• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    氧化石墨烯對水泥基復(fù)合材料微觀結(jié)構(gòu)和力學性能的影響

    2015-06-05 14:36:38呂春祥劉伯偉李崇智
    新型炭材料 2015年4期
    關(guān)鍵詞:增韌水泥石抗折

    王 琴, 王 健, 呂春祥, 劉伯偉, 張 昆, 李崇智

    氧化石墨烯對水泥基復(fù)合材料微觀結(jié)構(gòu)和力學性能的影響

    王 琴1, 王 健1, 呂春祥2, 劉伯偉1, 張 昆1, 李崇智1

    (1.北京建筑大學土木與交通工程學院工程結(jié)構(gòu)與新材料北京市高校工程研究中心綠色建筑與節(jié)能技術(shù)北京市重點實驗室,北京100044; 2.中國科學院山西煤炭化學研究所碳纖維制備技術(shù)國家工程實驗室,山西太原030001)

    研究了不同摻量下氧化石墨烯(GO)對水泥石以及膠砂微觀結(jié)構(gòu)和力學性能的影響。含16.5%水的水泥漿、0.05%GO及3倍于水泥的沙子共混物作為添加劑制備成砂漿。通過SEM、液氮吸附儀和一系列標準實驗分別對水泥石的微觀形態(tài)、孔隙結(jié)構(gòu)、抗壓抗折強度以及水泥凈漿的流動度、黏度、凝結(jié)時間進行表征;考察不同GO摻量下水泥水化放熱的變化情況。結(jié)果表明:GO對水泥漿有顯著增稠和促凝作用;GO的摻入可以有效降低水泥的水化放熱量;GO對水泥石有顯著的增強增韌效果,28天齡期時,GO質(zhì)量分數(shù)為0.05%的水泥石,3、7和28 d抗壓強度和抗折強度同比對照組分別增加52.4%、46.5%、40.4%和86.1%、68.5%、90.5%,膠砂的抗壓強度和抗折強度同比對照組分別增加43.2%、33%、24.4%和69.4%、106.4%、70.5%;GO在水泥硬化過程中對水泥石中晶體產(chǎn)物的產(chǎn)生有促進作用并能規(guī)整晶體的排布而形成針狀晶體簇,改善水泥石中的孔結(jié)構(gòu),降低水泥石中微孔的體積,增加水泥石的密實度,對水泥石有顯著地增強增韌效果。

    氧化石墨烯;水泥基復(fù)合材料;增強增韌;微觀結(jié)構(gòu);水泥水化熱

    1 Introduction

    With the development of the infrastructure,high performance concrete is urgently needed in the key projects such as high-rise buildings,cross-sea bridges,subsea tunnel and hydraulic or marine works, which are usually under the environment attacked easily by salts and alkalis[1].Compared with the conventional concrete,high performance concrete requires the concrete with considerably improved performances such as high strength,high durability,high chloride ion migration resistivity,high freeze resistance,high sulphate resistance,low shrinkage,low abrasion and low carbon footprint et al.[2,3].

    The cementcomposites have a noticeable feature of relatively high compressive strength and low tensile and flexural strength,which belong to brittle materials.New carbon materials such as carbon fibers,carbon nanotubes and carbon black were used to enhance the strength of cement composites or provide the cement composites with improved electric or thermal performance[4-8].Nevertheless,the reinforcing materials such as carbon fibers and carbon nanotubes only play a physical role in the cement composites,which does not participate in the hydration and microstructure modification of the cement,especially the pore structure and crystalline structure of cement paste. And the dispersion of carbon fibers and carbon nanotubes in the cementmatrix is also challenging because of the hydrophobic surface of these reinforcing materials[9-11].Therefore,it is urgent to find a new material which can notonly disperse uniformly in the aqueous system of hydrated cement,but also improve the toughness of hardened cement paste by microstructure modifications.Graphene oxide(GO)is an intermediate product in grapheme preparation,which has many advantages as a reinforcing material such as ambiphilicity,excellent mechanical,electrical and thermal properties[12-14].It is easy to disperse uniformly in cements,which is beneficial to the reinforcing effect. The application of GO in the cement was seldom reported in the literature,and further attention should be paid on this field.

    In this paper,the influence of GO addition on the fluidity,viscosity,setting time of cement paste, and the pore structure,surface morphology,compressive strength and flexuralstrength of hardened cement paste is investigated.And the mechanism of the reinforcing and toughening effect is discussed.

    2 Experimental

    2.1Materials and reagents

    The cement paste and mortar investigated in this study were prepared using an ordinary Portland cement type 42.5 and GO dispersion having a solid content of 4 mg/mL[15]was provided by Institute of Coal Chemistry,Chinese Academy of Sciences.The chemical and physical properties of the cement and the GO are presented in Table 1 and Table 2 and Fig.1.Polycarboxylate superplasticiser with a solid contentof 50%was used.Standard sand used in this study was produced by Xiamen.

    Table 1 Chemical components of the cement.

    Table 2 Main physical index of cement.

    2.2Preparation

    2.2.1 Preparation of the cement paste

    The mixing proportion of cement paste was designed according to GB/T8077-2000“Test methods of concrete admixtures homogeneity”.The GO dosage was varied from 0.01%to 0.05%in cement paste to investigate the influence in the fluidity,viscosity,setting time and strength.The dosage of water-reducing agent is 0.5%of cement.After testing the fluidity,viscosity and setting time of the cement paste,the cementpaste was putinto a mould(40 mm ×40 mm×160 mm)and maintained at standard conditions.The compressive strength and flexural strength were tested at different ages.The mixing proportion is shown in Table 3.

    2.2.2 Preparation of the cement mortar

    The mixing proportion of cement mortar was designed according to GB/T2419-2005“Test methods of fluidity of cement mortar”,with some parameters modified according the test.The ratio of water to cement(W/C)is 0.37,the dosage of water-reducing agent is 3.5 g,the dosage of antifoaming agentsis 2 g.After testing the fluidity of the cementmortar, the cement mortar was put into a mould(40 mm× 40 mm×160 mm)for curing under a standard condition.Detail mixing proportion is shown in Table 4.

    Fig.1 AFM image of graphene oxide nanosheets.

    2.3Characterization

    2.3.1 Characterization of GO

    The size and thickness of GO was characterized by an atom force microscope(AFM)of SPI3800N/ SPA400.GO dispersion was diluted to the required concentration and then placed on a mica sheet.

    Table 3 Mixing proportions of cement paste with different dosages of GO.

    Table 4 Mixing proportions design of mortar with different dosages of GO.

    2.3.2 Composition of cement

    The oxides in the cement were characterized by a X-ray fluorescence spectrometer of supermini wavelength dispersion type.

    2.3.3 Setting time of the cement paste

    The setting time of the cement paste was tested according to GB/T1346-2001“Testmethods of water requirement of normal consistency,setting time,stability of cement paste”.

    2.3.4 Fluidity of the cement paste

    The fluidity of the cement paste was measured according to GB/T8077-2000“Test methods of concrete admixtures homogeneity”.

    2.3.5 Viscosity of the cement paste

    The viscosity of the cement paste was tested by a NDJ-5S digitalrotary viscosity meter.Due to the limit of non-Newtonian fluidity of the cement paste,the results of viscosity are used only by comparison.

    2.3.6 Fluidity of the cement mortar

    The fluidity of the cement mortar was measured according to GB/T2419-2005“Testmethods of fluidity of cement mortar”

    2.3.7 Mechanicalstrength of hardened cementpaste and mortar

    The strength of the cement paste and mortar is tested according to GB/T17617-2007“Test methods of strength of cement mortar”.

    2.3.8 Heat of hydration of the cement

    The heat of hydration of cement was characterized by a Toni CAL cement heat of hydration meter. The hydration time was chosen to be 72 h at 25℃with a cement weight of 10 g and a W/C ratio of 0.5.

    2.3.9 Surface morphology

    The morphology of the hardened cement paste was characterized by a S-4800 Scanning Electronic Microscope.

    2.3.10 Pore structure

    The pore structure of the samples was characterized by a ASAP2460 nitrogen adsorption equipment.

    3 Results and discussion

    3.1Characterization of GO

    AFM image of GO is shown in Fig.1.From Fig.1,it can be seen that the size and thickness of GO sheetis 100-1000 and 0.7 nm,respectively,indi-cating that GO is one or two atom thick layers.

    3.2Influence of GO addition on the workability of the cement paste and mortar

    The influence of GO addition on the fluidity, viscosity and setting time of the cement paste are shown in Table 5.From Table 5,with the increase of GO dosage,the fluidity of cement paste decreases, the viscosity of cement paste increases and the setting time of cement paste is shortened.Especially,when the GO addition is up to 0.03%,there is an evident change in the fluidity,viscosity and setting time.This illustrates that the GO addition may make the cement paste thicker and may accelerate the hydration of the cement.The decrease of fluidity and increase of viscosity may be attributed to the nanometer size effect and surface chemistry of GO.The super large specific area together with oxygen-containing functional groups of GO may increase its interaction with hydrated cement,leading to the aggregation of cement granular.The large number of functional groups on the surface and edges of GO may also produce chemical reaction in the alkaline environment of cement,accelerating the hydration of cement and shortening the setting time.Though the GO addition may result in the reduction of setting time,the reduction of setting time is no more than 0.5 h,which is within the range of the national standard and has no bad effect on the usage of cements.

    The influence of GO addition on the fluidity of the cement mortar is shown in Table 6.From Table 6,it can be seen that GO also reduces the fluidity of the cement mortar,which is similar to the result obtained for the cement paste.

    Table 5 Effect of GO on cement paste properties.

    Table 6 Effect of GO on mortar fluidity.

    3.3Influence of GO addition on the hydration heat of cement

    The influence of GO addition on the hydration heat of cement and rate of heat release are shown in Fig.2 and Fig.3.

    Fig.2 Effect of GO on cement hydration exothermic rate.

    From Fig.2 and Fig.3,it can be observed that the hydration heat of cement during 3 d decreases first and levels off thereafter.At a dosage of 0.02%,the rate of heat release and the total amount of heat release have a sharp decrease over 50%.Although with the increase of the,dosage of GO,the rate of heatrelease and the total amount of heat release gradually decrease and level off with the dosage of GO.

    Fig.3 Effect of GO on cement hydration heat.

    Silicon fume and fly ash is generally added to the concrete to reduce the hydration heatof cement.Their mechanism of reduction of hydration heat is considered to be a combination of replacement of cement, retarding the time of the peak of heat release and the secondary hydration reaction[16-18].From Fig.2,itis found that the heat release curves of hydration at the different GO dosages,the occurrence time and the duration time of hydration reaction at all stages and the shape of curves are all similar to each other with no other peak of heat release observed,indicating that the GO addition doses not retard the occurrence of the peak of heat evolution and,the mechanism of hydration heat reduction of cement is different from that ofsilicon fume and fly ash.This may be correlated to the physico-chemical interaction of GO with cement during the hydration.The high specific surface energy and oxygen functionalgroups of GO may promote the hydration procedure through adsorption of the ion in the hydration system and accelerate nucleation, growth and phase separation of the hydrated crystalline compounds at early hydration stages.This may result in the reduction of the total amount of heat released.The detailed mechanism of GO action during the cement hydration needs investigating further.

    3.4Influence of GO addition on the mechanical strength of the hardened cement paste and mortar

    The influence of GO addition on the compressive strength and flexural strength of the ement paste and mortar at different ages are shown in Fig.4 and Fig. 5,respectively.From Fig.4,it can be seen that with the increase of dosage of GO,the compressive and flexural strength of the hardened cement paste all increase.When the dosage of GO is 0.05%,the flexural strength increase by 86.1%,68.5%and 90.5% and the compressive strength by 52.4%,46.5%and 40.4%at 3,7 and 28 d,respectively compared with the sample with no GO.

    Fig.4 The flexural and compressive strength of hardened cement pastes with different dosages of GO.

    From Fig.5,it can be seen that with the increase of dosage of GO,the compressive and flexural strength of the hardened cement mortar all increase. When the dosage of GO is 0.05%,the flexural strength increase by 69.4%,106.4%and 70.5% and the compressive strength by 43.2%,33%and 24.4%at 3,7 and 28 d,respectively,compared with the control groups.GO has a more obvious effect on flexural strength than compressive strength for both the cement paste and mortar.

    3.5Surface morphology and texture structure of the hardened cement paste

    Fig.6 shows the SEM graph of the hardened cement paste with different GO contents at28 d.Fig.6 (a)shows the morphology of the hardened cement paste with no GO.Inter-growing ettringite crystals and a large amount of pores can be observed. Fig.6(b)-6(f)showed the morphology of hardened cement paste with the GO content from 0.01%to 0.05%,respectively.Flower-like crystals can be observed in Fig.6(c)-(e).With the increase of GO content,the amount of flower-like crystals increase, the numbers of harmful pores decrease,and the texture structure become more compact.This phenomenon illustrates that GO can accelerate the hydration of cement and produce more regular crystal which may improve the crystalline defect and contribute to the increase of flexural strength and compressive strength.

    Fig.5 The flexural and compressive strength of mortar with different dosages of GO.

    It is worth noting that,in comparison with Fig. 6(d)and(e),although more amount of flower-like crystals were observed in Fig.6(f),more crystal imperfection and disorderly arrangement were also observed.This phenomenon may help to explain the aforementioned results that the flexural strength of cement paste and mortar at 0.05%has no noticeable increase as compared with 0.04%.

    3.6Influence of GO addition on the pore structure of the hardened cement paste

    The hardened cement paste is comprised by the solid state of hydrated cement and pores.These pores may be formed by the excess water and air in the cement paste during the hardening process,which have a noticeable effect on their strength,durability and shrinkage.In this paper,nitrogen adsorption was used to investigate the pore sizes and their distribution.

    According to the pore size,the pores in the hardened cement paste are divided into four types:large pores(>1 000 nm),capillary pores(100-1 000 nm),transitional pores(10-100 nm)and gel pores(<10 nm).On the basis of this theory,the pores in sample are mainly transitional pores and gel pores.Moreover,the pores lager than 50 nm is regar-ded as macroscopic pores,which contribute to the strength and permeability,and the pores smaller than 50 nm is viewed as microscopic pores,which may have an important influence on the dry shrinkage and creep[19-21].

    Fig.6 Effect of GO dosage on SEM images of the hardened cement paste at28 d.

    The influence of GO addition on the cumulative pore volume distribution of the hardened cementpaste at 3,7 and 28 d are illustrated in Fig.7,Fig.8 and Fig.9,respectively.From Fig.7-9,it can be seen thatwith the increase of the age,the cumulative pore volume decrease.With the GO addition,there is an evident change of pore volume of the hardened cement paste,that is the cumulative pore volume (<100 nm)decrease with the increase of GO dosage. In addition,with the increase of hardening time,GO play a more important role.

    Fig.7 Effect of GO dosage on the cumulative pore volume distribution of the hardened cement paste at3 d.

    From Fig.7,the cumulative pore volume curves with different contents of GO have no evident changes,except for the pores of around 3 nm,which is considered to be the pores between the calcium silicate hydrate gel(C-S-H)layers[22].This results indicate thatin the initial stage of hardening,GO has an important effect on the gel pores and the total pore volume of gel pores decrease straightly with the increase of GO dosage.From Fig.8 and Fig.9,the pore volume curves with different contents of GO have more evident changes,indicating that the addition of GO not only influence the pore volume with small pore size,but also influence the pore volume with large pore size with increasing age.

    Fig.8 Effect of GO dosage on the cumulative pore volume distribution of the hardened cement paste at7 d.

    The above-mentioned results show that the GO addition can effectively modify the pore structure,reduce the pore volume,and make the hardened cement paste compacted,which is in accordance with the results obtained from SEM.The GO addition into thecement paste accelerates the crystalline hydrated products and make the crystal aligned regularly,which modifies pore structure and improves tightness of hardened cement paste.And this may elaborate the mechanism of reinforcing and toughening action of GO.In addition,due to the fact that the micro-pores is correlated to the performance of freezing resistance, permeability resistance and dry shrinkage of the hardened cement paste,the GO addition may improve the durability and anti-shrinkage performance of concretes.This will be further investigated in the subsequent work.

    Fig.9 Effect of GO dosage on the cumulative pore volume distribution of the hardened cement paste at28 d.

    4 Conclusions

    The influence of GO dosage on the fluidity,viscosity and setting time of fresh cement paste and on the morphology,pore structure and mechanical strength of hardened cement paste and mortar were investigated in this paper.The main results are as follows.

    The GO addition can increase the viscosity and shorten the setting time of the cement paste.When the dosage of GO is 0.05%,the viscosity increases sharply and the setting time is reduced by 30 min. The fluidity of the cement mortar has the same tendency with the cement paste.The GO addition can reduce of hydration heat of cement,which may be ascribed to the heat absorption in oxidation-reduction reaction between GO and cement.When the dosage of GO is 0.05%,the hydration heat of cement can be reduced by 54%.GO have a reinforcing and toughening effect on the cement-based composites.The GO addition can remarkably increase the compressive and flexural strength of the hardened cement paste and mortar,especially strength in the early stage.When the dosage of GO is 0.05%,the flexural strength of hardened cement paste increase by 86.1%,68.5% and 90.5%and the compressive strength by 52.4%, 46.5%and 40.4%at 3,7 and 28 d,respectively. The flexural strength of hardened cement mortar increase by 69.4%,106.4%and 70.5%and the compressive strength by 43.2%,33%and 24.4%at3,7 and 28 d,respectively.The GO may take part in the hydration reaction of cement,accelerate the nucleation,growth and phase separation of hydrated products,promote the hydration procedure,make the crystal aligned regularly,which result in modification of pore structure and improvement of tightness of the hardened cementpaste.

    [1] Tang J H,Cai J W,Zhou M K.The status of researching and developing in high performance concrete[J].Science and Technology of Overseas Building Materials,2006,27(3):11-15.

    [2] Boulekbache B,Hamrat M,Chemrouk M,et al.Influence of yield stress and compressive strength on direct shear behaviour of steel fibre-reinforced concrete[J].Construction and Building Materials,2012,27(1):6-14.

    [3] Sun M,Liu Q,Li Z,etal.A study of piezoelectric properties of carbon fiber reinforced concrete and plain cement paste during dynamic loading[J].Cement and Concrete Research,2000,30 (10):1593-1595.

    [4] Chung D D L.Carbon materials for structural self-sensing,electromagnetic shielding and thermal interfacing[J].Carbon, 2012,50(9):3342-3353.

    [5] Luo J L,Duan Z D,Zhao T J,etal.Hybrid effect of carbon fiber on piezoresistivity of carbon nanotube cementbased composite [J].Advanced Mater Res,2011,143-144(1):639-643.

    [6] Bahar D,Salih Y.Thermoelectric behavior of carbon fiber reinforced light weight concrete with mineral admixtures[J].New Carbon Materials,2008,23(1):21-24. (Bahar D,Salih Y.炭纖維增強輕質(zhì)礦粉泥混土的熱電行為[J].新型炭材料,2008,23(1):21-24)

    [7] Li H,Xiao H G,Ou J P.Effect of compressive strain on electrical resistivityof carbon black-filled cement-based composites[J]. Cement and Concrete Composites,2006,28(9):824-828.

    [8] Chung D D L.Electrically conductive cement-based materials [J].Advances in Cement Research,2004,16(4):167-176.

    [9] Li K Z,Wang C,Li H J,et al.Development and study of carbon fiber reinforced cement composites[J].Materials Review, 2006,20(5):85-88.

    [10] Li G Y,Wang P M.Microstructure and mechanical properties of carbon nanotubes cement matrix composites[J].Journal of The Chinese Ceramic Society,2005,33(1):105-108.

    [11] Lao Y S,Zhang L,Wang X P,et al Research progress in effect of nanoparticles on the performance of cement-based materials[J].Materials Review,2014,28(3):93-96.

    [12] YANG Quan-hong.Dreams may come:from fullerene,carbon nanotube to graphene[J].New Carbon Material,2011,26 (1):1-4.

    (楊全紅."夢想照進現(xiàn)實"——從富勒烯、碳納米管到石墨烯[J].新型炭材料,2011,26(1):1-4.)

    [13] Du H J,Pang S D.Transport of water and chloride ion in cement composites modified with graphene nanoplatelet[J].Key Engineering Materials,2015,629-630(1):162-167.

    [14] Yang Y G,Chen Ch M,Wen Y F,et al.Oxidized graphene and graphene based polymer composites[J].New Carbon Materials,2008,23(3):193-200.

    (楊永崗,陳成猛,溫月芳,等.氧化石墨烯及其與聚合物的復(fù)合[J].新型炭材料,2008,23(3):193-200.)

    [15] Chen C M,Yang Q H,Yang Y G,et al.Self-assembled freestanding graphite oxide membrane[J].Adv Mater,2009,21 (29):3007-3011.

    [16] Nawa M N A T.Effectof fly ash on the kinetics of portland cement hydration atdifferentcuring temperatures[J].Cementand Concrete Research,2011,41(6):579-589.

    [17] Snelson D G,Wild S,O'Farrell M.Heat of hydration of Portland Cement-Metakaolin-Fly ash(PC-MK-PFA)blends[J]. Cement and Concrete Research,2008,38(6):832-840.

    [18] Langan B W,Weng K,Ward M A.Effect of silica fume and fly ash on heat of hydration of Portland cement[J].Cementand Concrete Research,2002,32(7):1045-1051.

    [19] ZENG Q,LI K,FEN-chong T,et al.Pore structure characterization of cement pastes blended with high-volume fly-ash[J]. Cement and Concrete Research,2012,42(1):194-204.

    [20] Provis J L,Myers R J,White C E,et al.X-ray microtomography shows pore structure and tortuosity in alkali-activated binders[J].Cement and Concrete Research,2012,42(6):855-864.

    [21] Neithalath N,Sumanasooriya M S,Deo O.Characterizing pore volume,sizes,and connectivity in pervious concretes for permeability prediction[J].Materials Characterization,2010,61 (8):802-813.

    [22] Constantinides G,Ulm F.The effect of two types of C-S-H on the elasticity of cement-based materials:Results from nanoindentation and micromechanicalmodeling[J].Cementand Concrete Research,2004,34(1):67-80 .

    Influence of graphene oxide additions on the microstructure and mechanical strength of cement

    WANG Qin1, WANG Jian1, LU Chun-xiang2, LIU Bo-wei1, ZHANG Kun1, LI Chong-zhi1
    (1.BeijingKeyLaboratoryofGreenBuildingandEnergyEfficiencyTechnology,BeijingCollegeEngineeringResearchCentreofEngineeringStructure andNewMaterial,BeijingUniversityofCivilEngineeringandArchitecture,Beijing100044,China;2.NationalEngineeringLaboratoryofPreparationTechnologyofCarbonFiber,InstituteofCoalChemistry, ChineseAcademyofSciences,Taiyuan030001,China)

    The effect of adding graphene oxide(GO)to cement on its microstructure and mechanicalstrength was investigated.A paste of cement(16.5%of water)and GO(0.05%)was prepared together with an identical mixture to which sand(3x the weight of the cement)had been added to form a mortar.The fluidity,viscosity and setting time of the mortar and the morphology,pore structure and compressive and flexural strengths of both the hardened cement paste and mortar,were investigated using SEM,nitrogen adsorption,and fluidity,viscosity,mechanical and hydration tests.The influence of the GO addition on the hydration heat of the cement was also tested.Results show that the addition of GO increases the viscosity,decreases the fluidity and shortens the setting time of the mortar.It also reduces the heat of hydration of the cement.The compressive and flexural strengths of the hardened cement paste at different times are increased by the addition of GO.The flexural strength was greater by 86.1%,68.5%and 90.5%after 3,7 and 28 days,respectively,and the corresponding compressive strength increases were 52.4%,46.5%and 40.4%For the hardened mortar,the corresponding increases are 69.4%,106.4%and 70.5%for flexural strength and 43.2%, 33%and 24.4%for compressive strength.The addition of GO promotes hydration,decreases pore volume,accelerates crystallite formation and causes the crystallites to align,which increases the tightness of both the hardened cement paste and mortar.

    Graphene oxide;Cement composites;Reinforcing and toughening;Microstructure;Hydration heatEnglish edition available online ScienceDirect(http://www.sciencedirect.com/science/journal/18725805).

    :WANG Qin,Lecturer.E-mail:wangqin@bucea.edu.cn

    10.1016/S1872-5805(15)60194-9

    TB332

    A

    2015-04-20;

    :2015-08-01

    北京市教委基金(KM201510016003);北京高校創(chuàng)新團隊建設(shè)與教師職業(yè)發(fā)展計劃項目(IDHT2013);國家自然科學基金(51408622);北京市自然科學基金(8144043).

    王 琴,講師.E-mail:wangqin@bucea.edu.cn

    1007-8827(2015)04-0349-08

    Foundation item:Beijing Municipal Commission of Education(KM201510016003);Beijing College Innovation Team-building and Teacher Career Development Project(IDHT2013);State Natural Sciences Foundation(51408622);Beijing Natural Sciences Foundation(8144043).

    猜你喜歡
    增韌水泥石抗折
    無固化劑水性樹脂提高固井水泥石抗腐蝕性能*
    油田化學(2022年4期)2023-01-10 07:54:14
    提高超低密度水泥石抗壓強度的方法
    化工管理(2022年14期)2022-12-02 11:47:00
    共混改性型PLA透明增韌的研究進展
    熟料中礦物含量與抗折強度相關(guān)性分析
    江西建材(2018年2期)2018-04-14 08:00:08
    Vortex Rossby Waves in Asymmetric Basic Flow of Typhoons
    拉伸形變作用下PLA/PBS增韌共混物力學性能研究
    中國塑料(2016年1期)2016-05-17 06:13:02
    根管治療術(shù)后不同修復(fù)方式對牙根抗折性能的影響
    共聚聚甲醛的增韌研究
    中國塑料(2015年2期)2015-10-14 05:34:18
    碳化對水泥石中硫元素分布的影響
    聚氯乙烯的共混增韌改性研究進展
    中國塑料(2014年12期)2014-10-17 02:49:36
    母亲3免费完整高清在线观看 | 日韩av免费高清视频| 欧美人与性动交α欧美精品济南到 | 男人操女人黄网站| 日韩av不卡免费在线播放| 国产在线免费精品| 国产成人精品福利久久| 免费看光身美女| 男人添女人高潮全过程视频| 女的被弄到高潮叫床怎么办| 欧美3d第一页| 2021少妇久久久久久久久久久| av女优亚洲男人天堂| av天堂久久9| 草草在线视频免费看| 中文字幕人妻熟女乱码| 国产极品天堂在线| 22中文网久久字幕| 高清黄色对白视频在线免费看| 成年人免费黄色播放视频| 国产在线视频一区二区| 亚洲成av片中文字幕在线观看 | 一本久久精品| av国产精品久久久久影院| 黄色怎么调成土黄色| 久久热在线av| 校园人妻丝袜中文字幕| 一区二区三区四区激情视频| 欧美日韩视频高清一区二区三区二| 国产日韩一区二区三区精品不卡| 男女高潮啪啪啪动态图| 国产亚洲最大av| 久久久精品94久久精品| 一级毛片电影观看| 国产精品三级大全| 免费av中文字幕在线| 国产男女内射视频| 少妇的丰满在线观看| 欧美精品国产亚洲| 一边亲一边摸免费视频| 少妇的丰满在线观看| 少妇的逼好多水| 777米奇影视久久| 亚洲伊人久久精品综合| 久久久久精品久久久久真实原创| 波多野结衣一区麻豆| 观看av在线不卡| 视频区图区小说| 亚洲美女视频黄频| 成人黄色视频免费在线看| 日韩伦理黄色片| 26uuu在线亚洲综合色| 日韩制服骚丝袜av| 这个男人来自地球电影免费观看 | 欧美3d第一页| 久热久热在线精品观看| 国产精品久久久久久精品古装| 三级国产精品片| 久热久热在线精品观看| 亚洲精品中文字幕在线视频| 亚洲精品中文字幕在线视频| 丝瓜视频免费看黄片| 天天躁夜夜躁狠狠躁躁| 亚洲美女搞黄在线观看| 久久久久久久国产电影| 极品少妇高潮喷水抽搐| 欧美成人午夜免费资源| 国产精品99久久99久久久不卡 | 91午夜精品亚洲一区二区三区| 只有这里有精品99| av福利片在线| www.色视频.com| 大片电影免费在线观看免费| 日韩三级伦理在线观看| 各种免费的搞黄视频| 国产精品免费大片| 久久午夜综合久久蜜桃| 精品少妇久久久久久888优播| 国产成人免费无遮挡视频| 国产免费视频播放在线视频| 精品久久久精品久久久| 婷婷色综合www| 国产成人aa在线观看| 久久久久国产精品人妻一区二区| 日韩 亚洲 欧美在线| 欧美丝袜亚洲另类| 亚洲精品国产av蜜桃| 亚洲欧美色中文字幕在线| 午夜视频国产福利| 另类亚洲欧美激情| 欧美+日韩+精品| 女人久久www免费人成看片| 免费av不卡在线播放| 国产av精品麻豆| 欧美精品一区二区大全| 哪个播放器可以免费观看大片| 国产熟女午夜一区二区三区| 成人国产麻豆网| 午夜久久久在线观看| 欧美性感艳星| 啦啦啦视频在线资源免费观看| av卡一久久| 咕卡用的链子| 国内精品宾馆在线| 建设人人有责人人尽责人人享有的| 超碰97精品在线观看| 亚洲伊人色综图| 精品视频人人做人人爽| 97超碰精品成人国产| 大陆偷拍与自拍| 母亲3免费完整高清在线观看 | 又黄又爽又刺激的免费视频.| 日韩欧美一区视频在线观看| 99re6热这里在线精品视频| 少妇高潮的动态图| 永久网站在线| 久久久亚洲精品成人影院| 日本色播在线视频| 99久久中文字幕三级久久日本| 日韩中文字幕视频在线看片| 免费av中文字幕在线| 日韩成人av中文字幕在线观看| 99九九在线精品视频| 国产成人aa在线观看| 女的被弄到高潮叫床怎么办| 久久久国产欧美日韩av| 亚洲精品久久成人aⅴ小说| 人妻一区二区av| 亚洲av电影在线进入| 国产免费一级a男人的天堂| 欧美日韩精品成人综合77777| 欧美bdsm另类| av又黄又爽大尺度在线免费看| 国产男女内射视频| 国产成人a∨麻豆精品| 曰老女人黄片| 女人被躁到高潮嗷嗷叫费观| 成人综合一区亚洲| 亚洲国产日韩一区二区| 91午夜精品亚洲一区二区三区| 久久这里只有精品19| 97在线视频观看| 免费观看性生交大片5| 欧美国产精品va在线观看不卡| 免费黄色在线免费观看| 蜜桃国产av成人99| 日韩精品免费视频一区二区三区 | 2022亚洲国产成人精品| 七月丁香在线播放| 男女高潮啪啪啪动态图| 毛片一级片免费看久久久久| 9热在线视频观看99| 久热久热在线精品观看| 丁香六月天网| 尾随美女入室| 国产av码专区亚洲av| 两性夫妻黄色片 | 观看美女的网站| 王馨瑶露胸无遮挡在线观看| 激情视频va一区二区三区| 精品人妻一区二区三区麻豆| 久久毛片免费看一区二区三区| 狠狠婷婷综合久久久久久88av| 免费人妻精品一区二区三区视频| 最近最新中文字幕免费大全7| 久久影院123| 久久精品国产综合久久久 | 久久久久久久久久人人人人人人| 人成视频在线观看免费观看| 少妇人妻 视频| 中文字幕人妻熟女乱码| 18禁裸乳无遮挡动漫免费视频| 久久热在线av| www日本在线高清视频| 亚洲成人一二三区av| 精品一区二区三卡| 国产成人精品在线电影| 91午夜精品亚洲一区二区三区| 国产成人91sexporn| av天堂久久9| 又黄又粗又硬又大视频| 国产欧美日韩一区二区三区在线| 国产色婷婷99| 成人免费观看视频高清| 国产黄色免费在线视频| 日本wwww免费看| 日本av手机在线免费观看| 久久久久国产精品人妻一区二区| 亚洲图色成人| 国产精品人妻久久久久久| 亚洲成人av在线免费| av福利片在线| 欧美日韩视频高清一区二区三区二| av不卡在线播放| 中文字幕制服av| 国产毛片在线视频| 久久久久久久久久久久大奶| av片东京热男人的天堂| 午夜免费鲁丝| 一级黄片播放器| videos熟女内射| 大香蕉久久网| 欧美精品一区二区免费开放| 多毛熟女@视频| 日韩免费高清中文字幕av| 国产爽快片一区二区三区| 亚洲,欧美精品.| 纵有疾风起免费观看全集完整版| 免费在线观看黄色视频的| 天堂8中文在线网| 成年人午夜在线观看视频| 国产乱人偷精品视频| 欧美日本中文国产一区发布| 亚洲精品视频女| 最近最新中文字幕免费大全7| 一二三四中文在线观看免费高清| 免费看av在线观看网站| 18+在线观看网站| 国产精品 国内视频| 国产欧美另类精品又又久久亚洲欧美| 午夜老司机福利剧场| 精品人妻一区二区三区麻豆| 日韩成人伦理影院| 男女边摸边吃奶| 少妇的逼好多水| 亚洲国产最新在线播放| 中文字幕制服av| 高清视频免费观看一区二区| 精品人妻偷拍中文字幕| 国产亚洲欧美精品永久| 欧美 亚洲 国产 日韩一| 国产精品久久久av美女十八| 国产高清不卡午夜福利| 国产国语露脸激情在线看| 最近中文字幕高清免费大全6| 国产日韩欧美视频二区| 久热这里只有精品99| 久久99一区二区三区| 亚洲av男天堂| 王馨瑶露胸无遮挡在线观看| 欧美日韩亚洲高清精品| 黄色配什么色好看| 欧美bdsm另类| 免费观看性生交大片5| 欧美 日韩 精品 国产| 国产精品不卡视频一区二区| 国产黄色免费在线视频| 丰满乱子伦码专区| 亚洲国产色片| 午夜影院在线不卡| 国产av码专区亚洲av| 在线观看免费日韩欧美大片| 国产成人精品福利久久| 夜夜爽夜夜爽视频| 2021少妇久久久久久久久久久| 亚洲av中文av极速乱| av国产久精品久网站免费入址| 日本午夜av视频| 五月玫瑰六月丁香| 人妻人人澡人人爽人人| 亚洲图色成人| 国产成人精品在线电影| 亚洲国产精品专区欧美| 精品卡一卡二卡四卡免费| 精品人妻一区二区三区麻豆| 国产av码专区亚洲av| 久久久久视频综合| 国内精品宾馆在线| 男人添女人高潮全过程视频| 人成视频在线观看免费观看| 午夜久久久在线观看| 国产成人aa在线观看| 少妇的逼水好多| 免费高清在线观看视频在线观看| 国产男女内射视频| 久久久久网色| 亚洲精品久久成人aⅴ小说| 日韩一本色道免费dvd| av一本久久久久| 蜜桃国产av成人99| 免费大片黄手机在线观看| 日本av免费视频播放| 综合色丁香网| 飞空精品影院首页| 看十八女毛片水多多多| 亚洲av男天堂| 大香蕉97超碰在线| 巨乳人妻的诱惑在线观看| 最近最新中文字幕大全免费视频 | 欧美精品av麻豆av| 久久精品aⅴ一区二区三区四区 | 老熟女久久久| 色94色欧美一区二区| 日韩制服骚丝袜av| videossex国产| 少妇精品久久久久久久| 国产免费一级a男人的天堂| 九色成人免费人妻av| 日韩 亚洲 欧美在线| 尾随美女入室| 精品国产乱码久久久久久小说| 亚洲高清免费不卡视频| 国产在线一区二区三区精| 狠狠婷婷综合久久久久久88av| 国产精品免费大片| 久久精品夜色国产| 宅男免费午夜| 观看av在线不卡| 久久国产亚洲av麻豆专区| 18禁动态无遮挡网站| 亚洲在久久综合| 人人妻人人澡人人看| 毛片一级片免费看久久久久| 丝袜喷水一区| 精品福利永久在线观看| 国产亚洲最大av| 久久久久久久大尺度免费视频| 伦理电影大哥的女人| 99热国产这里只有精品6| 中文字幕精品免费在线观看视频 | 日本vs欧美在线观看视频| 免费日韩欧美在线观看| 国产不卡av网站在线观看| 五月伊人婷婷丁香| 久久午夜福利片| 青春草视频在线免费观看| 中文欧美无线码| av国产久精品久网站免费入址| 日韩电影二区| 国产黄频视频在线观看| 制服人妻中文乱码| 丝袜在线中文字幕| 老司机影院毛片| 国产精品三级大全| 亚洲国产欧美日韩在线播放| 亚洲人成77777在线视频| 成人国语在线视频| 一二三四在线观看免费中文在 | 国产黄频视频在线观看| 毛片一级片免费看久久久久| 精品一品国产午夜福利视频| 国产精品无大码| 国产精品久久久久久av不卡| 夜夜爽夜夜爽视频| 欧美亚洲 丝袜 人妻 在线| 午夜福利视频精品| 免费少妇av软件| 91aial.com中文字幕在线观看| 久久精品国产综合久久久 | 69精品国产乱码久久久| 免费观看性生交大片5| 91成人精品电影| 久久99精品国语久久久| 午夜老司机福利剧场| 欧美变态另类bdsm刘玥| 欧美人与性动交α欧美精品济南到 | 九草在线视频观看| 精品久久蜜臀av无| 欧美丝袜亚洲另类| 99精国产麻豆久久婷婷| 精品一区在线观看国产| 熟妇人妻不卡中文字幕| 永久免费av网站大全| 欧美精品av麻豆av| 国产乱人偷精品视频| 日韩av在线免费看完整版不卡| 国产1区2区3区精品| 国产精品麻豆人妻色哟哟久久| 亚洲av欧美aⅴ国产| 人人澡人人妻人| 亚洲欧美色中文字幕在线| 街头女战士在线观看网站| 美国免费a级毛片| 午夜免费男女啪啪视频观看| 国产极品粉嫩免费观看在线| 下体分泌物呈黄色| 成年人免费黄色播放视频| 国产亚洲欧美精品永久| 国产精品久久久久久久久免| 亚洲第一区二区三区不卡| 亚洲精品国产色婷婷电影| av线在线观看网站| 亚洲激情五月婷婷啪啪| 啦啦啦视频在线资源免费观看| 少妇精品久久久久久久| 欧美日韩成人在线一区二区| 亚洲 欧美一区二区三区| tube8黄色片| 如日韩欧美国产精品一区二区三区| 国语对白做爰xxxⅹ性视频网站| 国产精品人妻久久久久久| 精品一区二区免费观看| 最近的中文字幕免费完整| 亚洲久久久国产精品| av免费在线看不卡| 少妇 在线观看| 少妇高潮的动态图| 五月玫瑰六月丁香| 国产69精品久久久久777片| 90打野战视频偷拍视频| 欧美精品国产亚洲| 如何舔出高潮| 香蕉丝袜av| www.熟女人妻精品国产 | 18在线观看网站| 丝袜美足系列| 亚洲丝袜综合中文字幕| 哪个播放器可以免费观看大片| 99久国产av精品国产电影| 在线精品无人区一区二区三| 黑人高潮一二区| 久热久热在线精品观看| 免费观看在线日韩| 久久久久久久精品精品| 亚洲三级黄色毛片| 黄片无遮挡物在线观看| 老司机亚洲免费影院| 国产精品人妻久久久久久| 亚洲激情五月婷婷啪啪| 亚洲,一卡二卡三卡| 亚洲精品一区蜜桃| 亚洲人成77777在线视频| 丰满迷人的少妇在线观看| 久热久热在线精品观看| 永久免费av网站大全| 综合色丁香网| 亚洲欧美色中文字幕在线| 亚洲色图 男人天堂 中文字幕 | 亚洲美女搞黄在线观看| 91午夜精品亚洲一区二区三区| 午夜91福利影院| 亚洲性久久影院| 天堂8中文在线网| 成人二区视频| 国产成人精品久久久久久| 看免费av毛片| 久久久精品免费免费高清| 国产一区二区在线观看av| 99热这里只有是精品在线观看| 人体艺术视频欧美日本| 亚洲情色 制服丝袜| 日韩精品免费视频一区二区三区 | av国产精品久久久久影院| 久久精品熟女亚洲av麻豆精品| 日本vs欧美在线观看视频| 人妻系列 视频| 欧美日韩一区二区视频在线观看视频在线| av一本久久久久| 久久久国产欧美日韩av| 国产精品一国产av| 国产成人aa在线观看| 欧美日韩综合久久久久久| 久久久久久久精品精品| 午夜影院在线不卡| 最新中文字幕久久久久| 激情视频va一区二区三区| 人成视频在线观看免费观看| 久久国产亚洲av麻豆专区| 国产精品不卡视频一区二区| 亚洲综合色网址| 精品亚洲乱码少妇综合久久| 久久久亚洲精品成人影院| 2021少妇久久久久久久久久久| av有码第一页| 黑人欧美特级aaaaaa片| 国产又爽黄色视频| 精品一区二区三区四区五区乱码 | av女优亚洲男人天堂| 国产av精品麻豆| 国产成人免费无遮挡视频| 97超碰精品成人国产| 啦啦啦在线观看免费高清www| 久久精品国产鲁丝片午夜精品| 国产黄频视频在线观看| 激情五月婷婷亚洲| 亚洲国产精品成人久久小说| 久久久久久久久久人人人人人人| 日本av手机在线免费观看| 中国美白少妇内射xxxbb| 少妇的逼好多水| 欧美精品高潮呻吟av久久| 日韩不卡一区二区三区视频在线| 韩国高清视频一区二区三区| 久久免费观看电影| 99久国产av精品国产电影| 亚洲成人av在线免费| 国产1区2区3区精品| 在线精品无人区一区二区三| 欧美日韩视频高清一区二区三区二| 国产毛片在线视频| 久久久久人妻精品一区果冻| 亚洲精华国产精华液的使用体验| 国产亚洲午夜精品一区二区久久| av黄色大香蕉| 亚洲国产av影院在线观看| 精品99又大又爽又粗少妇毛片| 美女主播在线视频| 麻豆精品久久久久久蜜桃| 22中文网久久字幕| 人妻少妇偷人精品九色| 亚洲一码二码三码区别大吗| 我要看黄色一级片免费的| 免费av不卡在线播放| 日日摸夜夜添夜夜爱| 不卡视频在线观看欧美| 国产视频首页在线观看| 久久狼人影院| 桃花免费在线播放| 亚洲国产精品国产精品| 欧美人与性动交α欧美精品济南到 | 高清黄色对白视频在线免费看| 一本大道久久a久久精品| 黑丝袜美女国产一区| 嫩草影院入口| 久久久久久久久久久免费av| 久久97久久精品| 在线天堂中文资源库| av天堂久久9| 久久久精品免费免费高清| 少妇的逼好多水| 巨乳人妻的诱惑在线观看| 最近最新中文字幕免费大全7| 自线自在国产av| 中文字幕人妻熟女乱码| 女的被弄到高潮叫床怎么办| 哪个播放器可以免费观看大片| 国产乱来视频区| 久久99精品国语久久久| 97精品久久久久久久久久精品| 边亲边吃奶的免费视频| 日本欧美国产在线视频| 国产成人精品久久久久久| 国产亚洲精品久久久com| 成年美女黄网站色视频大全免费| 国产免费一区二区三区四区乱码| 久久女婷五月综合色啪小说| 精品国产国语对白av| 国产免费现黄频在线看| 亚洲欧美日韩卡通动漫| 不卡视频在线观看欧美| 两个人看的免费小视频| kizo精华| 在线观看国产h片| 国产又色又爽无遮挡免| 成人影院久久| 国产伦理片在线播放av一区| av天堂久久9| 欧美老熟妇乱子伦牲交| 久久久精品94久久精品| 国产成人午夜福利电影在线观看| 精品一区在线观看国产| 午夜免费男女啪啪视频观看| 亚洲av电影在线观看一区二区三区| 国产精品人妻久久久久久| 亚洲精品国产色婷婷电影| 热99久久久久精品小说推荐| 中国国产av一级| 国产又色又爽无遮挡免| 搡老乐熟女国产| 99国产精品免费福利视频| 日本av手机在线免费观看| 欧美人与善性xxx| 黄色怎么调成土黄色| 国产在线免费精品| 超碰97精品在线观看| 日产精品乱码卡一卡2卡三| 青春草国产在线视频| 国产一区二区三区av在线| 亚洲精品中文字幕在线视频| 少妇被粗大猛烈的视频| 欧美3d第一页| 日本色播在线视频| 自线自在国产av| 七月丁香在线播放| 日本欧美视频一区| 欧美少妇被猛烈插入视频| 热99久久久久精品小说推荐| 在线观看国产h片| 伦精品一区二区三区| 免费观看性生交大片5| 性高湖久久久久久久久免费观看| videossex国产| 九九在线视频观看精品| 亚洲四区av| 国产女主播在线喷水免费视频网站| 国产黄色视频一区二区在线观看| 一区二区三区精品91| 亚洲国产欧美日韩在线播放| 国产一区二区三区av在线| 男人舔女人的私密视频| 美女国产视频在线观看| 国产精品久久久av美女十八| 亚洲内射少妇av| 午夜视频国产福利| 国产精品一区二区在线不卡| 美女福利国产在线| videosex国产| 性色avwww在线观看| 天堂中文最新版在线下载| 黄色视频在线播放观看不卡| 国产极品天堂在线| 国产精品久久久久久久久免| 又大又黄又爽视频免费| 在线观看人妻少妇| 午夜激情久久久久久久| 午夜免费男女啪啪视频观看| 最近中文字幕高清免费大全6| 亚洲经典国产精华液单| 亚洲欧美清纯卡通| 成人毛片60女人毛片免费| 三级国产精品片| 最新中文字幕久久久久| tube8黄色片| 免费av中文字幕在线| 91精品三级在线观看|