陳 雷,原現(xiàn)軍,郭 剛,2,聞愛友,肖慎華,巴 桑 ,余成群,邵 濤*
(1.南京農(nóng)業(yè)大學 飼草調制加工與貯藏研究所,南京 210095; 2.山西農(nóng)業(yè)大學 動物科學技術學院,太谷030801;3.中國科學院 地理科學與資源研究所,北京100101; 4.西藏日喀則地區(qū)草原工作站,日喀則 857000)
添加乳酸菌制劑和丙酸對全株玉米全混合日糧青貯發(fā)酵品質和有氧穩(wěn)定性的影響
陳 雷1,原現(xiàn)軍1,郭 剛1,2,聞愛友1,肖慎華1,巴 桑4,余成群3,邵 濤1*
(1.南京農(nóng)業(yè)大學 飼草調制加工與貯藏研究所,南京 210095; 2.山西農(nóng)業(yè)大學 動物科學技術學院,太谷030801;3.中國科學院 地理科學與資源研究所,北京100101; 4.西藏日喀則地區(qū)草原工作站,日喀則 857000)
為評價乳酸菌制劑和丙酸對西藏地區(qū)全株玉米全混合日糧(TMR)發(fā)酵品質和有氧穩(wěn)定性的影響。試驗設對照組、乳酸菌制劑和丙酸添加組3個處理。全混合日糧青貯45 d后全部開封取樣,測定其發(fā)酵品質,并分別在有氧暴露第6、9和12天取樣評定其有氧穩(wěn)定性。每個處理組每個時間點開5個青貯窖即5個重復。結果表明,全株玉米全混合日糧干物質含量適宜、乳酸菌數(shù)量和水溶性碳水化合物含量充足,因此對照組發(fā)酵品質良好,添加乳酸菌制劑進一步改善了發(fā)酵品質,雖然丙酸一定程度上抑制了乳酸發(fā)酵,但發(fā)酵品質仍屬良好。在有氧暴露階段,對照組和乳酸菌添加組乳酸含量持續(xù)下降,pH﹑氨態(tài)氮/總氮和酵母菌數(shù)量顯著上升(P<0.05)。丙酸添加組乳酸含量前9 d逐漸升高,之后顯著下降(P<0.05),pH基本趨于穩(wěn)定,12 d后降至3.75,酵母菌數(shù)目顯著(P<0.05)低于其他組。綜合全株玉米TMR的發(fā)酵品質和有氧穩(wěn)定性,添加乳酸菌制劑改善了全株玉米TMR的發(fā)酵品質但沒有提高其有氧穩(wěn)定性,添加丙酸盡管一定程度抑制了乳酸發(fā)酵,但明顯提高了發(fā)酵全混合日糧的有氧穩(wěn)定性。
乳酸菌制劑;丙酸;全株玉米全混合日糧;發(fā)酵品質;有氧穩(wěn)定性
近年來,西藏地區(qū)從內地引進高產(chǎn)奶牛對當?shù)啬膛_M行雜交改良,奶牛生產(chǎn)性能一定程度上得到了改善。但飼草料嚴重不足、飼養(yǎng)管理落后、飼養(yǎng)水平低是目前西藏奶牛養(yǎng)殖業(yè)中最突出的問題,影響了奶牛健康生長和生產(chǎn)力的發(fā)揮,導致產(chǎn)奶量和乳品質低下。目前西藏地區(qū)致力于推廣以全株玉米為主要粗飼料的發(fā)酵全混合日糧(TMR)飼養(yǎng)技術,應用該技術可提高奶牛的干物質采食量和飼料利用率,改善瘤胃功能,降低了奶牛發(fā)病率,提高生產(chǎn)性能;此外應用該技術還可以降低生產(chǎn)中由原來少量、多批次購入精料原料帶來的交通運輸成本,提高奶產(chǎn)品的生產(chǎn)效率。但是由于農(nóng)牧民TMR加工管理技術經(jīng)驗不足,發(fā)酵TMR飼料在農(nóng)區(qū)長途運輸及農(nóng)戶開窖飼喂過程中易引起包膜破損,空氣浸入,導致發(fā)酵TMR飼料腐敗變質,影響了發(fā)酵TMR飼料的適口性和營養(yǎng)價值。因此,如何提高發(fā)酵TMR品質和有氧穩(wěn)定性成為此項技術在西藏地區(qū)得以順利推廣的關鍵。
同型乳酸菌如植物乳桿菌(Lactobacillusplantarum)能夠加速青貯初期乳酸發(fā)酵,快速降低pH[1],而異型乳酸菌如布氏乳桿菌(Lactobacillusbuchneri)在青貯過程中產(chǎn)生乳酸的同時能產(chǎn)生乙酸等揮發(fā)性短連脂肪酸,可有效抑制酵母和霉菌,提高有氧穩(wěn)定性。I.Filya[2]指出植物乳桿菌和布氏乳桿菌組合添加不僅改善了玉米青貯發(fā)酵品質也提高了其有氧穩(wěn)定性。短鏈脂肪酸中,丙酸具有較強的抗菌效果,丙酸及丙酸鹽已廣泛應用于青貯飼料的生產(chǎn)中,在抑制青貯飼料有氧腐敗方面具有良好的效果[3]。丙酸通過抑制酵母菌等有害微生物的活性,減少其對乳酸、水溶性碳水化合物和粗蛋白的降解,從而提高青貯飼料開窖運輸和飼喂過程中的營養(yǎng)損失,提高有氧穩(wěn)定性[4]。
本試驗旨在探討添加乳酸菌制劑和丙酸對TMR發(fā)酵品質和有氧穩(wěn)定性的影響,為西藏發(fā)酵TMR飼料的生產(chǎn)提供技術支撐,促進當?shù)啬膛I(yè)的發(fā)展。
1.1 試驗材料
將種植于西藏山南地區(qū)貢嘎縣吉那奶牛場試驗地的全株玉米于2012年9月19日刈割,全株玉米處于1/2乳熟期,用鍘刀切成2 cm左右,之后將全株玉米和精料按照配方(表2)充分混勻。
精料混合料(主要包括玉米、菜籽粕、DDGS、棉粕、小麥麩等)由西藏吉那奶牛場配制。
乳酸菌制劑主要由植物乳酸桿菌和布氏乳桿菌組成,保證每克青貯原料中含有1×106cfu·g-1FW,由南京農(nóng)業(yè)大學飼草調制加工與貯藏研究所和西藏高原草業(yè)工程技術研究中心研制。
1.2 試驗設計
試驗采用完全隨機設計,設對照組(C),0.4%丙酸添加組(P),乳酸菌制劑添加組(LAB):1 g·kg-1TMR飼料,均以鮮重為基礎,全混合日糧青貯45 d后全部開封取樣,測定其發(fā)酵品質,并分別在有氧暴露第6、9和12天取樣評定其有氧穩(wěn)定性。每個處理組每個時間點開5個青貯窖即5個重復,共計80個實驗室青貯窖。
表1 全混合日糧青貯前化學和微生物成分
Table 1 Chemical and microbial composition of whole-crop corn and TMR before being ensiling
項目Item全株玉米Whole-cropcorn全混合日糧TMR水溶性碳水化合物/(g·kg-1DM)WSC276.15223.54緩沖能/(mEq·kg-1DM)BC222.06230.67乳酸菌/(log10cfu·g-1FW)Lacticacidbacteria6.605.56酵母菌/(log10cfu·g-1FW)Yeast4.114.59
表2 全混合日糧組成和化學成分
Table 2 Ingredient and chemical composition of total mixed ration
%DM
精料:7.5%玉米,20%菜籽粕,20%全棉籽,27.5%DDGS,20%小麥麩, 5%維生素礦物質(% DM)。非纖維性碳水化合物(NFC)=100-CP-NDF-EE-Ash
Concentrate:7.5%corn,20%rapeseed meal,20%cottonseed meal,27.5%distiller dried grains with soluble,20% wheat bran,5% vitamin and minerals(% DM).NFC=100-CP-NDF-EE-Ash
1.3 試驗方法
1.3.1 發(fā)酵TMR飼料的調制 取配制好的TMR飼料,按試驗設計分別將乳酸菌制劑和丙酸均勻噴灑在TMR飼料上,并填充到15 L的實驗室青貯窖中,壓實后蓋上蓋,并用膠帶密封,置于室溫下保存。
1.3.2 樣品處理 在青貯第45天打開實驗室青貯窖,取出全部飼料混合均勻,采用四分法稱取35 g放入100 mL的廣口三角瓶中,加入70 g的去離子水,4 ℃浸提24 h,然后通過2層紗布和定性濾紙過濾,并將浸提液置于-20 ℃冷凍保存待測。浸提液用來測定pH、乳酸、氨態(tài)氮和揮發(fā)性脂肪酸含量。將剩余部分發(fā)酵TMR飼料收集烘干,測定干物質、總氮以及水溶性碳水化合物。
1.3.3 測定項目及分析方法 干物質(Dry matter,DM)、粗脂肪(Ether extract,EE)、粗灰分(Ash)、粗蛋白(Crude protein,CP)含量采用AOAC方法測定[5];干物質回收率(Dry matter recovery,DMR)按TMR發(fā)酵前后重量和干物質含量計算;中性洗滌纖維(Neutral detergent fiber,NDF)和酸性洗滌纖維(Acid detergent fiber,ADF)采用范氏纖維測定法測定[6],測定NDF加入耐高溫α淀粉酶和亞硫酸鈉;非結構性碳水化合物(NFC)依據(jù)NRC(2001)公式計算(100-CP-NDF-EE-Ash)[7];pH用HANNA pH 211型pH計測定;緩沖能(Buffer capacity,BC)用鹽酸、氫氧化鈉滴定法測定。乳酸含量(Lactic acid,LA)用對羥基聯(lián)苯比色法測定[6];水溶性碳水化合物含量(Water soluble carbohydrate,WSC)采用蒽酮-硫酸比色法測定[6];氨態(tài)氮含量(Ammonia nitrogen,AN)采用苯酚-次氯酸鈉比色法測定[6];揮發(fā)性脂肪酸(Volatile fatty acids,VFAs)采用高效氣相色譜儀(日本島津 GC-14B)測定,包括乙酸(Acetic acid,AA)、丙酸(Propionic acid,PA)與丁酸(Butyric acid,BA),測定條件:色譜柱為毛細管柱,柱溫 140 ℃,汽化室溫度180 ℃,氫氣檢測器溫度220 ℃,檢測器FID,載氣為氮氣,壓力為0.05 MPa,氫氣壓力為0.05 MPa,氧氣壓力為0.05 MPa。乳酸菌和酵母菌數(shù)量分別采用MRS(de Man,Rogosa,Sharpe)瓊脂培養(yǎng)基、馬鈴薯葡萄糖瓊脂培養(yǎng)基(Potato dextrose agar,上海盛思生化科技有限公司)培養(yǎng)計數(shù)[1]。乳酸菌用厭氧箱,37 ℃培養(yǎng)3 d;酵母菌用生化培養(yǎng)箱,30 ℃培養(yǎng)4 d。
1.3.4 有氧穩(wěn)定性分析 青貯45 d后打開全部實驗室青貯窖,暴露于空氣中,分別于6、9和12 d取樣評定有氧穩(wěn)定性,測定pH,乳酸,氨態(tài)氮/總氮和水溶性碳水化合物含量以及乳酸菌和酵母菌的數(shù)量。
1.4 數(shù)據(jù)處理與統(tǒng)計
采用SAS(8.2)軟件對試驗數(shù)據(jù)進行方差分析(ANOVA),其中TMR發(fā)酵品質的數(shù)據(jù)采用單因素方差分析,有氧穩(wěn)定性數(shù)據(jù)采用雙因素(處理和暴露時間)方差分析,并用Tukey’s方法對處理間及有氧暴露天數(shù)間數(shù)據(jù)進行多重比較。
2.1 TMR原料化學成分
全株玉米和TMR原料化學和微生物成分見表1。青貯發(fā)酵前TMR干物質含量為354 g·kg-1FW,WSC含量為223.54 g·kg-1DM,緩沖能為230.67 mEq·kg-1DM,乳酸菌數(shù)目大于105cfu·g-1FW,酵母菌大于104cfu·g-1FW。
2.2 添加劑對TMR發(fā)酵品質的影響
TMR發(fā)酵品質見表3,乳酸菌添加組干物質含量和回收率顯著高于對照組和丙酸添加組(P<0.05)。乳酸菌制劑添加組pH顯著低于對照組和丙酸添加組(P<0.05)。與對照組相比,丙酸添加組顯著降低了乳酸含量(P<0.05),而乳酸菌制劑添加組顯著提高了乳酸含量(P<0.05)。添加劑處理組均顯著降低了乙酸含量(P<0.05),其中乳酸菌制劑添加組乙酸含量顯著低于丙酸添加組(P<0.05)。相應地乳酸菌制劑添加組乳酸/乙酸顯著高于其2組(P<0.05),達到對照和丙酸添加組的2倍多。與對照組相比,添加劑組顯著降低了丁酸含量和氨態(tài)氮/總氮(P<0.05),其中乳酸菌制劑添加組顯著低于丙酸添加組(P<0.05)。青貯發(fā)酵45 d,各添加劑組水溶性碳水化合物含量均顯著高于對照組(P<0.05),其中丙酸添加組又顯著高于乳酸菌制劑添加組(P<0.05)。丙酸添加組酸性洗滌纖維含量顯著低于乳酸菌制劑添加組和對照組(P<0.05)。但乳酸菌制劑組乳酸菌數(shù)量顯著高于對照組(P<0.05),而丙酸添加組乳酸菌數(shù)量顯著低于對照組(P<0.05),各組均有少量酵母菌檢出。
表3 全混合日糧發(fā)酵45 d的化學和微生物成分
Table 3 Chemical and microbial composition of total mixed ration after 45 days of fermentation
項目Item處理Treatment對照組(C)Control乳酸菌制劑(LAB)Lacticacidbacteria丙酸(P)Propionicacid干物質/(g·kg-1FW)DMcontent327.00±2.42b340.00±0.94a328.00±0.23b干物質回收率/(g·kg-1FW)DMrecovery917.00±0.88c946.00±0.88a925.00±1.76bpH3.90±0.03a3.78±0.00b3.94±0.04a乳酸/(g·kg-1DM)Lacticacid86.5±1.38b96.2±0.65a65.4±1.10c乙酸/(g·kg-1DM)Aceticacid12.2±0.05a5.71±0.03c10.9±0.06b乳酸/乙酸Lacticacid/Aceticacid7.09±0.13c15.1±0.07a7.52±0.21b丙酸/(g·kg-1DM)Propionicacid0.17±0.01b0.24±0.02b10.2±0.42a丁酸/(g·kg-1DM)Butyricacid0.19±0.02a0.02±0.01c0.04±0.01b氨態(tài)氮/總氮/(g·kg-1TN)AN/TN52.8±1.58a34.1±1.8c42.5±0.61b水溶性碳水化合物/(g·kg-1DM)WSC39.9±0.16c54.0±1.33b88.9±0.61a中性洗滌纖維/(g·kg-1DM)NDF475±5.55a470±5.69a459±2.80a酸性洗滌纖維/(g·kg-1DM)ADF232±3.20a234±3.58a216±4.81b乳酸菌/(log10cfu·g-1FW)Lacticacidbacteria6.30±0.12b7.42±0.06a5.61±0.01c酵母菌/(log10cfu·g-1FW)Yeasts<2.00<2.00<2.00
FW.鮮重;AN/TN.氨態(tài)氮/總氮。不同小寫字母表示不同處理相同青貯天數(shù)間差異顯著(P<0.05)
FW.Fresh weight;AN/TN.Ammonia nitrogen/total nitrogen.Values with different lower case letters show significant differences among treatments in the same ensiling day(P<0.05)
2.3 添加劑對發(fā)酵TMR有氧穩(wěn)定性的影響
各組發(fā)酵TMR有氧暴露階段化學成分和微生物組成變化見表4。對照組和乳酸菌制劑添加組乳酸含量隨著有氧暴露時間的延長顯著下降(P<0.05),相應地pH逐漸上升,其中6 d后顯著上升(P<0.05),到有氧暴露第12天兩組pH均升至7.0以上,而丙酸添加組乳酸含量呈現(xiàn)先升高后下降的趨勢,pH基本趨于穩(wěn)定且9 d后略有下降。
各組氨態(tài)氮/總氮隨著有氧暴露時間的延長呈上升趨勢,有氧暴露前9 d各添加組氨態(tài)氮/總氮均顯著低于對照組(P<0.05),之后乳酸菌制劑組顯著上升(P<0.05),至第12天與對照組持平,而丙酸添加組仍顯著低于對照組(P<0.05)。對照組水溶性碳水化合物在有氧暴露前9 d顯著下降(P<0.05),之后趨于穩(wěn)定,乳酸菌制劑添加組水溶性碳水化合物含量隨著有氧暴露時間的延長顯著下降(P<0.05),而丙酸添加組水溶性碳水化合物含量有氧暴露前期保持穩(wěn)定,9 d后顯著下降(P<0.05)。
在整個有氧暴露階段,對照組和乳酸菌制劑組乳酸菌數(shù)量逐漸下降,其中乳酸菌制劑組始終高于對照組,而丙酸添加組乳酸菌數(shù)量先逐漸升高,到第9天達到最高值,之后又顯著下降至開窖時水平(P<0.05)。各組酵母菌數(shù)量隨著有氧暴露時間的延長呈上升趨勢,有氧暴露12 d后,對照組和乳酸菌制劑組酵母菌數(shù)量均大于 108cfu·g-1,而添加丙酸組顯著(P<0.05)降低了酵母菌數(shù)量(<104cfu·g-1)。
表4 發(fā)酵全混合日糧有氧暴露12 d的化學和微生物成分
Table 4 Chemical and microbial composition of total mixed ration silages after exposure to air for 12 days
測定項目Item處理Treatment有氧暴露天數(shù)Daysafterexposing06912pHC3.90±0.03Ca4.28±0.07Ca5.10±0.24Bb7.07±0.03AaLAB3.78±0.00Ca4.13±0.02Ca5.58±0.15Ba7.06±0.11AaP3.94±004a3.95±0.04a3.87±0.01c3.75±0.02b乳酸/(g·kg-1DM)LacticacidC86.53±1.37Ab66.95±1.54Bb38.63±1.47Cb15.49±1.59DbLAB96.26±0.65Aa64.46±0.26Bb39.46±0.29Cb18.64±6.83DbP65.44±1.10Bc83.34±1.45Aa86.09±0.45Aa67.09±2.76Ba氨態(tài)氮/總氮/(g·kg-1TN)Ammonianitrogen/totalnitro-genC52.83±0.91Ba51.87±0.91Ba55.38±1.13Ba65.59±0.71AaLAB34.06±1.04Cc37.43±1.04Cc50.65±0.23Bb63.22±0.59AaP42.48±0.48Cb41.94±0.55Bb51.72±0.43Aab57.36±1.52Ab水溶性碳水化合物/(g·kg-1DM)WatersolublecarbohydrateC39.99±0.16Ac34.64±1.50Bc29.16±0.76Cb29.56±0.37CbLAB54.01±1.33Ab44.27±1.21Bb31.59±0.32Cb25.76±0.08DbP77.20±0.61Aa78.23±1.53Aa72.23±0.74Aa54.23±0.58Ba乳酸菌/(log10cfu·g-1ofsilage)LacticacidbacteriaC6.53±0.12Ab6.41±0.00Ab6.03±0.00Ab6.09±0.00AaLAB7.42±0.06Aa7.31±0.07Aa6.51±0.12Bb6.17±0.03BaP5.60±0.00Bb6.54±0.31Bb7.14±0.13Aa5.47±0.13Bb酵母菌/(log10cfu·g-1ofsilage)YeastC2.00±0.00Ba8.46±0.16Aa8.75±0.02Aa8.58±0.04AaLAB2.00±0.00Ca8.40±0.05Ba8.68±0.02ABa8.83±0.07AaP2.00±0.00Ca4.90±0.00Ab4.55±0.05Bb4.71±0.06ABb
不同大寫字母表示相同處理不同天數(shù)間差異顯著(P< 0.05);不同小寫字母表示相同天數(shù)不同處理間差異顯著(P< 0.05)
Values with different capital lower case letters show significant differences among exposing days in the same treatment,values with different lower letters show significant differences among treatments in the same exposing day(P<0.05)
3.1 添加劑對全株玉米TMR發(fā)酵品質的影響
經(jīng)過45 d發(fā)酵,各組發(fā)酵TMR均顯示良好的發(fā)酵品質,這歸因于發(fā)酵前TMR干物質含量為300~400 g·kg-1,原料附著乳酸菌超過1×105cfu·g-1FW,發(fā)酵底物充足,緩沖能低[7-8]。
乳酸菌制劑組干物質含量及回收率顯著高于對照和丙酸添加組,其原因是全株玉米TMR發(fā)酵底物充足,添加乳酸菌促進了青貯前期乳酸發(fā)酵,加速了實驗室青貯窖內環(huán)境的酸化,進而抑制了有害微生物的活性及對營養(yǎng)物質的降解利用,減少了干物質損失[9-10],這也表現(xiàn)在乳酸菌制劑組有較高的乳酸含量、較低的pH和氨態(tài)氮/總氮。L.E.Phillip等[11]對經(jīng)過凋萎的紫花苜蓿青貯時接種植物乳桿菌(Lactobacillusplantarum),縮短了pH下降過程,抑制了蛋白降解,減少了氨態(tài)氮含量。本試驗所添加乳酸菌制劑包括植物乳酸桿菌和布氏乳桿菌,其中布氏乳桿菌為異型乳酸菌,在產(chǎn)生乳酸的同時可以產(chǎn)生乙酸,但本研究乳酸菌制劑組乙酸含量卻顯著低于對照組,可能是由于全株玉米TMR飼料主要以同型發(fā)酵為主,布氏乳桿菌活性被抑制。C.C.Taylor等[12]研究表明,布氏乳桿菌對青貯飼料中乙酸含量的影響與貯藏時間有關,他們發(fā)現(xiàn)添加布氏乳桿菌的玉米青貯49 d后仍未顯著提高乙酸含量。
丙酸添加組降低了乳酸、乙酸和丁酸含量及氨態(tài)氮/總氮,表明添加丙酸不僅抑制了梭菌等有害微生物的活性,減少了對水溶性碳水化合物和蛋白質等營養(yǎng)成分的降解,從而減少了丁酸和氨態(tài)氮的生成,也對乳酸菌產(chǎn)生一定的抑制作用,這點與丙酸添加組有較高的WSC含量和較少的乳酸菌相映證。丙酸已作為一種有效的青貯發(fā)酵抑制劑廣受關注,R.Crawshaw[13]評價了不同水平丙酸對禾本科牧草青貯飼料發(fā)酵品質的影響,結果表明丙酸改善了發(fā)酵品質,對丁酸菌的抑制力較強,且明顯降低了氨態(tài)氮含量。
3.2 添加劑對發(fā)酵全株玉米TMR有氧穩(wěn)定性的影響
青貯窖開封后,厭氧環(huán)境立即被破壞,好氧性微生物開始活躍。通常情況下,青貯飼料的腐敗變質主要由酵母菌增殖引起,當青貯飼料中酵母菌數(shù)目大于1×105cfu·g-1時,青貯飼料易發(fā)生腐敗變質[14]。有氧腐敗變質的青貯飼料,乳酸含量下降,pH升高[15]。本試驗中,對照組和乳酸菌制劑組乳酸和水溶性碳水化合物含量持續(xù)下降,pH、氨態(tài)氮/總氮和酵母菌數(shù)量顯著上升,有氧穩(wěn)定性較差,這是由于對照組和乳酸菌制劑組發(fā)酵品質較好,短鏈脂肪酸含量較低,難以有效地抑制好氧性酵母菌和霉菌活性。另外,這2組乳酸含量較高,為酵母和霉菌增殖提供了底物,因此也加劇了發(fā)酵TMR的腐敗變質。K.Ranjitn等[16]指出當青貯飼料暴露到空氣中后,有害微生物以發(fā)酵產(chǎn)物(如乳酸)和水溶性碳水化合物為底物,生成二氧化碳和水,釋放熱量,提高了青貯飼料溫度,增加了青貯飼料營養(yǎng)成分損失。
丙酸添加組有氧暴露前期乳酸含量繼續(xù)升高至第9天,而后顯著下降,這可能是由于氧氣進入青貯飼料后好氧性微生物活躍,丙酸對乳酸菌的抑制作用相對較弱,部分乳酸菌利用剩余的WSC繼續(xù)產(chǎn)生乳酸,因此整個有氧暴露過程中pH未發(fā)生顯著變化,D.G.Britt等[17]在玉米青貯時添加不同比例甲酸、丙酸及其組合,發(fā)現(xiàn)青貯期間抑制了乳酸菌的活性,降低了乳酸生成,而開窖后由于甲酸與丙酸的揮發(fā)和代謝作用,導致乳酸菌可以繼續(xù)利用青貯過程中節(jié)省的發(fā)酵底物,從而在有氧暴露14 d后出現(xiàn)一個乳酸含量高峰,這與本研究結果相似。丙酸添加組氨態(tài)氮/總氮和酵母菌數(shù)量均有升高,但始終低于對照組和乳酸菌制劑組,這是由于丙酸能夠有效地抑制真菌、酵母菌和霉菌等微生物的生長繁殖。J.M.Wilkinson等[18]指出未解離短鏈脂肪酸以被動運輸?shù)男问竭M入微生物細胞內部,之后釋放H+降低內部pH,改變微生物細胞滲透性,使微生物不能進行正常的繁殖活動,從而抑制了真菌等微生物的生長繁殖。本試驗中有氧暴露9 d后,丙酸添加組乳酸和水溶性碳水化合物含量及乳酸菌數(shù)量顯著下降,pH、氨態(tài)氮/總氮和酵母菌數(shù)量基本維持穩(wěn)定,而對照組和乳酸菌制劑組在有氧暴露第6天已經(jīng)開始出現(xiàn)腐敗變質現(xiàn)象,因此添加丙酸明顯推遲了發(fā)酵TMR有氧腐敗進程。
綜上所述,由于全混合日糧干物質含量適宜、乳酸菌數(shù)量和水溶性碳水化合物含量充足,因此對照組發(fā)酵品質良好,添加乳酸菌制劑進一步改善了發(fā)酵品質,雖添加丙酸一定程度抑制了乳酸發(fā)酵,但發(fā)酵品質仍屬良好。發(fā)酵45 d開窖后將發(fā)酵TMR暴露到空氣中,對照組和乳酸菌制劑組在第6天已出現(xiàn)腐敗跡象,而添加丙酸可使發(fā)酵TMR良好保存12 d以上。
[1] HUISDEN C M,ADESOGAN A T,KIM S C,et al.Effect of applying molasses or inoculants containing homofermentative or heterofermentative bacteria at two rates on the fermentation and aerobic stability of corn silage[J].JDairySci,2009,92(2):690-697.
[2] FILYA I.The Effect of lactobacillus buchneri and lactobacillus plantarum on the fermentation,aerobic stability,and ruminal degradability of low dry matter corn and sorghum silages[J].JDairySci,2003,86(11):3575-3581.
[3] 張增欣,邵 濤.丙酸對多花黑麥草青貯發(fā)酵動態(tài)變化的影響[J].草業(yè)學報,2009,18(2):102-107. ZHANG Z X,SHAO T.The effect of propionic acid addition on the dynamic fermentation changes of Italian ryegrass(Loliummultiflorum) silage[J].ActaPrataculturaeSinica,2009,18(2):102-107.(in Chinese)
[4] WOOLFORD M K.Microbiological screening of the straight chain fatty acids(C1-C12) as potential silage additives[J].JSciFoodAgric,1975,26(2):219-228.
[5] AOAC.Official Methods of Analysis,15th ed.Association of Official Analytical Chemists,Arlington,VA,USA,1990.
[6] 原現(xiàn)軍,余成群,夏 坤,等.添加青稞酒糟對西藏箭筈豌豆與葦狀羊茅混合青貯發(fā)酵品質的影響[J].畜牧獸醫(yī)學報,2012,43(9):1408-1414. YUAN X J,YU C Q,XIA K,et al.Effect of adding wet hullessbarley distillers’ grains on fermentation quality of mixed silage of common vetch(Vicia sativa) and tall fescue(Festucaarundinacea) in Tibet[J].ActaVeterinariaetZootechnicaSinica,2012,43(9):1408-1414.(in Chinese)
[7] NRC.Nutrient Requirements of Dairy Cattle.7th rev.Ed.National Academy Press,Washington,DC,2001.
[8] WEINBERG Z G.Preservation of forage crops by solid-state lactic acid fermentation-ensiling[M].Current Developments in Solid-state Fermentation.Springer New York,2008:443-467.
[9] CAI Y.The role of lactic acid bacteria in the preparation of high fermentation quality[J].GrasslSci,2001,47:527-533.
[10] CAI Y,F(xiàn)UJITA Y,MURAI M,et al.Application of lactic acid bacteria(Lactobacillus plantarum Chikuso-1) for silage preparation of forage paddy rice[J].GrasslSci,2003,49(5):477-485.
[11] PHILLIP L E,UNDERHILL L,GARINO H.Effects of treating lucerne with an inoculum of lactic acid bacteria or formic acid upon chemical changes during fermentation,and upon the nutritive value of the silage for lambs[J].GrassForageSci,1990,45(3):337-344.
[12] TAYLOR C C,RANJIT N J,MILLS J A,et al.The effect of treating whole-plant barley with Lactobacillus buchneri 40788 on silage fermentation,aerobic stability,and nutritive value for dairy cows[J].JDairySci,2002,85(7):1793-1800.
[13] CRAWSHAW R.The effect of formic and propionic acids on the aero-bic deterioration of grass silage in laboratory units[J].JSciFoodAgric,1981,31:685-694.
[14] MCDONALD P,HENDERSON A R,HERON S J E.The biochemistry of silage(2th ed)[M].Aberystwyth:Cambrian Printers Ltd,1991.
[15] BAYATKOUHSAR J,TAHMASEBI A M,NASERIAN A A.The effects of microbial inoculation of corn silage on performance of lactating dairy cows[J].LivestSci,2011,142(1):170-174.
[16] RANJITN K,KUNG JR L.The effect of lactobacillus buchneri,lactobacillus plantarum or a chemical preservative on the fermentation and aerobic stability of corn silage[J].JDairySci,2000,83(3):526-535.
[17] BRITT D G,HUBER J T,ROGERS A L.Fungal growth and acid production during fermentation and refermentation of organic acid treated corn silages[J].JDairySci,1975,58(4):532-539.
[18] WILKINSON J M,DAVIES D R.The aerobic stability of silage:key findings and recent developments[J].GrassForageSci,2013,68(1):1-19.
(編輯 郭云雁)
The Effects of Lactic Acid Bacteria and Propionic Acid on the Fermentation Quality and Aerobic Stability of Total Mixed Ration Silages Prepared with Whole-crop Corn in Tibet
CHEN Lei1,YUAN Xian-jun1,GUO Gang1,2,WEN Ai-you1,XIAO Shen-hua1, BA Sang4,YU Cheng-qun3,SHAO Tao1*
(1.InstituteofEnsilingandProcessingofGrass,NanjingAgriculturalUniversity,Nanjing210095,China; 2.CollegeofAnimalScienceandVeterinaryMedicine,ShanxiAgriculturalUniversity,Taigu030801,China; 3.InstituteofGeographicSciencesandNaturalResourcesResearch,ChineseAcademyofSciences,Beijing100101,China;4.ThePrairieWorkStationofShigatse,Shigatse857000,China)
The objective of this study was to evaluate the effects of lactic acid bacteria and propionic acid on the fermentation quality and aerobic stability of total mixed ration(TMR) silage prepared with whole-crop corn in Tibet.The treatments were as follow:control(no additives),inoculated lactic acid bacteria with 1 g·kg-1or propionic acid adding with 0.4% on fresh matter basis of TMR.All silos per treatment were opened after 45 days of ensiling,5 silos per treatment were used for fermentation quality determination,and then sampled on 6,9 and 12 days after exposure to air which were subjected to aerobic stability evaluation,5 replicates for each treatment at every time point.The results showed that the fermentation quality of control was good as indicated by the appropriate dry matter content,abundance of lactic acid bacteria count and water soluble carbohydrate content.The addition of lactic acid bacteria further improved fermentation quality.Although the addition of propionic acid inhibited the lactic acid fermentation,the fermentation quality was also good.During aerobic exposure stage,control and lactic acid bacteria addition silages showed decrease in lactic acid content,increase in pH,ammonia nitrogen/total nitrogen and the number of yeast.Lactic acid content in propionic acid silages increased during the first 9 days of aerobic exposure,and then significantly(P<0.05) decreased.The pH and the number of yeast in propionic acid silages were significantly(P<0.05) lower than those of control and lactic acid bacteria addition silages.Adding lactic acid bacteria improved fermentation quality but did not affect the aerobic stability;adding propionic acid inhibited lactic acid production during fermentation,while delayed aerobic deterioration of TMR silages,thus adding propionic acid improved the aerobic stability of whole-crop corn total mixed ration silage.
lactic acid bacteria;propionic acid;whole-crop corn TMR;fermentation quality;aerobic stability
10.11843/j.issn.0366-6964.2015.01.013
2013-11-11
“十二五”國家科技支撐計劃(2011BAC09B03);中國科學院西藏區(qū)域創(chuàng)新平臺建設項目;西藏主要農(nóng)作物秸稈與栽培牧草混合青貯關鍵技術研究(XZ20093ZD)
陳 雷(1987-),男,吉林長春人,碩士生,主要從事飼草調制加工與反芻動物營養(yǎng)研究,E-mail:CL1016ZJ@126.com
*通信作者:邵 濤,教授,E-mail:taoshaolan@163.com
S816.34
A
0366-6964(2015)01-0104-07