• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      干細(xì)胞衰老的調(diào)控機(jī)制

      2015-03-20 18:06:04馬珊珊姚寧王欣欣邢衢韓康孟楠關(guān)方霞
      河南醫(yī)學(xué)研究 2015年12期
      關(guān)鍵詞:端粒線粒體功能障礙

      馬珊珊 姚寧 王欣欣 邢衢 韓康 孟楠 關(guān)方霞,,3

      (1.鄭州大學(xué)生命科學(xué)學(xué)院 干細(xì)胞研究室 河南 鄭州 450001;2.鄭州大學(xué)第一附屬醫(yī)院 干細(xì)胞研究室 河南 鄭州 450001;3.河南省醫(yī)學(xué)科學(xué)院 河南 鄭州 450003)

      干細(xì)胞是一類具有自我更新和多向分化潛能的細(xì)胞群體。干細(xì)胞在特定的微環(huán)境下可分化為骨、脂肪、神經(jīng)、肝臟等組織細(xì)胞,同時(shí)分泌多種生長(zhǎng)因子和活性物質(zhì),為維持機(jī)體穩(wěn)態(tài)和損傷修復(fù)發(fā)揮重要作用。曾經(jīng),人們一度認(rèn)為干細(xì)胞是永生的,隨著年齡的增長(zhǎng)或體外傳代次數(shù)的增加,許多干細(xì)胞,如血液、大腦、骨骼肌、皮膚、間充質(zhì)干細(xì)胞的自我更新能力下降,細(xì)胞發(fā)生衰老,最終導(dǎo)致機(jī)體組織退化和功能障礙,產(chǎn)生衰老相關(guān)的疾病。隨著研究的深入,干細(xì)胞衰老可能與DNA損傷、線粒體功能障礙、端粒長(zhǎng)度、衰老相關(guān)基因表達(dá)和表觀遺傳調(diào)控等因素相關(guān)[1-2]。本文主要討論這些因素對(duì)干細(xì)胞衰老的影響,總結(jié)干細(xì)胞衰老的調(diào)控機(jī)制。

      1 DNA損傷與干細(xì)胞衰老

      DNA是遺傳信息的載體,DNA的完整性對(duì)遺傳信息的維持至關(guān)重要。然而,當(dāng)受到紫外線、電離輻射、化學(xué)誘變以及機(jī)體自身代謝產(chǎn)生的自由基(又稱活性氧,reactive oxygen species,ROS)刺激時(shí)會(huì)造成DNA損傷,而DNA損傷的積累會(huì)導(dǎo)致機(jī)體的衰老[3]。Jeong等[4]發(fā)現(xiàn)復(fù)制性衰老的人骨髓間充質(zhì)干細(xì)胞的內(nèi)源性ROS水平明顯增加。機(jī)體中超氧化物歧化酶(SOD)的活性高低反映機(jī)體清除自由基的能力,隨著年齡的增加,SOD的活性逐漸降低促使細(xì)胞衰老,加速細(xì)胞死亡[5]。為了維持基因組的完整性和高度保真性,機(jī)體在長(zhǎng)期進(jìn)化過(guò)程中產(chǎn)生了針對(duì)損傷的DNA修復(fù)機(jī)制。KU80、ATM和WRN等蛋白參與DNA損傷修復(fù),當(dāng)DNA損傷修復(fù)出現(xiàn)缺陷時(shí)不能維護(hù)基因組完整性,引起干細(xì)胞功能障礙、衰老和凋亡[6-7]。Rossi等[8]發(fā)現(xiàn)Xpd基因(一個(gè)DNA修復(fù)系統(tǒng)的主要成員)突變的小鼠表現(xiàn)為骨質(zhì)疏松、駝背、骨硬化、不孕等早衰特征;而且Xpd缺失雖然沒(méi)有導(dǎo)致造血干細(xì)胞的損耗,但是隨著年齡的增長(zhǎng),造血干細(xì)胞的重構(gòu)和增殖能力受到嚴(yán)重影響。此外,年齡依賴性的DNA損傷積累可能會(huì)引起干細(xì)胞尤其是誘導(dǎo)多能干細(xì)胞(iPSC)的衰老,從而降低其功能性[9]。最新研究[10]發(fā)現(xiàn)使用干擾素可以擴(kuò)大DNA損傷反應(yīng),進(jìn)而激活p53通路,通過(guò)縮短端粒長(zhǎng)度促進(jìn)衰老,抑制干細(xì)胞的功能。而持續(xù)的DNA損傷可抑制DNA合成、改變?nèi)斯撬栝g充質(zhì)干細(xì)胞的形態(tài)特征,促進(jìn)衰老[11]。這些結(jié)果說(shuō)明DNA損傷和損傷通路在細(xì)胞衰老和干細(xì)胞早衰過(guò)程中發(fā)揮重要作用。

      2 線粒體功能障礙與干細(xì)胞衰老

      線粒體是細(xì)胞中生成ATP、進(jìn)行有氧呼吸的主要場(chǎng)所,它擁有自身DNA,在維持Ca2+體內(nèi)平衡、調(diào)控細(xì)胞分化、凋亡等過(guò)程中發(fā)揮重要作用[12]。隨著年齡的增長(zhǎng),ROS增加造成線粒體DNA突變累積,線粒體功能障礙,最終導(dǎo)致細(xì)胞和機(jī)體衰老[13-14]。敲除線粒體DNA聚合酶會(huì)導(dǎo)致小鼠發(fā)生脫毛、生殖力下降、神經(jīng)系統(tǒng)和造血功能障礙等早衰現(xiàn)象[15-16]。此外,當(dāng)線粒體DNA損傷到一定程度或線粒體中的特定位點(diǎn)基因突變會(huì)導(dǎo)致線粒體功能障礙,影響干細(xì)胞功能,導(dǎo)致衰老相關(guān)疾病的發(fā)生[17]。

      FOXOs是線粒體生物合成和代謝的關(guān)鍵因子,F(xiàn)OXO的表達(dá)上調(diào)有助于改善線粒體功能,提高抗氧化能力,防止細(xì)胞衰老。FOXO3a是與人類壽命密切相關(guān)的基因[18]。FOXO3a基因缺失的小鼠ROS水平增加,抗氧化能力降低,造血干細(xì)胞和神經(jīng)干細(xì)胞增殖和分化潛能下降,表現(xiàn)為ROS誘導(dǎo)的干細(xì)胞衰老和缺乏[19-21]。此外,F(xiàn)OXO3a低表達(dá)還增加p38MAPK磷酸化,調(diào)控下游基因的表達(dá)進(jìn)而降低造血干細(xì)胞的功能和穩(wěn)態(tài),使用抗氧化劑可以顯著降低缺陷鼠p38MAPK表達(dá),從而改善造血干細(xì)胞的自我更新和分化能力[22-23]。因此,線粒體功能障礙導(dǎo)致ROS增加,引起干細(xì)胞衰老,加速組織衰老[24]。

      3 端粒長(zhǎng)度與干細(xì)胞衰老

      端粒是位于真核細(xì)胞染色體末端的DNA-蛋白質(zhì)復(fù)合體,對(duì)保持染色體的穩(wěn)定性和完整性具有重要作用[25-26]。端粒酶是一種DNA聚合酶,可以使端粒延長(zhǎng)。研究發(fā)現(xiàn),第一代缺失端粒酶活性的小鼠(G1Terc-/-)表型正常,連續(xù)傳代三代后(G3Terc-/-)小鼠出現(xiàn)明顯的端??s短和染色體末端融合,小鼠壽命縮短,生殖能力減退,器官衰竭[26]。進(jìn)一步研究發(fā)現(xiàn),衰老的第三代端粒酶敲除小鼠引起造血干細(xì)胞數(shù)目減少,其造血干細(xì)胞自我更新能力和分化能力下降[27]。端粒功能障礙通過(guò)激活細(xì)胞內(nèi)在的檢測(cè)點(diǎn)和誘導(dǎo)干細(xì)胞微環(huán)境的改變,進(jìn)而減弱干細(xì)胞的功能,促進(jìn)細(xì)胞衰老[28-29]。因此,端粒是保持基因組完整性的關(guān)鍵因素,端粒酶的活性調(diào)控干細(xì)胞端粒長(zhǎng)度,進(jìn)而影響其細(xì)胞增殖狀態(tài)[30]。

      4 衰老相關(guān)基因與干細(xì)胞衰老

      越來(lái)越多的結(jié)果表明細(xì)胞衰老是受基因調(diào)控的,某些基因的表達(dá)差異與細(xì)胞衰老密切相關(guān)。目前已經(jīng)明確兩條經(jīng)典的信號(hào)通路在細(xì)胞衰老中發(fā)揮重要作用:p53-p21-pRB和p16-pRB通路。p53基因參與DNA損傷修復(fù)、自由基清除,是一種在體內(nèi)衰老和體外復(fù)制損傷的共同靶點(diǎn)和途徑。Insinga等[31]發(fā)現(xiàn)當(dāng)造血祖細(xì)胞受到DNA損傷時(shí),激活p53從而上調(diào)p21的表達(dá),使造血干細(xì)胞處于衰老狀態(tài)。Armesilla-Diaz等[32]發(fā)現(xiàn)隨著年齡的增加,間充質(zhì)干細(xì)胞形態(tài)發(fā)生改變,細(xì)胞周期停滯在G0期,增殖能力下降,p53表達(dá)上升,凋亡細(xì)胞數(shù)目增加;而p53缺陷小鼠干細(xì)胞增殖和分化能力明顯高于野生鼠[33]。Yew等[34]發(fā)現(xiàn)隨著干細(xì)胞體外傳代次數(shù)的增加,p21蛋白表達(dá)增加,增殖和分化能力降低;干擾p21表達(dá)后,β-半乳糖苷酶活性降低,增殖能力得到改善。Hong等[35]研究表明,當(dāng)阻斷p53-p21信號(hào)通路時(shí),能夠顯著提高干細(xì)胞的數(shù)目和分化能力。

      p16Ink4a也是細(xì)胞生命周期的關(guān)鍵調(diào)控基因,負(fù)責(zé)細(xì)胞增殖及分裂,通過(guò)p16-cylinD/CDK-RB途徑調(diào)控細(xì)胞周期,影響干細(xì)胞增殖和分化功能[36]。Molofsk等[37]發(fā)現(xiàn)隨著年齡增加,神經(jīng)干細(xì)胞的數(shù)量和自我更新降低,p16INK4a的表達(dá)增加。相反,p16INK4a基因敲除的小鼠造血干細(xì)胞比同窩野生型的小鼠增殖能力強(qiáng),顯著增強(qiáng)老年小鼠的神經(jīng)干細(xì)胞的神經(jīng)再生能力,延緩大腦的衰老過(guò)程[36]。所以,p16INK4a的表達(dá)促進(jìn)造血干細(xì)胞、神經(jīng)干細(xì)胞和胰腺等干細(xì)胞的衰老,進(jìn)而抑制干細(xì)胞的增殖和活性[38]。

      5 表觀遺傳調(diào)控與干細(xì)胞衰老

      表觀遺傳調(diào)控也是影響干細(xì)胞衰老的關(guān)鍵因素之一。表觀遺傳修飾主要包括DNA甲基化、組蛋白修飾、RNA干擾、染色質(zhì)重塑等。DNA甲基化是通過(guò)在基因組CpG島的胞嘧啶被選擇性地添加甲基從而增加DNA穩(wěn)定性和調(diào)控基因表達(dá),發(fā)揮維持干細(xì)胞正常功能的作用[1]。Dnmt3a和Dnmt3b是DNA甲基化的重要基因。Dnmt3a和Dnmt3b基因缺失小鼠的造血干細(xì)胞造血功能喪失,抑制了造血干細(xì)胞的分化能力[39]。組蛋白甲基化是另一種甲基化形式。PcG蛋白是一種組蛋白甲基轉(zhuǎn)移酶復(fù)合體,甲基轉(zhuǎn)移酶Ezh1和Ezh2是PRC2復(fù)合體中的催化組分,Ezh1和Ezh2基因缺失小鼠對(duì)p16INK4a的表觀抑制作用減弱,從而誘發(fā)造血干細(xì)胞衰老[40-41]。

      組蛋白修飾主要是針對(duì)核心組蛋白進(jìn)行翻譯后共價(jià)修飾,主要是組蛋白H3和H4N端賴氨酸位點(diǎn)乙?;揎桽irtuins家族是組蛋白去乙?;傅牡?個(gè)家族,在調(diào)控細(xì)胞周期、有絲分裂、染色質(zhì)重塑等過(guò)程中發(fā)揮作用[28]。目前研究較多的是具有年齡成負(fù)相關(guān)的Sirt1和Sirt2蛋白[42-43]。Gurd等[44]發(fā)現(xiàn)Sirt1可以使MSCs抵抗不良環(huán)境因素對(duì)細(xì)胞造成的損傷,從而延長(zhǎng)MSCs的壽命。Rathbone等[45-46]研究表明Sirt1在肌肉干細(xì)胞中也可以促進(jìn)細(xì)胞增殖延緩干細(xì)胞衰老,抑制Sirt1可促使p53激活下游靶基因轉(zhuǎn)錄活性,導(dǎo)致細(xì)胞衰老。此外,Sirt1蛋白結(jié)合叉頭蛋白類轉(zhuǎn)錄因子FOXO并將其去乙?;?,減弱FOXO3所誘導(dǎo)的凋亡,從而促進(jìn)細(xì)胞在應(yīng)激條件下的細(xì)胞存活,延長(zhǎng)細(xì)胞壽命[19]。

      6 結(jié)語(yǔ)

      細(xì)胞衰老是機(jī)體衰老的基礎(chǔ),干細(xì)胞衰老可以誘導(dǎo)機(jī)體衰老的發(fā)生發(fā)展。研究顯示DNA損傷、線粒體功能障礙、端粒長(zhǎng)度、衰老相關(guān)基因以及表觀遺傳學(xué)調(diào)控等均影響干細(xì)胞的衰老。這些事件并不是獨(dú)立存在的,而是彼此之間相互聯(lián)系。例如氧化應(yīng)激導(dǎo)致DNA損傷和端??s短,而端粒長(zhǎng)度縮短也將引起DNA損傷。我們從這些方面闡述了干細(xì)胞衰老的調(diào)控機(jī)制,但對(duì)于誘導(dǎo)衰老的影響因素以及衰老的發(fā)生、發(fā)展機(jī)制仍需深入研究,如果能揭示干細(xì)胞衰老的分子機(jī)制,將為進(jìn)一步尋求延緩干衰老的方法或藥物提供依據(jù),對(duì)機(jī)體衰老及相關(guān)疾病的治療具有重大的生物學(xué)意義和臨床應(yīng)用前景。

      [1]Beerman I,Rossi D J.Epigenetic regulation of hematopoietic stem cell aging[J].Exp Cell Res,2014,329(2):192-199.

      [2]Nurkovic JS,Volarevic V,Lako M,et al.Aging of stem and progenitor cells:mechanisms,Impact on the Therapeutic Potential and Rejuvenation[J].Rejuv Res,2015:26055182.

      [3]Alves H,Munoz-Najar U,de Wit J,et al.A link between the accumulation of DNA damage and loss of multi-potency of human mesenchymal stromal cells[J].J Cell Mol Med,2010,14(12):2729-2738.

      [4]Jeong SG,Cho G W.Endogenous ROSlevels are increased in replicative senescence in human bone marrow mesenchymal stromal cells[J].Biochem BiophysRes Commun,2015,460(4):971-976.

      [5]Blanpain C,Mohrin M,Sotiropoulou P A,et al.DNA-Damage Response in Tissue-Specific and Cancer Stem Cells[J].Cell stem cell,2011,8(1):16-29.

      [6]Hasty P,Campisi J,Hoeijmakers J,et al.Aging and genome maintenance:Lessons from the mouse[J].Science,2003,299(5611):1355-1359.

      [7]Nijnik A,Woodbine L,Marchetti C,et al.DNA repair is limiting for haematopoietic stem cells during ageing[J].Nature,2007,447(7145):686-690.

      [8]Rossi D J,Bryder D,Seita J,et al.Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age[J].Nature,2007,447(7145):725-729.

      [9]Feng Q,Lu SJ,Klimanskaya I,et al.Hemangioblastic derivatives from human induced pluripotent stem cells exhibit limited expansion and early senescence[J].Stem Cells,2010,28(4):704-712.

      [10]Yu Q,Katlinskaya Y V,Carbone CJ,et al.DNA-damage-induced type I interferon promotes senescence and inhibits stem cell function[J].Cell reports,2015,11(5):785-797.

      [11]Minieri V,Saviozzi S,Gambarotta G,et al.Persistent DNA damageinduced premature senescence alters the functional features of human bone marrow mesenchymal stem cells[J].J Cell Mol Med,2015,19(4):734-743.

      [12]Chen C T,Hsu SH,Wei Y H.Upregulation of mitochondrial function and antioxidant defense in the differentiation of stem cells[J].Bba-Gen Subjects,2010,1800(3):257-263.

      [13]Kujoth G C,Hiona A,Pugh T D,et al.Mitochondrial DNA mutations,oxidative stress,and apoptosis in mammalian aging[J].Science,2005,309(5733):481-484.

      [14]Wallace D C.A mitochondrial paradigm of metabolic and degenerative diseases,aging,and cancer:A dawn for evolutionary medicine[J].Annu Rev Genet,2005,39:359-407.

      [15]Ahlqvist K J,Hamalainen R H,Yatsuga S,et al.Somatic progenitor cell vulnerability to mitochondrial DNA mutagenesis underlies progeroid phenotypes in Polg mutator mice[J].Cell Metab,2012,15(1):100-109.

      [16]Ahlqvist K J,Suomalainen A,Hamalainen R H.Stem cells,mitochondria and aging[J].Biochim Biophys Acta,2015,1847(11):1380-1386.

      [17]Edgar D,Shabalina I,Camara Y,et al.Random point mutations with major effects on protein-coding genes are the driving force behind premature aging in mtDNA mutator mice[J].Cell Metab,2009,10(2):131-138.

      [18]Flachsbart F,Caliebeb A,Kleindorp R,et al.Association of FOXO3A variation with human longevity confirmed in German centenarians[J].Proc Natl Acad Sci U SA,2009,106(8):2700-2705.

      [19]Paik J H,Ding Z H,Narurkar R,et al.FoxOs cooperatively regulate diverse pathways governing neural stem cell homeostasis[J].Cell stem cell,2009,5(5):540-553.

      [20]Renault V M,Rafalski V A,Morgan A A,et al.FoxO3 regulates neural stem cell homeostasis[J].Cell stem cell,2009,5(5):527-539.

      [21]Tothova Z,Kollipara R,Huntly B J,et al.FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress[J].Cell,2007,128(2):325-339.

      [22]Li X,Zhang T,Wilson A,et al.Transcriptional profiling of Foxo3a and Fancd2 regulated genes in mouse hematopoietic stem cells[J].Genomics data,2015,4:148-149.

      [23]Miyamoto K,Araki K Y,Naka K,et al.Foxo3a is essential for maintenance of the hematopoietic stem cell pool[J].Cell stem cell,2007,1(1):101-112.

      [24]Borodkina A,Shatrova A,Abushik P,et al.Interaction between ROS dependent DNA damage,mitochondria and p38 MAPK underlies senescence of human adult stem cells[J].Aging-Us,2014,6(6):481-495.

      [25]Flores I,Canela A,Vera E,et al.The longest telomeres:a general signature of adult stem cell compartments[J].Gene Dev,2008,22(5):654-667.

      [26]Ju Z Y,Jiang H,Jaworski M,et al.Telomere dysfunction induces environmental alterations limiting hematopoietic stem cell function and engraftment[J].Nat Med,2007,13(6):742-747.

      [27]Sahin E,DePinho R A.Linking functional decline of telomeres,mitochondria and stem cells during ageing[J].Nature,2010,464(7288):520-528.

      [28]Signer R A,Morrison S J.Mechanisms that regulate stem cell aging and life span[J].Cell stem cell,2013,12(2):152-165.

      [29]Tumpel S,Rudolph K L.The role of telomere shortening in somatic stem cells and tissue aging:lessons from telomerase model systems[J].Ann Ny Acad Sci,2012,1266(1):28-39.

      [30]Meena J K,Cerutti A,Beichler C,et al.Telomerase abrogates aneuploidy-induced telomere replication stress,senescence and cell depletion[J].Embo J,2015,34(10):1371-1384.

      [31]Insinga A,Cicalese A,F(xiàn)aretta M,et al.DNA damage in stem cells activates p21,inhibits p53,and induces symmetric self-renewing divisions[J].Proc Natl Acad Sci U SA,2013,110(10):3931-3936.

      [32]Armesilla-Diaz A,Elvira G,Silva A.p53 regulates the proliferation,differentiation and spontaneous transformation of mesenchymal stem cells[J].Exp Cell Res,2009,315(20):3598-3610.

      [33]Dumble M,Moore L,Chambers S M,et al.The impact of altered p53 dosage on hematopoietic stem cell dynamics during aging[J].Blood,2007,109(4):1736-1742.

      [34]Yew T L,Chiu F Y,Tsai C C,et al.Knockdown of p21(Cip1/Waf1)enhances proliferation,the expression of stemness markers,and osteogenic potential in human mesenchymal stem cells[J].Aging cell,2011,10(2):349-361.

      [35]Hong H,Takahashi K,Ichisaka T,et al.Suppression of induced pluripotent stem cell generation by the p53-p21 pathway[J].Nature,2009,460(7259):1132-1135.

      [36]Janzen V,F(xiàn)orkert R,F(xiàn)leming H E,et al.Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a[J].Nature,2006,443(7110):421-426.

      [37]Molofsky A V,Slutsky S G,Joseph N M,et al.Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing[J].Nature,2006,443(7110):448-452.

      [38]Krishnamurthy J,Ramsey M R,Ligon K L,et al.p16INK4a induces an age-dependent decline in islet regenerative potential[J].Nature,2006,443(7110):453-457.

      [39]Challen G A,Sun D Q,Jeong M,et al.Dnmt3a is essential for hematopoietic stem cell differentiation[J].Nat Genet,2012,44(1):23-31.

      [40]Bracken A P,Kleine-Kohlbrecher D,Dietrich N,et al.The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells[J].Genes Dev,2007,21(5):525-530.

      [41]Radulovic V,de Haan G,Klauke K.Polycomb-group proteins in hematopoietic stem cell regulation and hematopoietic neoplasms[J].Leukemia,2013,27(3):523-533.

      [42]Bosch-Presegue L,Vaquero A.The dual role of sirtuins in cancer[J].Genes&cancer,2011,2(6):648-662.

      [43]Yuan H F,Zhai C,Yan X L,et al.SIRT1 is required for long-term growth of human mesenchymal stem cells[J].J Mol Med,2012,90(4):389-400.

      [44]Gurd B J,Perry C G,Heigenhauser G J,et al.High-intensity interval training increases SIRT1 activity in human skeletal muscle[J].Appl Physiol Nutr Me,2010,35(3):350-357.

      [45]Chen H Q,Liu X B,Chen H,et al.Role of SIRT1 and AMPK in mesenchymal stem cells differentiation[J].Ageing Res Rev,2014,13:55-64.

      [46]Rathbone CR,Booth F W,Lees SJ.Sirt1 increases skeletal muscle precursor cell proliferation[J].Eur JCell Biol,2009,88(1):35-44.

      猜你喜歡
      端粒線粒體功能障礙
      棘皮動(dòng)物線粒體基因組研究進(jìn)展
      線粒體自噬與帕金森病的研究進(jìn)展
      端粒蛋白復(fù)合物shelterin的結(jié)構(gòu)及功能研究進(jìn)展
      勃起功能障礙四大誤區(qū)
      抑癌基因P53新解讀:可保護(hù)端粒
      健康管理(2016年2期)2016-05-30 21:36:03
      40—65歲是健身黃金期
      鹽酸阿霉素與人端粒DNA相互作用的電化學(xué)研究
      高血壓與老年人認(rèn)知功能障礙的相關(guān)性
      術(shù)后認(rèn)知功能障礙診斷方法的研究進(jìn)展
      NF-κB介導(dǎo)線粒體依賴的神經(jīng)細(xì)胞凋亡途徑
      阿拉善右旗| 利辛县| 鸡西市| 彭泽县| 吉木乃县| 麟游县| 安阳市| 虎林市| 宿松县| 杭州市| 福贡县| 新建县| 临汾市| 长海县| 布拖县| 玉门市| 吴江市| 重庆市| 汨罗市| 台北县| 拜泉县| 陆河县| 勐海县| 吉隆县| 西乌珠穆沁旗| 如皋市| 盐源县| 隆子县| 读书| 海宁市| 嘉兴市| 鄂州市| 南雄市| 榆树市| 新龙县| 柳江县| 九龙县| 梓潼县| 三台县| 岳西县| 吉安市|