王 燦 蔡康興 陳 龍 王 楠 史 源
?
·論著·
基于隨機雙盲安慰劑對照試驗的一氧化碳吸入療法在新生兒肺炎應用的安全性研究
王 燦1,2,3蔡康興3陳 龍1王 楠1史 源1
目的探討一氧化碳(CO)吸入療法在足月新生兒中應用的安全性以及抗炎、抗氧化作用。方法納入2013年3~6月第三軍醫(yī)大學附屬大坪醫(yī)院NICU住院的肺炎足月新生兒,隨機分為8組,分別予以空氧氣體(安慰劑)和10、20、30、40、50、60、70 mg·L-1濃度的CO吸入2 h;吸入安慰劑氣體或CO期間持續(xù)觀察受試者的反應,監(jiān)測心率、血氧飽和度、呼吸和血壓等生命體征,檢測吸入前(0 h)和吸入后2和5 h時點血清碳氧血紅蛋白(COHb)濃度,評估吸入CO的安全性;檢測晚期氧化蛋白產物(AOPPs)、總抗氧化能力 (TAOC)、丙二醛 (MDA)和巨噬細胞炎癥蛋白-2 (MIP-2)水平,評估吸入CO的抗炎和抗氧化作用。結果48例足月新生兒符合納入和排除標準進入觀察,每組各6例。8組間胎齡、年齡、體重、白蛋白、Hb和WBC計數(shù)等基線指標差異均無統(tǒng)計學意義。①CO 70 mg·L-1組1例因不良事件退出研究,其余受試者均完成試驗;COHb在不同時點和8組間差異均無統(tǒng)計學意義(P>0.05);②隨著吸入CO濃度的增加,MIP-2總體上呈下降趨勢 (P=0.000),3個觀察時點差異總體上有統(tǒng)計學意義(P=0.001); TAOC水平8組間比較差異無統(tǒng)計學意義(P=0.917),不同時點差異有統(tǒng)計學意義(P=0.005); AOPPs和MDA在不同時點以及不同組間差異均無統(tǒng)計學意義(P>0.05)。結論吸入CO濃度≤60 ppm在新生兒肺炎中的應用是安全的,且具有抗炎和改善氧化應激狀態(tài)的作用。
一氧化碳; 新生兒肺炎; 炎癥; 氧化應激
動物實驗顯示,吸入一氧化碳(CO)對組織缺血性損傷、高氧肺損傷、移植物抗宿主反應和炎癥反應等具有保護作用[1~6]。成人中應用CO吸入療法的研究已在臨床開展[7],提示吸入CO具有抗炎和抗氧化應激作用。基于CO的作用機制、相關研究基礎和臨床的研究結果,推測吸入CO可能對新生兒過度炎癥反應[8]、氧化應激[9,10]和肺血管化[11]相關的疾病有治療價值,如支氣管肺發(fā)育不良(BPD)和新生兒持續(xù)肺動脈高壓(PPHN)。但目前尚無CO應用于新生兒的臨床研究,也未見相關臨床試驗注冊和文獻發(fā)表。探討吸入CO療法的可行性和安全性,是一種新的治療方法應用于新生兒的先決條件。
1.1 研究設計 本研究以足月新生兒肺炎病例為研究對象,隨機分為8組,分別吸入安慰劑氣體和不同濃度的CO 2 h,監(jiān)測生命體征,檢測碳氧血紅蛋白(COHb)濃度評估安全性;檢測炎癥和氧化指標評估抗炎和抗氧化作用。
1.2 倫理 本研究經過第三軍醫(yī)大學大坪醫(yī)院(我院)醫(yī)學倫理委員會批準。受試者家屬均簽署知情同意書。
1.3 注冊 本研究在美國Clinical Trial平臺(http://www.clinicaltrials.gov)注冊,注冊號:NCT01818843。
1.4 診斷標準 新生兒肺炎的診斷符合文獻[12]標準。
1.5 納入標準 ①2013年3~6月我院NICU符合新生兒肺炎診斷的足月新生兒;②持續(xù)氧飽和度≥95%,心率<160·min-1,呼吸頻率<60·min-1,且無需吸氧。
1.6 排除標準 除肺炎外合并的其他嚴重疾病或系統(tǒng)功能異常,如心、肝和腎功能異常,腦部疾病(缺氧缺血性腦病、腦室內出血等),遺傳代謝性疾病,先天性畸形等。
1.7 分組和分配隱藏 以隨機數(shù)字表法分為8組,分組序列號裝入密閉的信封。試驗參與者(醫(yī)生、操作者和檢驗員)均不知曉隨機序列分配列表。
1.8 干預 不同濃度(10、20、30、40、50、60、70 mg·L-1)的氣缸壓縮標準CO氣體瓶(CO純度99%)和安慰劑氣體瓶(不含CO的空氧氣體),均由中國重慶氣體研發(fā)有限公司提供。安慰劑氣體瓶和不同濃度CO氣體瓶外觀一致,貼上分組標簽,操作者對標簽代表是安慰劑氣體或CO氣體的濃度不知曉。通過減壓閥減壓至0.3~0.5 kPa后,受試者使用非復吸面罩分別吸入7種不同濃度的CO氣體或安慰劑氣體2 h,吸入流量為1 L·min-1。
1.9 觀察指標 在吸入前(0 h)、吸入后2和5 h的3個時點采集股靜脈血2~3 mL,檢測安全性(COHb)和抗炎、抗氧化指標。
1.9.1 基線指標 包括年齡、體重、白蛋白水平、Hb水平和WBC計數(shù)。
1.9.2 主要結局指標 ①吸入CO或安慰劑期間由本文第一作者持續(xù)觀察受試者的反應,心電監(jiān)護儀監(jiān)測心率,血氧飽和度、呼吸和血壓等生命體征;②血清COHb水平。
1.9.3 次要結局指標 血清晚期氧化蛋白產物(AOPPs)、總抗氧化能力 (TAOC)、丙二醛 (MDA)和巨噬細胞炎癥蛋白-2 (MIP-2)水平(酶聯(lián)免疫法)。
1.10 不良事件處置和退出標準 在安慰劑氣體或CO吸入過程中,受試者出現(xiàn)煩躁不安、發(fā)紺、難以安慰的激惹,或出現(xiàn)以下任一情況并持續(xù)2~3 min:①心率>160·min-1或<100·min-1;②血氧飽和度<85%;③呼吸頻率>70·min-1;③收縮壓降低>20%;立即停止CO或安慰劑氣體吸入,改為吸氧2~3 min,待上述指標恢復正常后,繼續(xù)予CO或安慰劑氣體吸入并觀察;如出現(xiàn)≥2次上述任一情況,立即停止CO或安慰劑氣體吸入,停止觀察并退出研究,并予以吸氧2~3 min。
2.1 一般情況 研究期間我院確診133例新生兒肺炎,48例肺炎足月新生兒符合納入和排除標準進入研究,被隨機分配至8組,每組各6例,圖1顯示了研究對象納入、排除、分配和退出的情況。
表1顯示,8組間胎齡、年齡、體重、白蛋白、Hb和WBC計數(shù)等基線指標差異均無統(tǒng)計學意義(P均>0.05)。
圖1 納入、排除、分配和退出流程圖
Fig 1 Flowchart of inclusion, exclusion, allocation and quit procedure
表1 8組新生兒的基線數(shù)據比較Tab 1 Comparisons of patient characteristics at admission of 8 groups
Notes F/M: female/male; ALB: albumin; GA: gestational age
2.2 安全性指標 70 mg·L-1CO組1例吸入過程中出現(xiàn)2次經皮血氧飽和度<85% 和心率>160·min-1持續(xù)2~3 min,退出研究,吸氧1 min后恢復正常。余病例吸入CO或安慰劑氣體期間,未觀察到煩躁不安、發(fā)紺和激惹等反應,心率均維持在100~160·min-1,血氧飽和度≥85%、呼吸頻率≤70·min-1,收縮壓降低<20%,均完成研究。
表2顯示,血清COHb 水平在3個時點和8組間的差異均無統(tǒng)計學意義。
Notes Repeated measure ANOVA was employed to test the difference among 8 groups and 3 abserved time points. The difference among 8 groups:F=0.538,P=0.800; The difference among 3 time points:F=0.347,P=0.715 2.3 抗炎和抗氧化效應指標 表3顯示,AOPPs在3個時點和8組間差異均無統(tǒng)計學意義。MIP-2水平在3個時點和8組間差異有統(tǒng)計學意義。TAOC水平在8組間差異無統(tǒng)計學意義,3個時點間差異有統(tǒng)計學意義;MDA水平在3個時點和8組間差異均無統(tǒng)計學意義。
一氧化碳(CO)作為一種內源性氣體分子第二信使,由生物體內血紅素氧合酶(HO)分解代謝血紅素產生,當體內組織遭遇缺氧和(或)炎癥[14],以及氧化應激時,內源性CO增加。研究表明,CO具有調控血管張力[15]、參與免疫調節(jié)[16]、抗炎和抗氧化能力[17]的生物學作用。多項研究表明,氧化應激和炎癥反應參與多種心血管疾病(如PPHN)以及肺疾病(如BPD)的發(fā)病機制[18]。NO是一種選擇性肺血管舒張劑和體內抗炎、抗氧化分子,能降低新生兒PPHN的肺動脈壓[19,20]。吸入NO療法被認為是治療PPHN最有效的方法[21],然而,吸入NO療法不能改善30%~40% PPHN病例的氧合狀態(tài)[22],因此迫切需要尋求一種治療PPHN或其他由過度炎癥反應和氧化應激引起的疾病的其他方法具有重要意義。與NO相似,CO能激活鳥苷酸環(huán)化酶以增加環(huán)磷酸鳥苷的細胞濃度,從而引起血管舒張和血壓降低[23]。
CO吸入作為一種全新的治療方法,雖然在成人中已開展相關臨床研究,但是國內外尚無新生兒吸入CO的臨床試驗報道。因此首先需要明確新生兒吸入CO療法的安全性??紤]到新生兒肺炎的發(fā)生率和病死率較高[24,25],氧化應激在新生兒肺炎的發(fā)病機制中起重要作用,且足月兒相對成熟;故選擇足月新生兒肺炎病例作為本文的觀察對象,同時排除了除肺炎外的其他系統(tǒng)功能異?;驀乐丶膊〉母蓴_。CO具有毒性,應將新生兒暴露于有效且安全的治療濃度中,以免發(fā)生中毒反應,因此對于吸入濃度的把握非常關鍵[26]。本研究檢測吸入前和吸入后2、5 h血清COHb水平,并觀察吸入期間受試者的生命體征,評估吸入CO的潛在不良事件。既往研究顯示,健康成人吸入CO 100 mg·L-12 h可使體內COHb水平達4%[27],低于平均安全值的5.3%[28],且慢性阻塞型肺疾病(COPD)成人患者對該濃度CO同樣耐受[7]。COHb分解/合成動力學在新生兒、成人和動物有所不同,不能直接使用成人或動物研究結果,因此本研究使用的CO最高濃度(70 mg·L-1)相比既往成人研究低。本研究發(fā)現(xiàn)10~60 mg·L-1CO和安慰劑組的新生兒未觀察到顯著的不良事件 ,且其體內COHb水平差異無統(tǒng)計學意義,70 mg·L-1CO組有1例出現(xiàn)了2次血氧飽和度<85%和心率>160·min-1,停止吸入CO并給予吸氧1 min后恢復正常。由于本研究中出現(xiàn)不良事件時的CO濃度(70 mg·L-1)低于既往報道的成人[7]和動物實驗[3]中的濃度(100~125 mg·L-1),因此有必要對低濃度CO吸入的安全性做進一步的研究。
為了探索CO吸入對系統(tǒng)炎癥和氧化應激的作用,本研究檢測了血液中促炎細胞因子MIP-2的水平,同時檢測了體內氧化蛋白復合物家族AOPPs,AOPPs是一種體內氧化應激時形成的含二酪氨酸的蛋白產物,在體內主要由白蛋白運載[29,30],血漿中AOPPs、MDA和TAOC積聚提示體內存在過度氧化應激。本研究顯示10~60 mg·L-1CO組和安慰劑組,隨著吸入CO濃度的增加可使MIP-2水平呈下降趨勢,3個時點TAOC呈下降趨勢,與小鼠中的研究報道結果一致[3]。對健康志愿受試者注入脂多糖(LPS)后吸入CO的臨床試驗顯示,給予LPS 2 ng·kg-1使血液中IL-1, IL-6, IL-8水平短暫升高,后吸入500 mg·L-1濃度CO 1 h,導致體內COHb峰值達到7.0%,但并未影響上述細胞因子的水平[31],考慮可能與CO吸入的時間較短有關。COPD成人患者吸入100~125 mg·L-1CO的研究顯示,可顯著減少痰液嗜酸細胞和改善乙酰甲膽堿反應性的趨勢[7]。對注入了大劑量LPS膿毒癥的小鼠模型研究結果顯示,吸入CO能夠提高小鼠的存活率,其血漿IL-6和IL-1水平相比未予CO吸入的對照組顯著下降[32],對由機械通氣引起的肺損傷[33]和高氧肺損傷[34,35]吸入CO也有類似的研究結果。上述研究提示吸入CO的治療作用可能是通過降低體內持續(xù)存在的炎癥反應和氧化應激水平來實現(xiàn)的,也提示吸入CO療法對新生兒體內存在過度炎癥反應和氧化應激水平的嚴重疾病可能有潛在的重要作用。
結論:給予肺炎新生兒吸入≤60 mg·L-1濃度的CO是可行和安全的,受試者沒有出現(xiàn)任何相關不良事件且血清COHb水平無顯著性變化。吸入CO濃度可使受試者體內MIP-2水平顯著降低,提示吸入CO具有抗炎和抗氧化作用。
[1]El-Mousleh T, Casalis PA, Wollenberg I, et al. Exploring the potential of low doses carbon monoxide as therapy in pregnancy complications. Med Gas Res,2012, 20:2(1):4
[2]Chiang N, Shinohara M, Dalli J, et al. Inhaled carbon monoxide accelerates resolution of inflammation via unique proresolving mediator-heme oxygenase-1 circuits. J Immunol, 2013,190(12):6378-6388
[3]Wilson MR, O′Dea KP, Dorr AD, et al. Efficacy and safety of inhaled carbon monoxide during pulmonary inflammation in mice. PLoS One, 2010 13;5(7):e11565
[4]Fujita T, Toda K, Karimova A, et al. Paradoxical rescue from ischemic lung injury by inhaled carbon monoxide driven by derepression of fibrinolysis. Nat Med, 2001,7(5):598-604
[5]Sato K, Balla J, Otterbein L, et al. Carbon monoxide generated by heme oxygenase-1 suppresses the rejection of mouse-to-rat cardiac transplants. J Immunol, 2001,166(6):4185-4194
[6]Chapman JT, Otterbein LE, Elias JA, et al. Carbon monoxide attenuates aeroallergen-induced inflammation in mice. Am J Physiol Lung Cell Mol Physiol, 2001, 281(1):209-216
[7]Bathoorn E, Slebos DJ, Postma DS, et al. Anti-inflammatory effects of inhaled carbon monoxide in patients with COPD: a pilot study.Eur Respir J, 2007,30(6):1131-1137
[8]Waterberg KI. American Academy of Pediatrics, Committee on Fetus and Newborn. Policy statement postnatal corticosteroids to prevent or treat bronchopulmonary dysplasia. Pediatrics, 2010,126(4):800-808
[9]Speer CP. Chorioamnionitis, postnatal factors and proinflammatory response in the pathogenetic sequence of bronchopulmonary dysplasia. Neonatology,2009,95(4):353-361
[10]Firth AL, Yuan JX. Bringing down the ROS: a new therapeutic approach for PPHN. Am J Physiol Lung Cell Mol Physiol,2008,295(6):976-978
[11]Cabral JE, Belik J. Persistent pulmonary hypertension of the newborn: recent advances in pathophysiology and treatment. J Pediatr (Rio J), 2013,89(3):226-242
[12]Cloherty JP, Eichenwald EC, Stark AR. Mannual of neonatal care. 6th edition. 2008 Lippincott Williams and Wilkins. 274-300
[13]Montori VM, Guyatt GH. Intention-to-treat principle. CMAJ, 2001,165(10):1339-1341
[14]Otterbein LE, Choi AM. Heme oxygenase: colors of defense against cellular stress. Am J Physiol Lung Cell Mol Physiol, 2000 279(6): 1029-1037
[15]Ryter SW, Morse D, Choi AM. Carbon monoxide: to boldly go where NO has gone before. Sci STKE, 2004(230):RE6
[16]Mackern-Oberti JP, Llanos C, Carreno LJ, et al. Carbon monoxide exposure improves immune function in lupus prone mice. Immunology,2013 ,140(1):123-132
[17]Ghosh S, Gal J, Marczin N. Carbon monoxide: endogenous mediator, potential diagnostic and therapeutic target. Ann Med,2010,42(1):1-12
[18]Rossi GP, Seccia TM, Nussdorfer GG. Reciprocal regulation of endothelin-1 and nitric oxide: relevance in the physiology and pathology of the cardiovascular system. Int Rev Cytol, 2001,209:241-272
[19] Lakshminrusimha S, Russell JA, Wedgwood S, et al. Superoxide dismutase improves oxygenation and reduces oxidation in neonatal pulmonary hypertension. Am J Respir Crit Care Med,2006,174(12):1370-1377
[20]Fike CD, Dikalova A, Slaughter JC, et al. Reactive oxygen species-reducing strategies improve pulmonary arterial responses to nitric oxide in piglets with chronic hypoxia-induced pulmonary hypertension. Antioxid Redox Signal, 2013,18(14):1727-1738
[21]Sanchez Luna M, Franco ML, Bernardo B. Therapeutic strategies in pulmonary hypertension of the newborn: where are we now? Curr Med Chem,2012,19(27):4640-4653
[22]Steinhorn RH. Nitric oxide and beyond: new insights and therapies for pulmonary hypertension.J Perinatol, 2008,28(S3):67-71
[23]Marks GS, Brien JF, Nakatsu K, et al. Does carbon monoxide have a physiological function? Trends Pharmacol Sci,1991,12(5):185-188
[24]Rudan I, Chan KY, Zhang JS,et al. Causes of deaths in children younger than 5 years in China in 2008. Lancet,2010,375(9720):1083-1089
[25]Xia L(李霞), Zhong D. Evolution of cause of infant mortality and mortality in some countries and regions in the world. Chin J Evid Based Pediatr(中國循證兒科雜志), 2010,5(2):151-154
[26]Thom SR, Weaver LK, Hampson NB. ′′Therapeutic′′ carbon monoxide may be toxic. Am J Respir Crit Care Med,2005,171(11): 1318
[27]Peterson JE, Stewart RD. Absorption and elimination of carbon monoxide by inactive young men. Arch Environ Health, 1970, 21(2):165-171
[28]Zevin S, Saunders S, Gourlay SG, et al. Cardiovascular effects of carbon monoxide and cigarette smoking. J Am Coll Cardiol, 2001,38(6):1633-1638
[29]Witko-Sarsat V, Friedlander M, Capeillere-Blandin C, et al. Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int, 1996,49(5):1304-1313[30]Witko-Sarsat V, Friedlander M, Nguyen KT, et al. Advanced oxidation protein products as novel mediators of inflammation and monocyte activation in chronic renal failure. J Immunol, 1998,161(5):2524-2532
[31]Mayr FB, Spiel A, Leitner J, et al. Effects of carbon monoxide inhalation during experimental endotoxemia in humans. Am J Respir Crit Care Med, 2005,171(4):354-360
[32]Morse D, Pischke SE, Zhou Z, et al. Suppression of inflammatory cytokine production by carbon monoxide involves the JNK pathway and AP-1. J Biol Chem, 2003, 278(39):36993-36998
[33]Hoetzel A, Dolinay T, Vallbracht S, et al. Carbon monoxide protects against ventilator-induced lung injury via PPAR-gamma and inhibition of Egr-1. Am J Respir Crit Care Med, 2008,177(11):1223-1232
[34]Otterbein LE, Mantell LL, Choi AM.Carbon monoxide provides protection against hyperoxic lung injury.Am J Physiol, 1999,276(4 Pt 1):688-694
[35]Otterbein LE, Otterbein SL, Ifedigbo E, et al. MKK3 mitogen-activated protein kinase pathway mediates carbon monoxide-induced protection against oxidant-induced lung injury.Am J Pathol, 2003,163(6):2555-2563
(本文編輯:丁俊杰)
Safety and feasibility of inhaled carbon monoxide treatment for neonates with stabilized pneumonia: a randomized-blinded study
WANGCan1,2,3,CAIKang-xing3,CHENLong1,WANGNan1,SHIYuan1
(1DepartmentofPediatrics,DapingHospitalofThirdMilitaryMedicalUniversity,Chongqing400042; 2ChongqingMedicalandpharmaceuticalCollege,Chongqing401331; 3Hasequalcontributiontothestudy)
SHI Yuan,E-mail: petshi530@vip.163.com
ObjectiveThe aim of the present study was to investigate the feasibility, safety and anti-inflammatory and anti-oxidant properties of carbon monoxide (CO) inhalation in term infants.MethodsNeonates with pneumonia in NICU of Daping Hospital of Third Military Medical University from March 2013 to June 2013 were randomly divided into 8 groups, respectively inhaled 0, 10, 20, 30, 40, 50, 60, 70 mg·L-1of CO for 2 h; during CO inhalation,observating the reaction of subjects, continuous monitoring of heart rate, blood oxygen saturation, respiration and blood pressure and other vital signs, detecting the serum levels of carboxyhemoglobin (COHb) concentration before inhalation (0 h) and 2 and 5 h after inhalation to evaluate the feasibility and safety of inhaled CO. The total antioxidant capacity (TAOC), malondialdehyde (MDA) and macrophage inflammatory protein-2 (MIP-2) levels before inhalation (0 h) and 2 and 5 h after inhalation were detected to evaluate anti-inflammatory and antioxidant effects of CO.Results48 infants met the inclusion and exclusion criteria and were taken into the observation, 6 cases in each group. Baseline index between 8 groups did not significantly differ. ①One neonate in 70 mg·L-1group was discontinued for adverse effects and others enrolled patients were completed the study ultimately. There were no significant changes of carboxyhaemoglobin among 8 groups.②With the increase of iCO concentration, macrophage inflammatory protein-2 showed a reducing trend among groups (F=212.437,P<0.001) and time points (F=4.603,P=0.001), and TAOC showed sigificant difference between three times points (F=9.618,P=0.005). No significant changes of advanced oxidation protein products and malondialdedyde concentrations during the course of iCO were found among time points and groups.ConclusioniCO≤60 mg·L-1in term neonates with pneumonia in a stable phase was feasible and safe, and induced anti-inflammatory and anti-oxidant effects. Application of inhalation CO therapy in neonates is worthy of further study.
Carbon monoxide; Neonatal pneumonia; Inflammation; Oxidative stress
重慶市科技開發(fā)項目:cstc2013yykfA0193
1 第三軍醫(yī)大學附屬大坪醫(yī)院兒科 重慶,400042;2 重慶市醫(yī)藥高等專科學校 重慶,401331;3 共同第一作者
史源,E-mail:petshi530@vip.163.com
10.3969/j.issn.1673-5501.2015.03.003
2014-04-20
2015-01-25)