• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      整合素在皮膚創(chuàng)傷修復(fù)中的作用

      2015-04-16 02:54:54楊少偉孫曉艷付小兵
      關(guān)鍵詞:基底層整合素角質(zhì)

      楊少偉,孫曉艷,付小兵

      1解放軍總醫(yī)院,北京 100853;2解放軍總醫(yī)院第一附屬醫(yī)院 全軍創(chuàng)傷修復(fù)與組織再生重點實驗室暨皮膚損傷修復(fù)與組織再生北京市重點實驗室,北京 100048

      整合素在皮膚創(chuàng)傷修復(fù)中的作用

      楊少偉1,2,孫曉艷1,2,付小兵1,2

      1解放軍總醫(yī)院,北京 100853;2解放軍總醫(yī)院第一附屬醫(yī)院 全軍創(chuàng)傷修復(fù)與組織再生重點實驗室暨皮膚損傷修復(fù)與組織再生北京市重點實驗室,北京 100048

      皮膚是機體抵御外界環(huán)境中物理、化學(xué)傷害的第一道屏障,其依賴于表皮干細胞的增殖和分化而不斷自我更新。整合素是一類細胞黏附受體,其調(diào)控細胞-細胞外基質(zhì)反應(yīng),連接細胞外環(huán)境與細胞內(nèi)信號通路,廣泛參與增殖、分化和生存等細胞基本活動。本文就整合素分子在調(diào)控表皮干細胞的黏附、遷移、信號轉(zhuǎn)導(dǎo)研究進展作一綜述,從而為實現(xiàn)皮膚創(chuàng)傷的完美修復(fù)提供新的視角。

      整合素;基底膜;表皮干細胞;創(chuàng)傷修復(fù)

      作為人體最大的器官,皮膚是機體免受物理、化學(xué)、病原微生物等外界環(huán)境傷害的第一道屏障,在維持體溫、防止水分丟失等方面起重要作用。其主要通過表皮干細胞(epidermal stem cells,ESCs)的增殖和分化來維持自我更新[1-2]。其中,表皮基底層干細胞主要通過整合素分子實現(xiàn)對基底膜(basement membrane,BM)各種細胞外基質(zhì)組分的黏附,維持其生物學(xué)特性。整合素是細胞黏附分子家族的重要成員之一,廣泛表達于細胞表面。是由α和β亞基以非共價鍵連接形成的異源二聚體跨膜蛋白。已經(jīng)發(fā)現(xiàn)18種α亞基和8種β亞基,它們可以形成24種有功能的異二聚體。按照亞基構(gòu)成的不同,主要分為含αv亞基整合素、含β1亞基整合素、α6β4整合素3大類[3-4]。在皮膚中,當(dāng)ESCs周圍微環(huán)境發(fā)生改變時,整合素的功能和表達水平改變,其介導(dǎo)的細胞黏附作用降低,使基底層干細胞增殖分化,并不斷外移形成棘細胞層、顆粒層等其他各層的終末分化細胞,完成其定向分化進程[5-6]。因此,整合素通過調(diào)節(jié)ESCs的活性狀態(tài),從而維持皮膚的正常結(jié)構(gòu)和功能,同時參與皮膚創(chuàng)傷后的修復(fù)過程。

      1 整合素參與細胞的黏附、增殖、分化和遷移

      超微結(jié)構(gòu)顯示,在BM的基底角質(zhì)細胞漿膜層和透明板之間,表皮基底層細胞表面存在一層電子致密帶,即半橋粒。它由α6β4整合素、網(wǎng)格蛋白、CD151、大皰性類天皰瘡(bullous pemphigoid,BP)抗原組成,主要參與基底層細胞的生物活動。在半橋粒中,α6β4整合素、BP抗原和層黏連蛋白-332(laminin,Ln)結(jié)合后,進一步與角蛋白-5和角蛋白14相互作用,從而穩(wěn)定細胞間的黏附活動[7-8]。其中,整合素主要通過α6亞基的胞外域與BP抗原、四旋蛋白相互作用。實驗表明,α6β4整合素介導(dǎo)的基底黏附主要是通過與Ln-332結(jié)合,進一步促進錨定原纖維與Ln-332穩(wěn)定結(jié)合來實現(xiàn)的[9]。因此,α6β4整合素對于基底層角質(zhì)細胞對BM的黏附穩(wěn)定性至關(guān)重要[10]。此外,整合素α2β1也是角質(zhì)細胞黏附于膠原的必要分子[3]。

      此外,整合素還調(diào)控角質(zhì)細胞的增殖和分化,不同種類的整合素在功能上存在差異。研究證實,含β1亞基和α6β4整合素在增殖狀態(tài)的基底層細胞表達上調(diào),而不參與基底上層細胞的分化[9,11];而αvβ8整合素只在上基底層表達,其可能抑制角質(zhì)細胞增殖而促進分化[4,12]。體外實驗中,含β1亞基整合素的β1亞基缺失可以促進角質(zhì)細胞分化,但是體內(nèi)實驗沒有得出相同結(jié)果,這可能與細胞間的黏附以及α6β4整合素介導(dǎo)的基底膜黏附活動有關(guān)[13-14]。與α6β4整合素缺失引起的皮膚表-真皮連接處病變程度相比,β1亞基缺失引起的病變相對較輕[14-15],這表明α6β4整合素接到的細胞基底膜黏附活動對于皮膚維持正常生理結(jié)構(gòu)和生物功能至關(guān)重要。

      除了與BM相互結(jié)合發(fā)揮作用外,整合素對于BM本身的結(jié)構(gòu)完整也非常重要。在含β1亞基整合素中,當(dāng)β1亞基基因突變時,病理上顯示BM組織結(jié)構(gòu)異常,這提示整合素可能參與BM的結(jié)構(gòu)發(fā)育;在小鼠發(fā)生此突變時可導(dǎo)致早期胚胎的死亡[13-14]。這些研究表明,整合素廣泛參與表皮基底角質(zhì)細胞增殖、分化、凋亡、炎癥反應(yīng)等活動。

      2 整合素參與維持ESCs的生物學(xué)特性

      表皮的自我更新主要依賴于ESCs,其主要位于毛囊隆突部、皮脂腺和濾泡間上皮[16-17]。其中只有毛囊隆突部的干細胞具有多向分化潛能,可分化成為皮膚各部位的終末組織細胞,但是正常情況下其不參與表皮穩(wěn)態(tài)維持,而主要由濾泡間上皮處的干細胞來調(diào)節(jié)[18]。

      ESCs具有強大的分化潛能,其分裂后的子代細胞,一部分不分化而維持干細胞庫的穩(wěn)定,另一部分分化形成具有增殖能力的短暫增殖細胞(transit-amplifying cells,TACs)并不斷分化。ESCs分子標(biāo)記主要有CD34、CK15、CK19、Lgr5、Lgr6等[17,19-20]。相對于TACs亞群,ESCs內(nèi)α2β1、α3β1和α6β4整合素的表達水平明顯上調(diào),因此,在體外可以借助二者的黏附能力來區(qū)分這兩種細胞亞群,同時整合素分子也可作為ESCs的一種標(biāo)記分子[21-23]。此外,轉(zhuǎn)錄水平上調(diào)節(jié)進一步證實了整合素對于ESCs“干性”的調(diào)控作用。已經(jīng)證實C-myc基因能夠促進細胞不斷增殖,而在皮膚中,激活C-myc還可以誘導(dǎo)ESCs的活化,并分化成為皮脂腺和IFE組織來源的細胞[24-25]。其內(nèi)在機制可能是通過下調(diào)β1類和α6β4整合素的表達使表皮細胞對基底層去黏附,同時抑制參與黏附和細胞骨架構(gòu)成相關(guān)蛋白合成來實現(xiàn)的[26]。

      含β1整合素通過胞外信號調(diào)節(jié)激酶(extracellular regulated kinase,ERK)/絲裂原活化蛋白激酶(mitogenactivated protein kinase,MAPK)信號通路調(diào)節(jié)細胞極性蛋白復(fù)合物的分布,進而牽拉紡錘體有序排列,從而完成表皮組織結(jié)構(gòu)的正常有序發(fā)育[27]。這種不對稱的有絲分裂方式對干細胞命運轉(zhuǎn)歸具有重要意義[28-29]。此外,轉(zhuǎn)錄因子p51/p63也可能是通過調(diào)節(jié)整合素的表達,而參與皮膚的正常發(fā)育和ESCs特性的維持[30]。由此可見,整合素介導(dǎo)的與ECM的黏附活動通過改變ESCs生存的微環(huán)境而影響其生物學(xué)功能。

      3 整合素相關(guān)的信號轉(zhuǎn)導(dǎo)通路

      由于其特殊的跨膜結(jié)構(gòu),整合素參與多種胞內(nèi)、胞外信號轉(zhuǎn)導(dǎo)的調(diào)節(jié)[6]。整合素與相應(yīng)配體結(jié)合后,通過磷脂酰肌醇-3-羥激酶(phosphatidylinositol-3OH kinase,PI3K/ AKT)和MAPK通路,調(diào)節(jié)角質(zhì)細胞間、細胞和BM的黏附活動[31-32]。這些反應(yīng)活動主要以黏著斑(focal adhesion,F(xiàn)A)為信號平臺,通過黏著斑激酶(focal adhesion kinase,F(xiàn)AK)促進含β1整合素與細胞骨架蛋白的物理連接,調(diào)節(jié)FA結(jié)構(gòu)進而啟動信號通路[33]。另外,整合素還通過參與Ras相似物GTP酶(ras homologue GTPases,Rho GTPases)通路調(diào)節(jié)細胞骨架蛋白,改變角質(zhì)細胞的自身狀態(tài),影響其黏附和遷移[34-35]。

      除了直接參與信號通路外,整合素還可以通過與調(diào)節(jié)受體絡(luò)氨酸激酶(receptor tyrosine kinases,RTKs)、ERK、MAPK等通路上某些分子的交互作用,影響多種細胞因子的表達,比如表皮生長因子(epidermal growth factor,EGF)、成纖維生長因子(fibroblast growth factor,F(xiàn)GF)、肝細胞生長因子(hepatocyte growth factor,HGF)、角化細胞生長因子(keratinocyte growth factor,KGF)、轉(zhuǎn)化生長因子α(transforming growth factor-α,TGF-α)和TGF-β等,進而調(diào)節(jié)角質(zhì)細胞的增殖、分化、遷移以及細胞外基質(zhì)和BM結(jié)構(gòu)變化,調(diào)節(jié)表皮內(nèi)環(huán)境的穩(wěn)定[36-41]。由此可見,整合素以直接或間接形式參與多種信號通路,構(gòu)成復(fù)雜的調(diào)控網(wǎng)絡(luò),進而調(diào)節(jié)皮膚組織結(jié)構(gòu)的發(fā)育和生物活動的實現(xiàn)。

      4 整合素在創(chuàng)傷修復(fù)過程中的作用

      皮膚創(chuàng)傷修復(fù)過程主要分為3個階段,炎癥應(yīng)答期、結(jié)構(gòu)重塑期和再上皮化[1,42-43]。為了迅速而有效地完成修復(fù)過程,需要多種細胞的參與。創(chuàng)傷時,受損處的血管內(nèi)的細胞因子誘導(dǎo)巨噬細胞、中性粒細胞等遷移,激活炎癥反應(yīng)。這些炎癥細胞釋放炎癥因子,促使成纖維細胞和血管內(nèi)皮細胞分泌合成ECM、生成毛細血管、形成肉芽組織[44]。而成纖維細胞向肌成纖維細胞分化,使得傷口收縮,加速愈合進程。接下來,再上皮化形成新的表皮完成組織結(jié)構(gòu)和功能修復(fù)。再上皮化過程中,涉及角質(zhì)細胞的增殖和遷移。輕度創(chuàng)傷基底膜完整時,傷口周圍的ESCs表達含β1亞基整合素,與基底膜配體相互作用,從而介導(dǎo)ESCs黏附、增殖、分化、遷移,成為成熟的角質(zhì)細胞;同時,通過調(diào)節(jié)基底角質(zhì)細胞有絲分裂的方向而實現(xiàn)細胞的有序分裂,促進皮膚的組織結(jié)構(gòu)正常修復(fù)[16]。重度創(chuàng)傷時,基底膜受損,真皮深層的成纖維細胞表達整合素與ECM相互作用,激活α-平滑肌蛋白(α-smooth muscle actin,α-SMA),引起機械牽拉,促進傷口縮小[45]。此外,TGF-β激活成纖維細胞合成ECM蛋白,與傷口周圍ESCs表達的整合素相互作用,共同構(gòu)建新的基底膜結(jié)構(gòu),以加快創(chuàng)傷愈合,實現(xiàn)組織結(jié)構(gòu)的重塑[41]。

      體外實驗表明,角質(zhì)細胞遷移分為4步:細胞形成偽足并深入創(chuàng)面;整合素介導(dǎo)的細胞黏附穩(wěn)定這些偽足;細胞體的轉(zhuǎn)入;去黏附和肌凝蛋白作用引起細胞收縮[46]。含β1亞基整合素缺失會引起角質(zhì)細胞的遷移受損并影響增殖活動,從而延遲修復(fù)[15]。此外還有多種整合素分子參與創(chuàng)傷時角質(zhì)細胞的遷移[47]。而不同整合素在創(chuàng)傷時的作用存在爭議,比較明確的是整合素α3β1的α3亞基可以通過干預(yù)創(chuàng)傷時的血管生成來影響修復(fù)過程[48-50]。此外,創(chuàng)傷應(yīng)激時,整合素還可以通過調(diào)節(jié)ECM的變化和BM的構(gòu)建,改變ESCs的微環(huán)境,激活ESCs增殖、分化,調(diào)節(jié)干細胞的有序分裂,修復(fù)受損組織[16,51]。這些研究表明,創(chuàng)傷修復(fù)中,整合素介導(dǎo)的細胞-基質(zhì)黏附活動,改變成纖維細胞和ESCs的微環(huán)境,調(diào)節(jié)細胞的增殖、分化、遷移和凋亡,在實現(xiàn)皮膚正常組織結(jié)構(gòu)和基本生理功能的雙重修復(fù)中發(fā)揮重要作用。

      5 展望

      在皮膚中,整合素不僅介導(dǎo)表皮角質(zhì)細胞的黏附、增殖、分化、BM的形成,并參與細胞-基質(zhì)活動調(diào)控ESCs“干性”,參與創(chuàng)傷修復(fù)過程。盡管如此,仍然有許多問題亟待解決,如不同整合素及其相關(guān)分子作用的差異性還需要深入研究;大多數(shù)關(guān)于整合素的研究是基于動物實驗和單基因水平,而人體皮膚構(gòu)成和功能具有其特殊性,因此得出結(jié)論還需要在復(fù)雜的人體生理條件下進行臨床驗證;許多細胞因子參與皮膚創(chuàng)傷修復(fù),那么整合素參與調(diào)控這些細胞因子作用的信號通路中關(guān)鍵分子有哪些?對這些問題的解決,不僅會進一步明確整合素在皮膚穩(wěn)態(tài)、干細胞特性、創(chuàng)傷修復(fù)等活動中的作用及相關(guān)分子機制,也會促進有關(guān)整合素的基礎(chǔ)研究向臨床應(yīng)用轉(zhuǎn)化,從而為臨床相關(guān)疾病的診治提供新的視角和途徑。

      1 Evans ND, Oreffo RO, Healy EA, et al. Epithelial mechanobiology,skin wound healing, and the stem cell niche[J]. J Mech Behav Biomed Mater, 2013, 28(SI): 397-409.

      2 Elias PM. Structure and function of the stratum corneum extracellular matrix[J]. J Invest Dermatol, 2012, 132(9): 2131-2133.

      3 Zhang ZG, Bothe I, Hirche F, et al. Interactions of primary fibroblasts and keratinocytes with extracellular matrix proteins:contribution of alpha(2)beta(1) integrin[J]. J Cell Sci, 2006,119(9): 1886-1895.

      4 Araya J, Cambier S, Morris A, et al. Integrin-mediated transforming growth factor-beta activation regulates homeostasis of the pulmonary epithelial-mesenchymal trophic unit[J]. Am J Pathol, 2006, 169(2):405-415.

      5 Hegde S, Raghavan S. A skin-depth analysis of integrins: role of the integrin network in health and disease[J]. Cell Commun Adhes,2013, 20(6): 155-169.

      6 Eckes B, Krieg T, Wickstroem SA. Role of integrin signalling through integrin-linked kinase in skin physiology and pathology[J]. Exp Dermatol, 2014, 23(7): 453-456.

      7 Litjens SH, De Pereda JM, Sonnenberg A. Current insights into the formation and breakdown of hemidesmosomes[J]. Trends Cell Biol,2006, 16(7):376-383.

      8 Margadant C, Frijns E, Wilhelmsen KA. Regulation of hemidesmosome disassembly by growth factor receptors[J]. Curr Opin Cell Biol, 2008, 20(5): 589-596.

      9 Raymond K, Kreft M, Janssen H, et al. Keratinocytes display normal proliferation, survival and differentiation in conditional beta4-integrin knockout mice[J]. J Cell Sci, 2005, 118(Pt 5):1045-1060.

      10 Kobune K, Miura T, Sato T, et al. Influence of plasma and ultraviolet treatment of zirconia on initial attachment of human oral keratinocytes: Expressions of laminin gamma(2) and integrin beta(4)[J]. Dent Mater J, 2014, 33(5): 696-704.

      11 Rodius S, Indra G, Thibault C, et al. Loss of alpha6 integrins in keratinocytes leads to an increase in TGFbeta and AP1 signaling and in expression of differentiation genes[J]. J Cell Physiol, 2007, 212(2):439-449.

      12 Neurohr C, Nishimura SL, Sheppard D. Activation of transforming growth factor-beta by the integrin alphavbeta8 delays epithelial wound closure[J]. Am J Respir Cell Mol Biol, 2006, 35(2):252-259.

      13 Raghavan S, Bauer C, Mundschau G, et al. Conditional ablation of beta1 integrin in skin. Severe defects in epidermal proliferation,basement membrane formation, and hair follicle invagination[J]. J Cell Biol, 2000, 150(5):1149-1160.

      14 Brakebusch C, Grose R, Quondamatteo F, et al. Skin and hair follicle integrity is crucially dependent on beta 1 integrin expression on keratinocytes[J]. EMBO J, 2000, 19(15):3990-4003.

      15 Grose R, Hutter C, Bloch W, et al. A crucial role of beta 1 integrins for keratinocyte migration in vitro and during cutaneous wound repair[J]. Development, 2002, 129(9): 2303-2315.

      16 Sun X, Fu X, Han W, et al. Epidermal stem cells: an update on their potential in regenerative medicine[J]. Expert Opin Biol Ther,2013, 13(6):901-910.

      17 Blanpain C, Fuchs E. Epidermal stem cells of the skin[J]. Annu Rev Cell Dev Biol, 2006, 22:339-373.

      18 Ito M, Liu Y, Yang Z, et al. Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis[J]. Nat Med, 2005, 11(12):1351-1354.

      19 Snippert HJ, Haegebarth A, Kasper M, et al. Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin[J]. Science, 2010, 327(5971):1385-1389.

      20 Jaks V, Barker N, Kasper M, et al. Lgr5 marks cycling, yet longlived, hair follicle stem cells[J]. Nat Genet, 2008, 40(11):1291-1299.

      21 Akiyama M, Smith LT, Shimizu H. Changing patterns of localization of putative stem cells in developing human hair follicles[J]. J Invest Dermatol, 2000, 114(2):321-327.

      22 Kaur P, Li A. Adhesive properties of human basal epidermal cells:an analysis of keratinocyte stem cells, transit amplifying cells, and postmitotic differentiating cells[J]. J Invest Dermatol, 2000, 114(3):413-420.

      23 Piwko-Czuchra A, Koegel H, Meyer H, et al. Beta1 integrinmediated adhesion signalling is essential for epidermal progenitor cell expansion[J]. PLoS One, 2009, 4(5):e5488.

      24 Frye M, Gardner C, Li E, et al. Evidence that Myc activation depletes the epidermal stem cell compartment by modulating adhesive interactions with the local microenvironment[J]. Development,2003, 130(12): 2793-2808.

      25 Waikel RL, Kawachi Y, Waikel PA, et al. Deregulated expression of c-Myc depletes epidermal stem cells[J]. Nat Genet, 2001, 28(2):165-168.

      26 Gebhardt A, Frye M, Herold S, Benitah SA, et al. Myc regulates keratinocyte adhesion and differentiation via complex formation with Miz1[J]. J Cell Biol, 2006, 172(1):139-149.

      27 Lechler T, Fuchs E. Asymmetric cell divisions promote stratification and differentiation of mammalian skin[J]. Nature, 2005, 437(756):275-280.

      28 Watt FM, Jensen KB. Epidermal stem cell diversity and quiescence[J]. EMBO Mol Med, 2009, 1(5): 260-267.

      29 Spradling A, Drummond-Barbosa D, Kai T. Stem cells find their niche[J]. Nature, 2001, 414(6859):98-104.

      30 Okuyama R, Ogawa E, Nagoshi H, et al. p53 homologue, p51/p63,maintains the immaturity of keratinocyte stem cells by inhibiting notch1 activity[J]. Oncogene, 2007, 26(31): 4478-4488.

      31 Zaidel-Bar R, Itzkovitz S, Ma’ayan A, et al. Functional Atlas of the integrin adhesome[J]. Nat Cell Biol, 2007, 9(8): 858-868.

      32 Legate KR, Wickstr?m SA, F?ssler R. Genetic and cell biological analysis of integrin outside-in signaling[J]. Genes Dev, 2009, 23(4): 397-418.

      33 Ili? D, Furuta Y, Kanazawa S, et al. Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice[J]. Nature, 1995, 377(6549):539-544.

      34 Del Pozo MA, Alderson NB, Kiosses WB, et al. Integrins regulate Rac targeting by internalization of membrane domains[J]. Science,2004, 303(5659):839-842.

      35 Price LS, Langeslag M, Ten Klooster JP, et al. Calcium signaling regulates translocation and activation of Rac[J]. J Biol Chem,2003, 278(41): 39413-39421.

      36 Iwata Y, Akamatsu H, Hasegawa S, et al. The epidermal Integrin beta-1 and p75NTR positive cells proliferating and migrating during wound healing produce various growth factors, while the expression of p75NTR is decreased in patients with chronic skin ulcers[J]. J Dermatol Sci, 2013, 71(2):122-129.

      37 Dumesic PA, Scholl FA, Barragan DI. Erk1/2 MAP kinases are required for epidermal G2/M progression[J]. J Cell Biol, 2009,185(3): 409-422.

      38 Scholl FA, Dumesic PA, Barragan DI, et al. Mek1/2 MAPK kinases are essential for Mammalian development, homeostasis, and Rafinduced hyperplasia[J]. Dev Cell, 2007, 12(4):615-629.

      39 Pankow S, Bamberger C, Klippel A, et al. Regulation of epidermal homeostasis and repair by phosphoinositide 3-kinase[J]. J Cell Sci, 2006, 119(19): 4033-4046.

      40 Murayama K, Kimura T, Tarutani M, et al. Akt activation induces epidermal hyperplasia and proliferation of epidermal progenitors[J]. Oncogene, 2007, 26(33): 4882-4888.

      41 Margadant C, Sonnenberg A. Integrin-TGF-beta crosstalk in fibrosis,cancer and wound healing[J]. EMBO Rep, 2010, 11(2):97-105.

      42 付小兵. 創(chuàng)面治療中的轉(zhuǎn)化醫(yī)學(xué):部分成果的研發(fā)和轉(zhuǎn)化應(yīng)用與思考[J]. 中華燒傷雜志, 2014, 30(1): 3-5.

      43 Kasuya A, Tokura Y. Attempts to accelerate wound healing[J]. J Dermatol Sci, 2014, 76(3):169-172.

      44 Werner S, Grose R. Regulation of wound healing by growth factors and cytokines[J]. Physiol Rev, 2003, 83(3): 835-870.

      45 Moissoglu K, Schwartz MA. Integrin signalling in directed cell migration[J]. Biol Cell, 2006, 98(9):547-555.

      46 Ridley AJ, Schwartz MA, Burridge K, et al. Cell migration:Integrating signals from front to back[J]. Science, 2003, 302(5651):1704-1709.

      47 Margadant C, Charafeddine RA, Sonnenberg A. Unique and redundant functions of integrins in the epidermis[J]. FASEB J,2010, 24(11):4133-4152.

      48 Margadant C, Raymond K, Kreft M, et al. Integrin alpha3beta1 inhibits directional migration and wound re-epithelialization in the skin[J]. J Cell Sci, 2009, 122(Pt 2):278-288.

      49 Mitchell K, Szekeres C, Milano V, et al. Alpha3beta1 integrin in epidermis promotes wound angiogenesis and keratinocyte-toendothelial-cell crosstalk through the induction of MRP3[J]. J Cell Sci, 2009, 122(Pt 11):1778-1787.

      50 Sachs N, Secades P, Van Hulst L, et al. Loss of integrin alpha 3 prevents skin tumor formation by promoting epidermal turnover and depletion of slow-cycling cells[J]. Proc Natl Acad Sci U S A,2012, 109(52): 21468-21473.

      51 Nakrieko KA, Rudkouskaya A, Irvine TS, et al. Targeted inactivation of integrin-linked kinase in hair follicle stem cells reveals an important modulatory role in skin repair after injury[J]. Mol Biol Cell, 2011, 22(14):2532-2540.

      Role of integrin in skin wound healing

      YANG Shaowei1,2, SUN Xiaoyan1,2, FU Xiaobing1,2
      1Chinese PLA General Hospital, Beijing 100853, China;2Key Laboratory of Wound Healing and Tissue Regeneration, the First Affiliated Hospital of Chinese PLA General Hospital, Beijing 100048, China

      FU Xiaobing. Email: fuxiaobing@vip.sina.com

      Skin provides both a physical and a chemical barrier against the outside world, and keeps self-renewal through the proliferation and differentiation of epithermal stem cells. As one of the adhesion receptors, integrin mediates cell-ECM interactions and provides essential links between extracellular environment and intracellular signal pathways that play roles in many cell activities, such as proliferation, differentiation, and survival. In this article, the research progress of integrin in regulating adhesion, migration and signal transduction of epidermal stem cells, will be reviewed to expand new insights for completing the perfect skin wound healing.

      integrin; basilar membrane; epidermal stem cells; wound healing

      R 641

      A

      2095-5227(2015)06-0628-04

      10.3969/j.issn.2095-5227.2015.06.029

      時間:2015-03-16 11:21

      http://www.cnki.net/kcms/detail/11.3275.R.20150316.1121.003.html

      2014-12-17

      國家“973”重點基礎(chǔ)研究發(fā)展項目(2012CB518105);國家自然科學(xué)基金項目(81372067);北京市科技新星項目(2008B53;2009A38)

      Supported by National “973” Program for Basic Research of China(2012C B518105); National Natural Science Foundation of China(81372067)

      楊少偉,男,在讀博士,醫(yī)師。研究方向:創(chuàng)傷修復(fù)與組織再生。Email: shaowyang@163.com

      付小兵,男,中國工程院院士,博士生導(dǎo)師。Email: fuxiaobing@vip.sina.com

      猜你喜歡
      基底層整合素角質(zhì)
      食管基底層型高級別異型增生9例臨床病理分析
      P16、P53、Ki-67在食管上皮內(nèi)瘤變中的表達及診斷意義
      整合素α7與腫瘤關(guān)系的研究進展
      自體支氣管基底層細胞治療慢性阻塞性肺疾病的小樣本探索性研究*
      紫外線A輻射對人角質(zhì)形成細胞的損傷作用
      骨角質(zhì)文物保護研究進展
      整合素αvβ6和JunB在口腔鱗癌組織中的表達及其臨床意義
      角質(zhì)形成細胞和黑素細胞體外共培養(yǎng)體系的建立
      整合素與胃癌關(guān)系的研究進展
      不同助劑對鐵元素在蘋果角質(zhì)膜滲透的影響
      阳山县| 铅山县| 林甸县| 镶黄旗| 江口县| 鞍山市| 临泉县| 新宁县| 阳新县| 仪征市| 金乡县| 菏泽市| 定襄县| 安西县| 长子县| 成都市| 自治县| 兴义市| 公安县| 澳门| 玉田县| 古蔺县| 安国市| 沭阳县| 双鸭山市| 周口市| 大庆市| 巧家县| 许昌市| 大宁县| 原阳县| 通榆县| 高清| 汉寿县| 普安县| 萝北县| 时尚| 青阳县| 伊川县| 阆中市| 黔东|