2.1.3C/C 復(fù)合材料的基體改性
C/C復(fù)合材料在高于450 ℃的有氧環(huán)境下極易氧化,超高溫極端環(huán)境下燒蝕嚴重,導(dǎo)致力學(xué)性能急劇下降?;w改性技術(shù)是提升C/C復(fù)合材料抗氧化抗燒蝕性能的有效手段之一。目前的基體改性材料主要有ZrC、ZrB2、HfC、HfB2等。
針對ZrC改性C/C復(fù)合材料,Liu等[25]通過先驅(qū)體高溫裂解工藝制備出C/C-ZrC復(fù)合材料。Wang等[26]分別以酚醛樹脂和瀝青為碳源,得到多孔C/C預(yù)制體,再采用反應(yīng)熔體浸滲法制備了3D-C/ZrC復(fù)合材料。Li等[27]在聚合有機鋯和PCS的質(zhì)量比為1∶1,熱處理溫度及熱處理時間分別為1 500 ℃和120 s的前提下,通過聚合物浸漬裂解(PIP)工藝制備3D Cf/SiC-ZrC復(fù)合材料。Wang等[28]采用反應(yīng)熔滲(RMI)工藝制備出C/C-SiC-ZrC復(fù)合材料。Feng等[29]研究了SiC/ZrC 的質(zhì)量比對C/C-SiC-ZrC復(fù)合材料力學(xué)及抗燒蝕性能的影響(圖3)。 針對ZrB2改性C/C復(fù)合材料,Tong等人[30]采用反應(yīng)熔體滲透法向C/ZrC預(yù)制體中浸滲Zr-B合金,原位反應(yīng)后得到ZrB2改性的C/ZrC復(fù)合材料。Huang等[31]將ZrB2顆粒噴涂在每層織物上,隨后將織物疊層采用針刺法縫合,最終得到Cf/ZrB2預(yù)制體,再通過PIP工藝得到C/C-ZrB2-ZrC-SiC復(fù)合材料。Hu等[32]采用CVI技術(shù)和PIP技術(shù)相結(jié)合的方法制備出了以Cf/SiC-ZrB2-ZrC為外層包夾Cf/SiC內(nèi)層的“三明治”結(jié)構(gòu)復(fù)合材料。Liu等[33]采用PIP技術(shù)制備出了C/C-ZrB2-ZrC-SiC與C/C-ZrB2-ZrC復(fù)合材料。針對HfC改性C/C復(fù)合材料,Xue 等[34]采用PIP工藝,將HfC陶瓷前驅(qū)體引入到低密度C/C預(yù)制體中,經(jīng)過高溫裂解得到C/C-HfC復(fù)合材料。Li等[35]以八水氧氯化鉿為鉿源制備出HfC-C/C復(fù)合材料。針對HfB2改性C/C復(fù)合材料,Yao等[36]分別以氯化鉿和氧化硼為鉿源及硼源,制備出HfB2改性的C/C復(fù)合材料。
圖2 不同循環(huán)加載次數(shù)后2D-C/C復(fù)合材料的熱膨脹曲線[21] Fig.2 Thermal expansion curves of 2D-C/C composites underdifferent cyclic loading times[21]
圖3 不同質(zhì)量比SiC/ZrC改性C/C復(fù)合材料的質(zhì)量燒蝕率及線燒蝕率[33]Fig.3 Mass and linear ablation rates of the C/C-ZrC-SiC composites with different SiC/ZrC wight ratios[33]
2.1.4C/C 復(fù)合材料的抗氧化
基體改性技術(shù)的防氧化溫度與保護時間有限[37-40],高溫長壽命防氧化必須依賴涂層技術(shù)。
目前開發(fā)的防氧化涂層體系主要有玻璃涂層、金屬涂層和陶瓷涂層。玻璃涂層可以用于密封層材料[41-45]或剎車盤非摩擦面的防氧化(圖4)[46-48]。
圖4 涂覆磷酸鹽玻璃涂層的C/C復(fù)合材料飛機剎車盤Fig.4 C/C composite brake disc with phosphate glass coating
金屬涂層采用高熔點和低氧擴散系數(shù)的Ir、Hf、Cr、Mo等金屬,對C/C復(fù)合材料進行防護,起到了較好的效果[49-50]。而陶瓷涂層是目前研究得最為深入、高溫防護效果最好的抗氧化涂層體系。陶瓷涂層通常利用硅化物的高溫氧化產(chǎn)物(玻璃態(tài)SiO2)填充涂層中的裂紋,阻擋氧氣滲入[51]。陶瓷涂層中的SiC-HfC多層復(fù)合涂層已經(jīng)應(yīng)用于X43A飛行器的C/C復(fù)合材料前緣(圖5)[52]。
為進一步提高陶瓷涂層的性能,緩解陶瓷與C/C之間熱膨脹系數(shù)的差異,研究人員相繼開發(fā)了多相鑲嵌、梯度、第二相增韌等陶瓷涂層體系。多相鑲嵌涂層利用大量的相界面來松弛應(yīng)力,緩解熱失配。Zhao等[53]制備的Si-MoSi2/SiC涂層經(jīng)1 400 ℃氧化100 h后失重0.36%。Ran等[54]制備的MoSi2/SiC涂層可在1 500 ℃對C/C復(fù)合材料有效保護52 h。Ren等[55]開發(fā)的TaxHf1-xB2-SiC/SiC涂層在1 500 ℃下的防氧化壽命達到1 480 h。梯度涂層使涂層與基體及多層涂層之間的組成呈連續(xù)分布,可消除界面應(yīng)力,緩解了涂層開裂趨勢。國外學(xué)者制備的(SiC/Si3N4)/C梯度涂層[56],可用于1 500~1 550 ℃抗氧化。Zhang等[57-58]在C/C復(fù)合材料表面引入C-SiC梯度涂層,有效緩解了涂層與基體的熱失配。將小尺寸的第二相引入陶瓷涂層中也可以提高韌性,減少涂層中裂紋。文獻[59-64]報道通過引入SiC、ZrO2納米顆粒和SiC晶須,或?qū)iC、HfC納米線引入涂層中,通過納米線拔出、橋聯(lián)以及裂紋偏轉(zhuǎn)等增韌機理有效地抑制了涂層的開裂(圖6)。
圖5 涂覆SiC-HfC多層復(fù)合涂層的C/C復(fù)合材料前緣[52]Fig.5 C/C composite engine leading edge with SiC-HfC multi-layer composite coating[52]
2.2超高溫陶瓷
目前常用的超高溫陶瓷主要有陶瓷基復(fù)合材料、碳化物陶瓷、硼化物陶瓷和氮化物陶瓷。在2014年國際新材料發(fā)展趨勢論壇上,李仲平院士強調(diào)加快發(fā)展高性能低成本SiC前驅(qū)體和 SiC纖維研發(fā)工作,推動SiC/SiC陶瓷基復(fù)合材料基礎(chǔ)研究和應(yīng)用基礎(chǔ)研究。論壇上,西北工業(yè)大學(xué)成來飛教授介紹了SiCw/SiC層狀結(jié)構(gòu)陶瓷的研究進展,中國科學(xué)院上海硅酸鹽研究所的董紹明教授介紹了原位反應(yīng)法制備碳化物和氮化物陶瓷基復(fù)合材料。
2.2.1陶瓷基復(fù)合材料
陶瓷基復(fù)合材料的研究主要集中在Cf/SiC及SiCf/SiC復(fù)合材料。西北工業(yè)大學(xué)張立同院士課題組采用CVI、PIP以及RMI等方法制備出Cf/SiC陶瓷基復(fù)合材料并提出界面區(qū)的概念,建立了Cf/SiC內(nèi)基體裂紋與界面區(qū)相互作用的物理模型,并對其服役性能進行了系統(tǒng)性的評價[65-66]。中國科學(xué)院上海硅酸鹽研究所的董紹明等嘗試在PIP制備Cf/SiC、SiCf/SiC復(fù)合材料的過程中加入硼、鋁等添加劑,達到了縮短PIP致密化時間、提高抗氧化能力和力學(xué)性能的效果[67-68]。另外,該研究組還通過液相滲硅(LSI)的方法制備出新型Cf/SiC復(fù)合材料,在干摩擦條件下主要表現(xiàn)為磨粒磨損,磨損率僅為5.87 μg/m MPa[69]。
圖6 SiC納米線在抗氧化涂層中的拔出 (a)、橋聯(lián) (b) 以及裂紋偏轉(zhuǎn) (c)[62]Fig.6 SiC nanowire in anti-oxidation coating: (a) pullout or debonding; (b) bridging; (c) microcrack deflection[62]
2.2.2碳化物超高溫陶瓷
碳化物超高溫陶瓷具有高熔點、高強度、高硬度以及良好力學(xué)性能、良好的化學(xué)穩(wěn)定性,是應(yīng)用廣泛的超高溫陶瓷材料[70],目前常用的碳化物超高溫陶瓷主要包括SiC、ZrC、TaC和HfC。
針對SiC陶瓷的研究,成來飛等結(jié)合流延成型、反應(yīng)熱壓燒結(jié)和CVI的方法,發(fā)展出結(jié)構(gòu)、抗沖擊和超高溫等針對不同應(yīng)用領(lǐng)域的層狀陶瓷。例如,通過結(jié)合流延成型和CVI的方法,成功制備出層狀SiCw/SiC復(fù)合陶瓷,與SiC塊體陶瓷相比,SiCw/SiC層狀結(jié)構(gòu)陶瓷具有較高的斷裂位移和斷裂功,與SiCf/SiC和C/SiC復(fù)合材料相比,SiCw/SiC層狀結(jié)構(gòu)陶瓷具有較高的彎曲模量[71];通過流延成型和反應(yīng)熱壓燒結(jié)的方法,制備出Zr/SiC和Zr/Si3N4等層狀復(fù)合材料,這些陶瓷都具有優(yōu)異的動態(tài)壓縮性能和高的沖擊能量吸收率[72-74];采用結(jié)合流延成型和反應(yīng)熱壓燒結(jié)的方法,制備出ZrB2-SiC以及HfC-SiC層狀復(fù)合陶瓷,其在短時燒蝕的條件下具有極低的線燒蝕率,表現(xiàn)出優(yōu)異的抗燒蝕性能[75-76]。Wang等[77]研究了VC、NbC和TaC摻雜對ZrC陶瓷的影響。Ma等[78]采用熱壓燒結(jié)法制備的含20% SiC及10%石墨的ZrC-SiC-C陶瓷,其室溫下彎曲強度達到了425 MPa,并且在300 ℃熱震后仍能保持約63.5%的原始強度。Ljiljana等[79]通過放電等離子燒結(jié)法制備出ZrC-SiC陶瓷,其兩相分布均勻,室溫下維氏顯微硬度和斷裂韌性分別達到了20.7 GPa和5.07 MPa·m1/2。Liu等[80]利用放電等離子燒結(jié)法制備了TaC陶瓷,研究了SiC添加劑對TaC陶瓷顯微組織及力學(xué)性能的影響。Wang等[81]采用漿料浸滲結(jié)合CVI工藝制備出碳纖維增強SiC-TaC復(fù)合材料,結(jié)果表明添加TaC有助于提高C/SiC復(fù)合材料的抗燒蝕性能。Pienti等[82]加入15%體積分數(shù)的MoSi2作為燒結(jié)助劑,制備了HfC和TaC基復(fù)合材料,并對比基于HfC和TaC復(fù)合材料的燒蝕模型發(fā)現(xiàn),HfC和TaC復(fù)合材料具有更佳的耐燒蝕性。Liu 等[83]等用流延法和熱壓法制備了含有BN和石墨兩種中間層的層壓 HfC-SiC陶瓷,氧乙炔燒蝕測試發(fā)現(xiàn)層壓HfC-SiC陶瓷比單層HfC-SiC具有優(yōu)異的熱氧化穩(wěn)定性和構(gòu)型穩(wěn)定性。
2.2.3硼化物超高溫陶瓷
硼化物超高溫陶瓷與碳化物和氮化物相比,擁有更加優(yōu)異的抗氧化性能,因此吸引了世界各國學(xué)者廣泛的關(guān)注[84-87]。近年來關(guān)于硼化物超高溫陶瓷的研究主要集中在致密化工藝、力學(xué)性能的提高以及抗氧化行為等方面。硼化物超高溫陶瓷主要包括ZrB2,TaB2和HfB2。
Zou等[88]使用熱壓法制備了ZrB2-SiC復(fù)合材料,并研究了WC和ZrC作為添加劑對試樣的影響,結(jié)果表明WC的添加可以顯著增加試樣的彎曲強度,而ZrC的添加降低了試樣的彎曲強度,ZrB2-20SiC-5WC陶瓷在1 600 ℃下的彎曲強度約為675±33 MPa,是室溫下其彎曲強度的1.115倍。Sciti等[89]選用MoSi2和TaSi2作為燒結(jié)助劑,采用放電等離子燒結(jié)法制備了HfB2-MoSi2和HfB2-TaSi2陶瓷,二者的硬度約為20~22 GPa,HfB2-3% MoSi2(體積分數(shù))復(fù)合材料具有較高的強度,在室溫下和1 500 ℃下的彎曲強度分別為760 MPa和480 MPa。Wang等[90]使用原位反應(yīng)熱壓法制備了ZrB2-SiC-ZrC復(fù)合材料,并研究了試樣在1 750 ℃下的靜態(tài)等溫氧化性能。Lee等[91]以Ta,B4C和Si為前驅(qū)物采用反應(yīng)熱壓法制備了TaB2-SiC復(fù)合材料,其彈性模量、彎曲強度、維氏硬度及斷裂韌性分別為487 GPa,542 MPa及17.9 GPa以及3.63 MPa·m1/2,試樣在1 500 ℃的氧化條件下表現(xiàn)出拋物線規(guī)律的被動氧化行為。Lin等[92]研究了ZrO2纖維增韌相對ZrB2-SiC復(fù)合材料的影響,采用熱壓法在1 850 ℃下制備的ZrB2-SiC-ZrO2f陶瓷的彈性強度和斷裂韌性分別為1 086±79 MPa和6.9±0.4 MPa·m1/2。Silvestroni[93]以MoSi2作為添加劑采用熱壓法制備了相對密度達到90%~95%的TaB2-MoSi2復(fù)合材料,試樣的硬度為18 GPa,斷裂韌性為4.6 MPa·m1/2。Talmy等[94]通過無壓燒結(jié)方法制備了TaC-TaB2-C陶瓷,發(fā)現(xiàn)TaB2的存在可以抑制TaC晶粒生長并增加TaC陶瓷的硬度。Ni等[95]通過熱壓燒結(jié)技術(shù)制備了HfB2-SiC(HS)陶瓷以及HfB2-HfC-SiC (HHS)陶瓷。發(fā)現(xiàn)在添加HfC后,復(fù)合材料的晶粒尺寸得到了優(yōu)化,HHS陶瓷的斷裂韌性和彎曲強度值分別為5.09 MPa·m1/2和863 MPa,明顯優(yōu)于HS陶瓷的3.95 MPa·m1/2和654 MPa。
2.2.4氮化物超高溫陶瓷
氮化物超高溫陶瓷的化學(xué)性質(zhì)穩(wěn)定,多以共價鍵為主,結(jié)構(gòu)單元為四面體的M4N,類似于金剛石,也稱為類金剛石化合物。應(yīng)用較廣泛的氮化物超高溫陶瓷主要有Si3N4,BN和HfN等。
Escobar等[96]用磁控濺射技術(shù)在鋼表面沉積多層體系HfN/VN層,發(fā)現(xiàn)HfN/VN多層涂層在面心立方(111)晶體結(jié)構(gòu)方向優(yōu)先生長。Huang等[97]用第一性原理計算了HfN向Hf3N4陶瓷相轉(zhuǎn)變時電子性質(zhì)的變換。Zhou等[98]等用單源前驅(qū)體的氨化作用制備了新型非晶態(tài)聚合物衍生的Si-Hf-N陶瓷。Matsuoka等[99]研究發(fā)現(xiàn)HfO2促進了Si3N4的致密化。Guo等[100]發(fā)現(xiàn)在燒結(jié)助劑MgO-Lu2O3的作用下,在1 500℃或低于1 500℃的Ar氣環(huán)境中可得到密實的Si3N4-ZrB2陶瓷。Ahmad等[101]發(fā)現(xiàn)氣氛類型、退火溫度和含氮量對Si3N4-Al2O3-SiO2-Y2O3玻璃陶瓷的微觀結(jié)構(gòu)和轉(zhuǎn)變溫度都有很大影響。Li等[102]采用熱壓法以Si3N4粉末和CeO2為添加劑制備了致密的Si3N4陶瓷。董紹明等[103]將Si3N4陶瓷引入到Cf/SiC復(fù)合材料中,提高了陶瓷的產(chǎn)率,降低了體積收縮和線收縮,改善了復(fù)合材料的界面結(jié)合狀態(tài),使得其彎曲強度提高近一倍。
3結(jié)語
世界航空航天技術(shù)的發(fā)展對超高溫材料的性能提出了苛刻的要求,尤其是高性能航空發(fā)動機熱結(jié)構(gòu)件與空天飛行器熱防護系統(tǒng),其在服役過程中要承受嚴重的燒蝕、高速氣流的強沖擊和大梯度的熱沖擊,因而對超高溫材料的發(fā)展提出了新的挑戰(zhàn)。目前,我國在超高溫材料的研究方面已取得了較大的突破性進展,然而該材料的研究仍然有諸多問題懸而未決,今后對于超高溫材料的研究,認為應(yīng)重點加強以下幾方面:
(1)開發(fā)寬溫區(qū)抗氧化C/C復(fù)合材料。目前已開發(fā)的抗氧化涂層的有效防護溫度范圍較窄,難以滿足低溫至高溫的寬溫區(qū)范圍抗氧化,構(gòu)建功能梯度涂層,避免涂層開裂或減少涂層中裂紋尺寸,是實現(xiàn)寬溫區(qū)抗氧化的有效途徑;
(2)針對應(yīng)用構(gòu)件的C/C復(fù)合材料基體改性研究。目前的C/C復(fù)合材料基體改性研究大多針對微小試樣進行,針對具體的應(yīng)用構(gòu)件,尚需研究由微小試樣到應(yīng)用構(gòu)件轉(zhuǎn)變過程中,制備工藝的穩(wěn)定性、基體改性措施的可移植性以及構(gòu)件綜合性能的協(xié)調(diào)性等問題;
(3)探索提高超高溫陶瓷材料韌性的措施,如將納米線、納米帶、納米棒引入碳化物、氮化物和硼化物及其復(fù)合陶瓷中,有望顯著提高超高溫陶瓷的韌性;
(4)解決超高溫陶瓷材料的缺陷控制問題。缺陷是超高溫陶瓷材料中難以避免的組成部分,而缺陷對超高溫陶瓷材料的性能又有十分顯著的影響,因此探索缺陷的形成原因、檢測、表征與控制是未來研究的方向之一;
(5)完善超高溫材料的性能測試規(guī)范。目前缺乏針對超高溫材料的性能測試統(tǒng)一標(biāo)準。各個研究機構(gòu)的性能測試結(jié)果難以實現(xiàn)橫向?qū)Ρ?,急需建立和完善超高溫材料的性能指?biāo)和評價體系數(shù)據(jù)庫。
參考文獻References
[1]Guellali M, Oberacker R, Hoffmann M J. Influence of the Matrix Microstructure on the Mechanical Properties of CVI-Infiltrated Carbon Fiber Felts[J].Carbon, 2005, 43(9): 1 954-1 960.
[2]Xu Guozhong, Li Hejun, Bai Ruicheng,etal. Influence of the Matrix Texture on the Fracture Behavior of 2D Carbon/Carbon Composites[J].MaterialsScienceandEngineering:A, 2008, 478(1-2): 319-323.
[3]Bokros J C. The Structure of Pyrolytic Carbon Deposited in a Fluidized Bed[J].Carbon,1965,3(1): 17-29.
[4]Price R J, Bokros J C, Koyama K. Structure and Properties of Pyrolytic Carbons Prepared in a Fluidized Bed between 1900℃ and 2400℃[J].Carbon, 1966, 4(2): 263-272.
[5]Lieberman M L, Pierson H O. Effect of Gas Phase Conditions on Resultant Matrix Pyrocarbons in Carbon/Carbon Composites[J].Carbon, 1974, 12(3): 233-241.
[6]Pierson H O, Lieberman M L. The Chemical Vapor Deposition of Carbon on Carbon Fibers [J].Carbon, 1975,13(3): 159-166.
[7]Féron O, Langlais F, Naslain R,etal. On Kinetic and Microstructural Transitions in the CVD of Pyrocarbon from Propane[J].Carbon,1999,37(9): 1 343-1 353.
[8]Lavenac J, Langlais F, Feron O,etal. Microstructure of the Pyrocarbon Matrix in Carbon/Carbon Composites[J].CompositesScienceandTechnology, 2001, 61(3): 339-345.
[9]Bourrat X, Lavenac J, Anglais F,etal. The Role of Pentagons in the Growth of Laminar Pyrocarbon[J].Carbon, 2001, 39(15): 2 376-2 380.
[10]Bouchard E, Lavenac J, Roux J C,etal. Pyrocarbon Deposits on a Graphite Surface Observed by STM[J].ChemicalVaporDeposition, 2001, 7(3): 125-130.
[11]Zhang W G, Hu Z J, Hüttinger K J. Chemical Vapor Infiltration of Carbon Fiber Felt: Optimization of Densification and Carbon Microstructure[J].Carbon, 2002, 40(14): 2 529-2 545.
[12]Fan Z Q, Tan R X, He K J,etal. Preparation and Mechanical Properties of Carbon Fibers with Isotropic Pyrolytic Carbon Core by Chemical Vapor Deposition [J].ChemicalEngineeringJournal, 2015, 272(1): 12-16.
[13]Goto Ken, Hatta Hiroshi, Katsu Daisuke,etal. Tensile Fatigue of a Laminated Carbon-Carbon Composite at Room Temperature[J].Carbon, 2003, 41 (6):1 249-1 255.
[14]Yang Xi, Li Hejun, Yu Kuahai,etal. Effect of Stress Level on Fatigue Behavior of 2D C/C Composites[J].TransactionsofNonferrousMetalsSocietyofChina, 2013, 23(7): 2 135-2 140.
[15]Wajed Zaman, Li Kezhi, Li Wei,etal. Flexural Strength and Thermal Expansion of 4 D Carbon/Carbon Composites after Flexural Fatigue Loading[J].NewCarbonMaterials, 2014, 29(3): 169-175.
[16]Liao Xiaoling, Li Hejun, Xu Wenfeng,etal. Effects of Tensile Fatigue Loads on Flexural Behavior of 3D Braided C/C Composites[J].CompositesScienceandTechnology, 2008, 68(2): 333-336.
[17]Xue Lizhen, Li Kezhi, Jia Yan,etal. Flexural Fatigue Behavior of 2D Cross-Ply Carbon/Carbon Composites at Room Temperature[J].MaterialsScienceandEngineering:A, 2015, 634: 209-214.
[18]Goto Ken, Furukawa Yuko, Hatta Hiroshi,etal. Fatigue Behavior of 2D Laminate C/C Composites at Room Temperature[J].CompositesScienceandTechnology, 2005, 65 (7): 1 044-1 051.
[19]Murdani A, Makabe C, Fujikawa M,etal. Fatigue and Fracture Behavior in Notched Specimens of C/C Composite with Fine-Woven Carbon Fiber Laminates[J],Carbon, 2009, 47 (14): 3 355-3 364.
[20]Liao Xiaoling, Li Hejun, Xu Wenfeng,etal. Study on the Thermal Expansion Properties of C/C Composites[J].JournalofMaterialsScience, 2007, 42 (10): 3 435-3 439.
[21]Yang Xiaohui (楊曉輝), Lu Jinhua (盧錦花), Li Kezhi (李克智),etal.彎-彎疲勞加載對2D-C/C復(fù)合材料熱膨脹性能的影響[J].JournalofSolidRocketTechnology(固體火箭技術(shù)), 2012, 05: 665-669.
[22]Luo Wenfei, Fu Yewei, Zhang Shouyang,etal. Effects of Different Loading Methods on Thermal Expansion Behaviors of 2D Cross-Ply Carbon/Carbon Composites from 850°C to 2300°C[J].CeramicsInternational, 2014, 40(8,Part A): 12 545-12 551.
[23]Xue Lizhen, Li Kezhi, Zhang Shouyang,etal. Monitoring the Damage Evolution of Flexural Fatigue in Unidirectional Carbon/Carbon Composites by Electrical Resistance Change Method[J].InternationalJournalofFatigue, 2014,68: 248-252.
[24]Cheng Jing, Li Hejun, Zhang Shouyang,etal. Internal Friction Behavior of Unidirectional Carbon/Carbon Composites after Different Fatigue Cycles[J].MaterialsScienceandEngineering:A, 2014, 600:129-134.
[25]Liu Chunxuan, Chen Jianchun, Su Zhean,etal. Pyrolysis Mechanism of ZrC Precursor and Fabrication of C/C-ZrC Composites by Precursor Infiltration and Pyrolysis[J].TransactionofNonferrousMetalsSocietyofChina, 2014, 24(6):1 779-1 784.
[26]Wang Song, Zhu Yulin, Chen Hongmei,etal. Effects of Carbon Matrix on Microstructure and Properties of 3-D C/ZrC Composites Prepared by Reactive Melt Infiltration[J].CeramicsInternational, 2014, 40(5):7 307-7 314.
[27]Li Q G, Zhou H J, Dong S M,etal. Fabrication and Comparison of 3D Cf/ZrC-SiC Composites Using ZrC Particles/ Polycarbosilane and ZrC Precursor/Polycarbosilane[J].CeramicsInternational, 2012, 38(6):5 271-5 275.
[28]Wang Yiguang, Zhu Xiaojuan ,Zhang Litong,etal. C/C-SiC-ZrC Composites Fabricated by Reactive Melt Infiltration with Si0.87Zr0.13Alloy[J].CeramicsInternational, 2012, 38(5):4 337-4 343.
[29]Feng Bo, Li Hejun, Zhang Yulei,etal. Effect of SiC/ZrC Ratio on the Mechanical and Ablation Properties of C/C-SiC-ZrC Composites[J].CorrosionScience, 2014, 82:27-35.
[30]Tong Yonggang, Bai Shuxin, Ye Yicong,etal. Reactive Melt Infiltration of a ZrB2Modified C/ZrC Composite by a Eutectic Zr-B Alloy[J].MaterialsLetters, 2015,138(1):208-211.
[31]Huang Dong, Zhang Mingyu, Huang Qizhong,etal. Ablation Mechanism of C/C-ZrB2-ZrC-SiC Composite Fabricated by Polymer Infiltration and Pyrolysis with Preform of Cf/ZrB2[J].CorrosionScience,2015,19(2):22-27.
[32]Hu Chenglong, Pang Shengyang, Tang Sufang,etal. Ablation and Mechanical Behavior of a Sandwich-Structured Composite with an Inner Layer of Cf/SiC between Two Outer Layers of Cf/SiC- ZrB2-ZrC[J].CorrosionScience,2015,80:154-163.
[33]Liu Lei, Li Hejun, Feng Wei,etal. Ablation in Different Heat Fluxes of C/C Composites Modified by ZrB2-ZrC and ZrB2-ZrC-SiC Particles[J].CorrosionScience,2013,74:159-167.
[34]Xue Liang, Su Zhean, Yang Xin,etal. Microstructure and Ablation Behavior of C/C-HfC Composites Prepared by Precursor Infiltration and Pyrolysis[J].CorrosionScience,2015,94:165-170.
[35]Li Shuping, Li Kezhi, Du Hongying,etal. Effect of Hafnium Carbide Content on the Ablative Performance of Carbon/Carbon Composites as Rocket Throats[J].Carbon,2013,51(4):437-438.
[36]Li Hejun, Yao Dongjia, Fu Qianggang,etal. Anti-Oxidation and Ablation Properties of Carbon/Carbon Composites Infiltrated by Hafnium Boride[J].Carbon,2013,52:418-426.
[37]Corral E L,Loehman R E. Ultrahigh-Temperature Ceramic Coatings for Oxidation Protection of Carbon-Carbon Composites[J].JournalofAmericanCeramicSociety,2008,91(5):1 495-1 502.
[38]Jcobson N S, Curry D M. Oxidation Microstructure Studies of Reinforced Carbon/Carbon[J].Carbon, 2006, 44(7):1 142-1 150.
[39]Li Hejun(李賀軍), Xue Hui(薛 暉), Fu Qiangang(付前剛),etal. C/C復(fù)合材料高溫抗氧化涂層的研究現(xiàn)狀與展望[J].JournalofInorganicMaterials(無機材料學(xué)報), 2010, 25(4):337-342.
[40]Fu Qiangang(付前剛), Zhang Jiaping(張佳平), Li Hejun(李賀軍). 抗燒蝕C/C復(fù)合材料研究進展[J].NewCarbonMaterials(新型炭材料), 2015, 30(2):97-105.
[41]Smeacetto F, Ferraris M, Salvo M. Multilayer Coating with Self-Sealing Properties for Carbon-Carbon Composites[J].Carbon, 2003, 41(11):2 105-2 111.
[42]Fu Qiangang, Li Hejun, Li Kezhi,etal. A SiC/Glass Oxidation Protective Coating for Carbon/Carbon Composites for Application at 1173K[J].Carbon, 2007, 45(4):892-894.
[43]Fu Qiangang, Li Hejun, Shi Xiaohong,etal. Double-Layer Oxidation Protective SiC/Glass Coatings for Carbon/Carbon Composites[J].Surface&CoatingsTechnology, 2006, 200(11):3 473-3 477.
[44]Fu Qiangang, Li Hejun, Shi Xiaohong,etal. Oxidation Protective Glass Coating for SiC Coated Carbon/Carbon Composites for Application at 1773K[J].MaterialsLetters,2006,60(3):431-434.
[45]Huang Jianfeng, Zhang Yulei, Zhu Kongjun,etal. Microstructure and Oxidation Protection of Borosilicate Glass Coating Prepared by Pulse Arc Discharge Deposition for C/C Composites[J].CeramicsInternational, 2015, 41(3):4 662-4 667.
[46]Fu Qiangang(付前剛), Li Hejun(李賀軍), Huang Jianfeng(黃劍鋒),etal. 炭/炭復(fù)合材料磷酸鹽涂層的抗氧化性能研究[J].MaterialsProtection(材料保護), 2005, 38(3):52-54.
[47]Fang Haitao, Zhu Jingchuan, Yin Zhongda,etal. A Si-Mo Fused Slurry Coating for Oxidation Protection of Carbon-Carbon Composites[J].JournalofMaterialsScienceLetters, 2001, 20(2):175-177.
[48]Zhang Yulei, Li Hejun, Fu Qiangang,etal. A Si-Mo Oxidation Protective Coating for C/SiC Coated Carbon/Carbon Composites[J].Carbon, 2008, 45(5): 1 130-1 133.
[49]Fu Qiangang, Li Hejun, Li Kezhi,etal. A Si-Mo-W Coating to Protect SiC-Coated Carbon/Carbon Composites against Oxidation[J].JournaloftheAmericanCeramicSociety, 2009, 92(9):2 132-2 135.
[50]Zhang Yulei, Li Hejun, Yao Xiyuan,etal. Oxidation Protection of C/SiC Coated Carbon/Carbon Composites with Si-Mo Coating at High Temperature[J].CorrosionScience, 2011, 53(6):2 075-2 079.
[51]Zhang Yulei, Li Hejun, Hu Zhixiong,etal. Microstructure and Oxidation Resistance of Si-Mo-B Coating for C/SiC Coated Carbon/Carbon Composites[J].CorrosionScience, 2013, 72:150-155.
[52]http://blog.sina.com.cn/s/blog_4e66996d0100bcll.html
[53]Zhao Juan, Guo Quangui, Shi Jingli,etal. SiC/Si-MoSi2Oxidation Protective Coatings for Carbon Materials[J].Surface&CoatingsTechnology,2006,201(3/4):1 861-1 865.
[54]Ran Liping(冉麗萍),Yi Maozhong(易茂中),Jiang Jianxian (蔣建獻),etal. 炭/炭復(fù)合材料MoSi2/SiC高溫抗氧化復(fù)合涂層的制備及其結(jié)構(gòu)[J].NewCarbonMaterials(新型炭材料),2006,21(3):231-236.
[55]Ren Xuanru, Li Hejun, Fu Qiangang,etal. TaxHf1-xB2-SiC Multiphase Oxidation Protective Coating for SiC-Coated Carbon/Carbon Composites[J].CorrosionScience, 2014, 87:479-488.
[56]Zhu Y C, Ohtani S, Sato Y,etal. Formation of a Functionally Gradient (Si3N4+SiC)/C Layer for the Oxidation Protection of Carbon-Carbon Composites[J].Carbon, 1999, 37(9):1 417-1 423.
[57]Zhang Yulei, Li Hejun, Fu Qiangang,etal. A C/SiC Gradient Oxidation Protective Coating for Carbon/Carbon Composites[J].Surface&CoatingsTechnology, 2006, 201(6):3 491-3 495.
[58]Li Hejun, Zhang Yulei, Fu Qiangang,etal. Oxidation Behavior of SiC Nanoparticle-SiC Oxidation Protective Coating for Carbon/Carbon Composites at 1773K[J].Carbon, 2007, 45(13):2 704-2 707.
[59]Zhang Yulei, Li Hejun, Fu Qiangang,etal. High Performance SiC Oxidation Protective Coating with ZrO2Particle Dispersion for Carbon/Carbon Composites[J].AdvancedEngineeringMaterials,2008, 10(10):986-989.
[60]Li Hejun, Fu Qiangang, Shi Xiaohong,etal. SiC Whisker-Toughened SiC Oxidation Protective Coating for Carbon/Carbon Composites[J].Carbon, 2006, 44(3):602-605.
[61]Fu Qiangang, Li Hejun, Li Kezhi,etal. SiC Whisker-Toughened MoSi2-SiC-Si Coating to Protect Carbon/Carbon Composites against Oxidation[J].Carbon, 2006, 44(9):1 866-1 869.
[62]Chu Yanhui, Fu Qiangang, Li Hejun,etal. Effect of SiC Nanowires on the Mechanical and Oxidation Protective Ability of SiC Coating for C/C Composites[J].JournaloftheAmericanCeramicSociety, 2012, 95(2):739-745.
[63]Chu Yanhui, Li Hejun, Li Lu,etal. Oxidation Protection of C/C Composites by Ultra Long SiC Nanowire-Reinforced SiC-Si Coating[J].CorrosionScience, 2014,84:204-208.
[64]Zhang Yulei, Ren Jincui, Tian Song,etal. HfC Nanowire-Toughened TaSi2-TaC-SiC-Si Multiphase Coating for C/C Composites against Oxidation[J].CorrosionScience, 2015, 90:554-561.
[65]Li Houbu, Zhang Litong, Cheng Laifei,etal. Polymer-Ceramic Conversion of a Highly Branched Liquid Polycarbosilane for SiC-Based Ceramics[J].JournalofMaterialsScience,2008,43(8): 2 806-2 811.
[66]Hui Mei, Laifei Cheng. Thermal Cycling Response Behavior of Ceramic Matrix Composites under Load and Displacement Constraints[J].MaterialsScienceandEngineeringA-StructuralMaterialsPropertiesMicrostructureandProcessing,2008,486(1-2): 235-240.
[67]Wang Zhen, Dong Shaoming, He Ping,etal. Fabrication of Carbon Fiber Reinforced Ceramic Matrix Composites with Improved Oxidation Resistance Using Boron as Active Filler[J].JournaloftheEuropeanCeramicSociety,2010,30(9): 1 971-1 972.
[68]Zhu Yunzhou, Zhu Shuzhen, HuangZhengren,etal. Properties and Microstructure of KD-I/SiC Composites by Combined Process of CVI/RB/PIP[J].MaterialsScienceandEngineeringA-StructuralMaterialsPropertiesMicrostructureandProcessing,2008,477(1-2): 198-203.
[69]Zhou Haijun, Dong Shaoming, DingYusheng,etal. Friction and Wear Properties of 3D Carbon/Silicon Carbide Composites Prepared by Liquid Silicon Infiltration[J].TribologyLetters, 2010,37(2): 337-341.
[70]Ma Yan, Wang Song, Chen Zhaohui. Effects of High-Temperature Annealing on the Microstructures and Mechanical Properties of Cf/SiC Composites Using Polycarbosilane[J].MaterialsScienceandEngineeringA-StructuralMaterialsPropertiesMicrostructureandProcessing,2011,528(7-8): 3 069-3 072.
[71]Xie Yupeng, Cheng Laifei, Li Liangjun,etal. Fabrication of Laminated SiCw/SiC Ceramic Composites by CVI[J].JournaloftheEuropeanCeramicSociety,2013,33(10): 1 701-1 706.
[72]Li Liangjun, Cheng Laifei, Fan Shangwu,etal. A Novel Fabrication Approach for Impact Resistance Laminated Ceramics[J].Materials&Design,2015,79: 26-31.
[73]Li Liangjun,Cheng Laifei, Fan Shangwu,etal. Fabrication and Properties of Zr/SiC and Zr/Si3N4Laminated Composites[M]. 2014: 99-103.
[74]Li Liangjun, Cheng Laifei, Fan Shangwu,etal. Fabrication and Dynamic Compressive Response of Laminated ZrO-Zr2CN/Si3N4Ceramics[J].CeramicsInternational, 2015,41(7): 8 584-8 591.
[75]Zuo Fengjuan, Cheng Laifei, Xiang Liuyi ,etal. Ablative Property of Laminated ZrB2-SiC Ceramics under Oxyacetylene Torch[J].CeramicsInternational,2013,39(4): 4 627-4 631.
[76]Xiang Liuyi, Cheng Laifei, Fan Xiaomeng,etal. Effect of Interlayer on the Ablation Properties of Laminated HfC-SiC Ceramics under Oxyacetylene Torch[J].CorrosionScience,2015,93: 172-179.
[77]Wang Xingang, Liu Jixuan, Kan Yanmei,etal. Effect of Solid Solution Formation on Densification of Hot-Pressed ZrC Ceramics withMC (M= V, Nb, and Ta) Additions[J].JournaloftheEuropeanCeramicSociety,2012,32(8): 1 795-1 802.
[78]Ma Baoxia, Han Wenbo. Thermal Shock Resistance of ZrC Matrix Ceramics[J].JournalofRefractoryMetalsandHardMaterials,2010, 28: 187-190.
[79]Kljajevic L, Nenadovic S, Nenadovic M,etal. Spark Plasma Sintering of ZrC-SiC Ceramics with LiYO2Additive[J].CeramicsInternational, 2013, 39: 5 467-5 476.
[80]Liu Han(劉 晗).EffectsofSiliconCarbideAdditiononMicrostructureandMechanicalPropertiesofTantalumCarbideCeramics(碳化硅添加劑對碳化鉭陶瓷顯微組織及力學(xué)性能的影響) [D]. Harbin: Harbin Institute of Technology,2013.
[81]Wang Yi(王 毅),Xu Yongdong(徐永東),Xie Chongbo(謝翀博),etal. 三維針刺 C/(SiC -TaC)復(fù)合材料的燒蝕性能及燒蝕機理[J].JournaloftheChineseCeramicSociety(硅酸鹽學(xué)報),2009,37(10): 1 718-1 723.
[82]Pienti L,Sciti D,Silvestroni L,etal. Ablation Tests on HfC-and TaC-Based Ceramics for Aeropropulsive Applications[J].JournaloftheEuropeanCeramicSociety,2015,35:1 401-1 411.
[83]Liu Yixiang,Cheng Laifei,Fan Xiaomeng,etal. Effect of Interlayer on the Ablation Properties of Laminated HfC-SiC Ceramics under Oxyacetylene Torch[J].CorrosionScience,2015,93:172-179.
[84]Shugart K, Patterson B, Lichtman D,etal. Mechanisms for Variability of ZrB2-30vol% SiC Oxidation Kinetics[J].JournaloftheAmericanCeramicSociety, 2014,97(7): 2 279-2 285.
[85]He Rujie, Zhang Xinhong, Han Wenbo,etal. Effects of Solids Loading on Microstructure and Mechanical Properties of HfB2-20vol% MoSi2Ultra High Temperature Ceramic Composites through Aqueous Gel Casting Route[J].Materials&Design,2013,47: 35-40.
[86]Peng F, Laningham G V, Speyer R F. Thermogravimetric Analysis of the Oxidation Resistance of ZrB2-SiC and ZrB2-SiC-TaB2-Based Compositions in the 1 500~1 900 ℃ Range[J].JournalofMaterialsResearch, 2011, 26(01): 96-107.
[87]Zapata S E, Jayaseelan D D, Lin H T,etal. Mechanical Properties of ZrB2-and HfB2-Based Ultra-High Temperature Ceramics Fabricated by Spark Plasma Sintering[J].JournaloftheEuropeanCeramicSociety,2013,33(7): 1 373-1 386.
[88]Zou Ji, Zhang Guojun, Hu Chufeng,etal. Strong ZrB2-SiC-WC Ceramics at 1 600 ℃[J].JournaloftheAmericanCeramicSociety,2012,95(3): 874-878.
[89]Sciti D, Bonnefont G, Fantozzi G,etal. Spark Plasma Sintering of HfB2with Low Additions of Silicides of Molybdenum and Tantalum[J].JournaloftheEuropeanCeramicSociety,2010,30: 3 253-3 258.
[90]Wang Zhi,Wu Zhanjun,Shi Guodong.The Oxidation Behaviors of a ZrB2-SiC-ZrC Ceramic[J].SolidStateSciences,2011,13(3): 534-538.
[91]Lee S J, Baek S S, Kang E S,etal. Fabrication and Oxidation Behavior of Reactively Hot Pressed TaB2-SiC Ceramics [J].ReviewsonAdvancedMaterialsScience,2011,28: 21-25.
[92]Lin Jia, Zhang Xinghong, Wang Zhi,etal. Microstructure and Mechanical Properties of Hot-Pressed ZrB2-SiC-ZrO2fCeramics with Different Sintering Temperatures[J].MaterialsandDesign, 2012,34: 853-856.
[93]Silvestroni L, Guicciardi S, Melandri C,etal. TaB2-Based Ceramics: Microstructure,Mechanical Properties and Oxidation Resistance[J].JournaloftheEuropeanCeramicSociety,2012,32(01): 97-105.
[94]Talmy I G, Zaykoski J A, Opeka M M. Synthesis, Processing and Properties of TaC-TaB2-C Ceramics[J].JouranaloftheEuropeanCeramicSociety,2010,30 (11): 2 253-2 263.
[95]Ni Dewei, Liu Jixuan, Zhang Guojun. Microstructure Refinement and Mechanical Properties Improvement of HfB2-SiC Composites with the Incorporation of HfC[J].JournaloftheEuropeanCeramicSociety,2012,32(10): 2 557-2 563.
[96]Escobar C, Villarreal M, Caicedo J C,etal. Mechanical Properties of Steel Surfaces Coated with HfN/VN Superlattices[J].JournalofMaterialsEngineeringandPerformance, 2014,23(11):3 963-3 974.
[97]Huang H H, Fan Xiaofeng, Hu C Q,etal. Transformation of Electronic Properties and Structural Phase Transition from HfN to Hf3N4[J].JournalofPhysics-CondensedMatter,2015,27(22):1-7.
[98]Zhou C, Gao X, Xu Y,etal.Synthesis and High-Temperature Evolution of Single-Phase Amorphous Si-Hf-N Ceramics[J].JournaloftheEuropeanCeramicSociety,2015,35(7): 2 007-2 015.
[99]Matsuoka M,Yoshio S,Tatami J,etal. Development of CNT-Dispersed Si3N4Ceramics by Adding Lower Temperature Sintering Aids[J].JournaloftheKoreanCeramicSociety,2012,39(4):333-336.
[100]Guo Weiming, Wu Lixiang, Ma Ti,etal. Chemical Reactivity of Hot-Pressed Si3N4-ZrB2Ceramics at 1500-1700 ℃[J].JournaloftheEuropeanCeramicSociety,2015,35(11):2 973-2 979.
[101]Ahmad S,Ludwig T,Herrmann M,etal. Crystallisation Studies of Si3N4-Al2O3-SiO2-Y2O3Glass-Ceramics under Different Heat-Treatment Conditions[J].JournaloftheEuropeanCeramicSociety,2015,35(8):2 261-2 268.
[102]Li Y X, Han W B, Chen G Q,etal. Influence of CeO2Addition on Si3N4Ceramics[J].MaterialsResearchInnovations, 2015,19 (1):339-342.
[103]Wu B, Wang Z, Dong S M. Improved Oxidation Resistance of SiC-Based Ceramic Matrix Composites by In-Situ Reaction with Si3N4Filler [J].KeyEngineeringMaterials, 2012,512 (1):775-778.
(編輯惠瓊)
Research State and Prospect of Ultra-HighTemperature Materials
ZHANG Leilei, FU Qiangang, LI Hejun
(Science and Technology on Thermostructural Composite Materials Laboratory,
Northwestern Polytechnical University, Xi’an 710072,China)
Abstract:The ultra-high temperature materials (UHM) are essential materials used for the long-time flight , reentry flight and crossover flight of aerosphere, which influence the research process of the flight and play an important role in the success or failure of the flight tests. The research state and prospect of UHM, including carbon/carbon composites, ceramic-based composites, carbide UHM, boride UHM and nitride UHM are summarized. The close attention is paid to the formation mechanism of texture, fatigue property, matrix modification and oxidation behavior of carbon/carbon composites as well as the preparation technology, mechanical property, oxidation and ablation resistance of ceramic-based ceramic composites and ultra-high temperature ceramic.The merits and drawbacks as well as the research keynotes of the UHM are discussed. The present problems and potential development direction of the UHM are also proposed.
Key words:carbon/carbon composites; carbide; boride; nitride; ultra-high temperature ceramic
中圖分類號:TB332
文獻標(biāo)識碼:A
文章編號:1674-3962(2015)09-0675-09
DOI:10.7502/j.issn.1674-3962.2015.09.05
通訊作者:付前剛,男,1979年生,教授,博士生導(dǎo)師,Email:
收稿日期:2015-07-20