張 露, 皮荷杰, 周細(xì)紅, 蔣朝暉, 曾清如
(1.湖南農(nóng)業(yè)大學(xué) 資源環(huán)境學(xué)院, 湖南 長(zhǎng)沙 410128; 2.陜西省土地工程建設(shè)集團(tuán) 國(guó)土資源部退化
及未利用土地整治工程重點(diǎn)實(shí)驗(yàn)室, 陜西 西安 710075; 3.株洲市環(huán)境保護(hù)研究院, 湖南 株洲 412007)
雙氰胺在不同溫度下對(duì)堿性土尿素氮轉(zhuǎn)化的影響
張 露1,2, 皮荷杰3, 周細(xì)紅1, 蔣朝暉1, 曾清如1
(1.湖南農(nóng)業(yè)大學(xué) 資源環(huán)境學(xué)院, 湖南 長(zhǎng)沙 410128; 2.陜西省土地工程建設(shè)集團(tuán) 國(guó)土資源部退化
及未利用土地整治工程重點(diǎn)實(shí)驗(yàn)室, 陜西 西安 710075; 3.株洲市環(huán)境保護(hù)研究院, 湖南 株洲 412007)
摘要:[目的] 為了提高氮素的利用效率,減少—N淋溶污染,本試驗(yàn)研究了硝化抑制劑雙氰胺(DCD)對(duì)堿性土壤中氮素轉(zhuǎn)化的影響,為氮素的合理高效利用,增加作物產(chǎn)量提供參考。 [方法] 采用實(shí)驗(yàn)室人工氣候箱培養(yǎng)法,研究雙氰胺在15,25和35 ℃不同溫度下對(duì)山西省晉城市菜園土(堿性)的pH值、氨揮發(fā)量及—N和—N轉(zhuǎn)化的影響。 [結(jié)果] 在堿性土壤中施加雙氰胺后,其pH值高于對(duì)照,且pH值隨土壤溫度的升高而升高;同時(shí)堿性土壤中氨揮發(fā)量也隨溫度升高而增大,每升高10 ℃,氮素以氨氣形式損失的增加率約為6.90%;而土壤—N量卻隨溫度的升高有所下降,其變化趨勢(shì)與土壤—N量變化相反,此外溫度的升高可導(dǎo)致—N含量峰值的出現(xiàn)時(shí)間提前,每增加10 ℃提前約為1周左右。雙氰胺的施加可減少了—N轉(zhuǎn)化為—N的量。 [結(jié)論] 雙氰胺的施加可減少堿性土壤中氮素轉(zhuǎn)化為—N所帶來(lái)的淋溶污染問(wèn)題,且隨溫度的升高pH值、氨揮發(fā)量和—N量增加。
關(guān)鍵詞:雙氰胺; 氮素; pH值; 氨揮發(fā);;
1材料與方法
在山西省晉城市菜園中用取土轉(zhuǎn)采集土壤剖面0—60 cm的土樣,隨機(jī)找3個(gè)取樣點(diǎn),將各自地點(diǎn)所取的土樣混合均勻,剔除有機(jī)殘?jiān)偷[石,經(jīng)自然風(fēng)干后過(guò)10目篩,貯存?zhèn)溆?,其土壤基本理化性質(zhì)詳見(jiàn)表1[4]。
表1 供試土壤基本理化性質(zhì)
1.2.1pH值的測(cè)定取培養(yǎng)試驗(yàn)中土樣10 g加入25 ml蒸餾水,在室溫下振蕩20 min,然后用PHS-3C型精密pH計(jì)對(duì)其pH值進(jìn)行測(cè)定[5]。
1.2.2揮發(fā)氨的吸收及測(cè)定取供試土樣60 g于玻璃密封瓶中,在3種溫度下采用兩種處理,3個(gè)平行(3種溫度和2種處理同1.2試驗(yàn)方法)。調(diào)水分至絕對(duì)含水量80%,然后分別置于15,25和35 ℃人工氣候箱中培養(yǎng)。每個(gè)玻璃密封瓶?jī)?nèi)放置一個(gè)50 ml小燒杯,小燒杯內(nèi)盛2%的硼酸指示劑溶液5 ml以吸收揮發(fā)的氨。實(shí)驗(yàn)于2013年3月12日開(kāi)始,每隔一定的時(shí)間換取小燒杯測(cè)定揮發(fā)氨的量[6]。用0.005 M的硫酸滴定吸收了氨氣由紅色轉(zhuǎn)變?yōu)榫G色的硼酸吸收液,再將滴定所消耗的硫酸體積進(jìn)行計(jì)算得到揮發(fā)氨量[7]。
2結(jié)果與分析
圖1為供試堿性土在不同溫度下兩種處理下的pH值變化趨勢(shì)圖。從圖1可以看出,兩種處理pH值大體上都呈現(xiàn)出先升高再降低的趨勢(shì)。在處理Ⅱ下,15 ℃時(shí)pH值從第14 d開(kāi)始明顯高于對(duì)照0.1~1.0,25 ℃時(shí)pH值從第4 d以后開(kāi)始明顯高于對(duì)照0.0~1.0,35 ℃時(shí)pH值從第4天開(kāi)始明顯高于對(duì)照0.0~1.0。
在堿性土中,添加硝化抑制劑DCD后pH峰值的出現(xiàn)隨溫度的升高而提前(圖1)。在處理Ⅱ下,15 ℃時(shí)pH值在第14 d出現(xiàn)峰值,25 ℃時(shí)在第7 d出現(xiàn)峰值,35 ℃時(shí)在第4 d就出現(xiàn)了峰值。在堿性土中,35 ℃的pH峰值高出25 ℃的0.1,高出15 ℃的0.2。
圖1 供試堿性土硝化抑制劑對(duì)土壤pH值的影響
圖2為供試堿性土在不同溫度下兩種處理下的揮發(fā)氮量變化。從圖2可以看出,兩種處理的氨揮發(fā)量都是先增加后減少,這和pH值的變化趨勢(shì)一致,說(shuō)明氨揮發(fā)量與土壤pH值成正相關(guān)。施加硝化抑制劑DCD前后氨的變化趨勢(shì),添加DCD后氨氣揮發(fā)量要普遍大于沒(méi)添加的,說(shuō)明DCD能加大氨氣的揮發(fā)量。在堿性土壤中,添加硝化抑制劑DCD后,在3種溫度下,都是從第4 d起NH3開(kāi)始揮發(fā),15 ℃時(shí)在第14 d達(dá)到峰值,25 ℃時(shí)在第7 d達(dá)到峰值,35 ℃時(shí)在第4 d達(dá)到峰值(圖2),可以看出在堿性土中添加硝化抑制劑DCD后隨著溫度的升高氨氣揮發(fā)量出現(xiàn)峰值的時(shí)間提前。在處理Ⅱ下測(cè)定時(shí)間內(nèi)氨氣揮發(fā)總量為15 ℃時(shí)為7.4 mg/kg,占全氮的0.31%,25 ℃時(shí)為21.5 mg/kg,占全氮的0.89%,35 ℃時(shí)為36.2 mg/kg,占全氮的1.51%,所以從15~35 ℃,每升高10 ℃,氮素以氨氣形式損失的增加率約為6.90%,說(shuō)明溫度越高NH3的揮發(fā)量越大。
圖3為供試堿性土在不同溫度下兩種處理下的銨態(tài)氮含量變化。
圖2 供試堿性土硝化抑制劑對(duì)氨揮發(fā)的影響
圖3 供試堿性土硝化抑制劑對(duì)-N的影響
圖4 供試堿性土硝化抑制劑對(duì)-N的影響
3討 論
4結(jié) 論
[參考文獻(xiàn)]
[1]朱兆良,文啟孝.中國(guó)土壤氮素[M].江蘇 南京:江蘇科學(xué)技術(shù)出版社,1992:122-129.
[2]Amberger A. Research on dicyandiamide as a nitrification inhibitor and future outlook [J].Communications in Soil Science and Plant Analysis, 1989, 20(19/20):1933-1955.
[3]McCarty G W. Mode of action of nitrification inhibitors [J]. Biology and Fertility of Soils, 1999,29(1):1-9.
[4]魯如坤.土壤農(nóng)化分析方法[M].北京:中國(guó)農(nóng)業(yè)科技出版社,1999:42-56.
[5]蔣朝輝,曾清如,周細(xì)紅,等.不同溫度下施入尿素后土壤短期內(nèi)pH的變化和氨氣釋放特性[J].土壤通報(bào),2004,35(3):299-302.
[6]孫克君,毛小云,盧其明,等.幾種控釋氮肥減少氨揮發(fā)的效果及影響因素研究[J].應(yīng)用生態(tài)學(xué)報(bào),2004,15(12):2347-2350.
[7]凌莉,李世清,李生秀.石灰性土壤氨揮發(fā)損失的研究[J].土壤侵蝕與水土保持學(xué)報(bào),1999,5(6):119-122.
[8]聶文靜,李博文,郭艷杰,等.氮肥與DCD配施對(duì)棚室黃瓜土壤NH3揮發(fā)損失及N2O排放的影響[J].環(huán)境科學(xué)學(xué)報(bào),2012,32(10): 2500-2508.
[9]馬建華,樊明壽,田東海.雙氰胺對(duì)馬鈴薯農(nóng)田土壤銨態(tài)氮、硝態(tài)氮[J].中國(guó)農(nóng)學(xué)通報(bào),2010,26(2):149-151.
[10]杜玲玲.雙氰胺的硝化抑制作用及其應(yīng)用[J].土壤學(xué)進(jìn)展,1994,22(4): 26-31.
[11]劉源,錢薇,徐仁扣.雙氰胺對(duì)施氮肥引起的紅壤酸化的抑制作用[J].生態(tài)與農(nóng)村環(huán)境學(xué)報(bào), 2013,29(1):76-80.
[12]Kelliher F M, Clough T J, Clark H, et al. The temperature dependence of dicyandiamide(DCD)degradation in soils: A data synthesis [J]. Soil Biology and Biochemistry, 2008, 40(7):1878-1882.
[13]Klein C A M, Cameron K C, Di H J, et al. Repeated annual use of the nitrification inhibitor dicyandiamide(DCD)does not alter its effectiveness in reducing N2O emissions from cow urine[J]. Animal Feed Science and Technology, 2011,166(7):480-491.
[14]Bronson K F, Touchton J T, Hauck R D. Decomposition rate of dicyandiamide and nitrification inhibition [J]. Communications in Soil Science and Plant Analysis, 1989,20(19):19-20.
[15]Rajbanshi S S, Benckiser G, Ottow J C G. Mineralizaiton kinetics and utilizaiton as an N source of dicyandiamide(DCD) in soil [J]. Nautrwissenschaften, 1992, 79(1):26-27.
[16]Schwarzer C, Haselwandter K. Enzymatic degradation of the nitrification inhibitor dicyandiamide by a soil bacterium [J]. Soil Biology and Biochemistry, 1991, 23(3):309-310.
[17]羅濤,王煌平,張曉玲,等.土壤中雙氰胺降解及與降解菌的關(guān)系[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2012,31(11):2174-2179.
[18]Das P, Sa J H, Kim K H, et al. Effect of fertilizer application on ammonia emission and concentration levels of ammonium, nitrate, and nitrite ions in a rice field [J]. Environmental Monitoring Assessment, 2008,154(1/4):275-282.
[19]皮荷杰,曾清如,蔣朝暉,等.兩種硝化抑制劑對(duì)不同土壤中氮素轉(zhuǎn)化的影響[J].水土保持學(xué)報(bào),2009,23(1):68-72.
[20]劉常珍,胡正義,趙言文,等.元素硫和雙氰胺對(duì)菜地土壤銨態(tài)氮硝化抑制協(xié)同效應(yīng)研究[J].植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2008,14(2):334-338.
Effects of Dicyandiamide on Urea Nitrogen Transformation in Alkaline Soil in Different Temperatures
ZHANG Lu1,2, PI Hejie3, ZHOU Xihong1, JIANG Zhaohui1, ZENG Qingru1
(1.CollegeofResourceandEnvironment,Hu’nanAgriculturalUniversity,Changsha,Hu’nan410128,China; 2.ShaanxiLandConstructionGroup,KeyLaboratoryofDegradedandUnusedLandConsolidationEngineeringoftheMinistryofLandandResourcesofChina,Xi’an,Shaanxi710075,China; 3.ZhuzhouEnvironmentalProtectionInstitute,Zhuzhou,Hu’nan412007,China)
Abstract:[Objective] In order to increase the utilization efficiency of nitrogen, reduce the leaching pollution of nitrifying nitrogen, the study explored the effect of nitrification inhibitor DCD on nitrogen transformation in alkaline soils, which may provide a reference for rational and efficient use of nitrogen and increasing crop yields. [Methods] The laboratory artificial climate chamber culture was used to study the effects of DCD on pH value, ammonia volatilization, nitrifying nitrogen and ammonia nitrogen conversion of Jincheng City of Shaanxi Province(alkalinity) garden soils in different temperatures of 15 ℃, 25 ℃ and 35 ℃. [Results] The result indicated that the pH value with DCD was higher than the control, which increased with the temperature increasing. The ammonia volatilization increased with the temperature increasing in alkaline soil, so the temperature increase by 10 ℃, the increasing rate of nitrogen loss in the form of ammonia was about 6.90%. The nitrifying nitrogen content decreased with temperature increasing, whose variation was opposite with ammonia nitrogen content. Moreover, the peak time of ammonia nitrogen content with temperature increasing was about one week ahead with the increase of temperature by each 10 ℃. DCD reduced the conversion of ammonia nitrogen to nitrifying nitrogen. [Conclusion] DCD can reduce the leaching pollution problems by lowering the nitrogen conversion to nitrifying nitrogen, and the pH value, ammonia volatilization and ammonia nitrogen increase with the temperature increasing.
Keywords:dicyandiamide; nitrogen; pH value; ammonia volatilization; nitrifying nitrogen; ammonia nitrogen
文獻(xiàn)標(biāo)識(shí)碼:A
文章編號(hào):1000-288X(2015)06-0172-06
中圖分類號(hào):S158.5
通信作者:曾清如(1964—),男(漢族),湖南省邵陽(yáng)縣人,教授,主要從事環(huán)境污染化學(xué)的教學(xué)與科研工作。E-mail:qrzeng@163.com。
收稿日期:2014-10-29修回日期:2014-11-25
資助項(xiàng)目:農(nóng)業(yè)部重大專項(xiàng)“湖南省重金屬污染耕地修復(fù)及農(nóng)作物種植結(jié)構(gòu)調(diào)整”(農(nóng)辦財(cái)函〔2014〕28號(hào))
第一作者:張露(1987—),女(漢族),四川省南部縣人,博士研究生,研究方向?yàn)橥寥牢锢砑捌涓牧?。E-mail:luluqiaofeng@126.com。