陳 思, 張克強, 沈仕洲, 王 風(fēng)*, 徐寧彤
(1東北農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院,黑龍江哈爾濱 150030; 2農(nóng)業(yè)部環(huán)境保護(hù)科研監(jiān)測所,天津 300191)
外源銨態(tài)氮對典型耕作土壤凍結(jié)過程中N2O排放的影響
陳 思1,2, 張克強2, 沈仕洲2, 王 風(fēng)2*, 徐寧彤1*
(1東北農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院,黑龍江哈爾濱 150030; 2農(nóng)業(yè)部環(huán)境保護(hù)科研監(jiān)測所,天津 300191)
耕作土壤;凍結(jié)過程;銨態(tài)氮;N2O;排放通量
1.1 試驗材料
1.2 試驗設(shè)計
1.3 試驗方法
1.4 樣品采集及分析
將加入氯化銨溶液的廣口瓶開蓋置于恒溫25℃環(huán)境中培養(yǎng)24 h,使水分和氮素在土樣中分布達(dá)到平衡,并恢復(fù)微生物活性。采集氣體時將瓶蓋蓋嚴(yán)后開始計時,分別在0、10、20、30分鐘用注射器采集1 mL氣體樣品,把采集好的注射器針頭扎入橡膠墊中以保持氣體密封。準(zhǔn)備與冰柜內(nèi)部底面積相同大小的苯板,在苯板上挖出與廣口瓶底面積相同的孔洞,將廣口瓶口放入孔洞內(nèi),并使廣口瓶四周與苯板以及苯板四周與冰柜緊密接觸以維持廣口瓶內(nèi)土樣的冷凍狀態(tài)。根據(jù)3種土壤所在地區(qū)的氣溫調(diào)節(jié)冰柜為-10℃。分別在冷凍0.5 h、2.5 h、6.5 h、13.5 h、23.5 h、43.5 h時蓋上廣口瓶蓋子取樣,氣體采集方法同上。氣體采集完成后立即用安捷倫5890氣相色譜儀檢測N2O氣體濃度。測定條件為:柱溫40℃,轉(zhuǎn)化器溫度300℃,63Ni電子捕獲器(ECD)檢測器溫度為320℃,進(jìn)樣量為1 mL,載氣為95%Ar與5%CH4混合氣,流速為20 mL/min。色譜柱為80/100目PorapakQ的填充柱。
表1 3種土壤的基本理化性狀
N2O氣體排放通量Flux[11]的計算公式為
Flux = ρ×V×ΔC/Δt×273/[A×(273+T)]
式中:ΔC/Δt 表示時間間隔為Δt時的N2O濃度變化量;ρ為標(biāo)準(zhǔn)狀態(tài)下N2O氣體密度;V和A分別為廣口瓶中空氣體積和底面積;T為采樣時廣口瓶內(nèi)的溫度。
試驗數(shù)據(jù)用Excel 2003進(jìn)行處理,用SAS 9.0軟件進(jìn)行方差分析和Duncan’s新復(fù)極差比較。
2.1 外源銨態(tài)氮對凍結(jié)過程中黑土N2O排放通量的影響
2.2 外源銨態(tài)氮對凍結(jié)過程潮土N2O排放通量的影響
圖1 不同濃度外源-N對黑土凍結(jié)過程中N2O的排放通量的影響Fig.1 N2O fluxes from the black soil amended with-N during the freezing process
圖2 不同濃度外源-N對潮土凍結(jié)過程中N2O排放通量的影響Fig. 2 N2O fluxes from the Fluvo-aquic soil amended with -N during the freezing process
2.3 外源銨態(tài)氮對凍結(jié)過程中黃土N2O排放通量的影響
圖3 不同濃度外源-N對黃土凍結(jié)過程中N2O排放通量的影響Fig.3 N2O fluxes from the Loess soil amended with-N during the freezing process
2.4 外源銨態(tài)氮對凍結(jié)過程中3種土壤N2O累計排放量的影響
從圖4可以看出,室溫—凍結(jié)全過程黑土和潮土N2O累計排放量均呈N80> N200、N500>N0。黑土的N80處理N2O累計排放量與N0處理間有顯著差異,潮土N80處理的N2O累計排放量高于其它處理,但差異不顯著,表明一定含量范圍內(nèi)添加外源銨態(tài)氮能夠促進(jìn)黑土和潮土N2O的累計排放量,而外源銨態(tài)氮濃度過高會導(dǎo)致N2O累計排放量降低,因此N500處理的N2O累計排放量與N200處理之間均無顯著差異。添加外源銨態(tài)氮黃土的N2O累計排放量處于較低水平或呈負(fù)排放狀態(tài),其中N500處理的N2O累計負(fù)排放量最大,但與其他處理間的差異并不顯著。
圖4 外源-N對凍結(jié)過程中3種土壤N2O累計排放量的影響Fig.4 Total N2O emissions from Black, Fluvo-aquic and Loess soils amended with -N during the freezing process[注(Note): 柱上不同字母表示處理間差異達(dá)5% Different letters above the bars mean significant among treatments at the 5% levels.]
隨凍結(jié)時間的延長,黑土和潮土N2O排放通量逐漸降低,因為本來受外源銨態(tài)氮添加而激發(fā)的硝化反硝化微生物活性在持續(xù)低溫脅迫下會逐漸降低[20]。N2O排放通量降低速度隨凍結(jié)的持續(xù)進(jìn)行而逐漸變緩也表明了是一個生物學(xué)主導(dǎo)過程。有研究表明,黑土微生物經(jīng)過長期低溫環(huán)境的選擇,微生物細(xì)胞對低溫產(chǎn)生的適應(yīng)機(jī)理能夠快速完成細(xì)胞質(zhì)濃縮,使細(xì)胞處于休眠狀態(tài),降低冷凍危害[8],在室溫條件下較高的N2O排放通量(N80處理)較其他處理排放時間持續(xù)更長,如潮土的N80處理N2O排放比N500處理晚4 h(分別在凍結(jié)6.5 h和2.5 h)達(dá)到穩(wěn)定狀態(tài)(0排放),這與王風(fēng)等[21]的研究結(jié)果一致,表明微生物活性在逆境脅迫下是逐漸降低的,需要一個長時間過程才能夠達(dá)到新的穩(wěn)定平衡狀態(tài)[22-23]。黃土N2O排放通量在凍結(jié)過程中始終維持較低的或零排狀態(tài),仍然是由土壤本身的理化性質(zhì)所決定的,此外添加外源銨態(tài)氮可能會更加劇土壤有機(jī)碳不足的矛盾,甚至在凍結(jié)過程中出現(xiàn)N2O負(fù)排放現(xiàn)象[24-25]。
室溫—凍結(jié)過程中黑土和潮土的N2O累計排放量趨勢一致,在一定范圍內(nèi)增加外源銨態(tài)氮能夠促進(jìn)N2O的累計排放量,過量的外源銨態(tài)氮又抑制了土壤N2O累計排放量,可能與銨態(tài)氮對土壤微生物活性的抑制作用有關(guān)[16]。 黃土N2O累計排放量處于較低水平或負(fù)排放狀態(tài),主要是由土壤理化性質(zhì)所決定,特別是微生物活性在較低有機(jī)碳供給條件下明顯地會受到抑制[26-27]。
1) 室溫條件下,在一定范圍內(nèi)添加外源銨態(tài)氮使黑土和潮土的N2O的排放通量顯著增加,但過高濃度的外源銨態(tài)氮會抑制N2O的排放;隨凍結(jié)的持續(xù)進(jìn)行添加外源銨態(tài)氮黑土和潮土的N2O排放通量逐漸降低,且降低的速度逐漸變緩;隨凍結(jié)的持續(xù)進(jìn)行N2O排放通量最終接近零排放,但室溫時N2O的排放通量高的處理達(dá)到穩(wěn)定零排放速率的時間有向后延長的趨勢。
3) 添加外源銨態(tài)氮對室溫—凍結(jié)過程不同土壤類型N2O累計排放量的影響顯著。從控制土壤N2O排放的角度來講,潮土和黑土在越冬前應(yīng)盡量降低土壤銨態(tài)氮肥的濃度,黃土無需考慮銨態(tài)氮肥的施用濃度。
[1] Masood E. Obstacles to an agreement[J]. Nature, 1997, 390: 220-220.
[2] 黃瑩, 李雅穎, 姚槐應(yīng). 強酸性茶園土壤中添加不同肥料氮后N2O釋放量變化[J]. 植物營養(yǎng)與肥料學(xué)報, 2013, 19(6): 1533-1538. Huang Y, Li Y Y, Yao H Y. Effect of different nitrogen fertilizers on N2O emissions in a highly acid tea orchard soils[J]. Journal of Plant Nutrition and Fertilizer, 2013, 19(6): 1533-1538.
[3] Wuebbles D J. Nitrous oxide no laughing matter[J]. Science, 2009, 326(5949): 56-57.
[4] Denman K L, Fahey D W, Forster Petal. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change[M]. Cambridge: Cambridge University Press, 2007. 499-587.
[5] Thomson A J, Giannopoulos G, Pretty Jetal. Biological sources and sinks of nitrous oxide and strategies to mitigate emissions[J]. Philosophical Transactions of the Royal Society B, 2012, 367: 1157-1168.
[6] 伍星, 沈珍瑤. 凍融作用對土壤溫室氣體產(chǎn)生與排放的影響[J]. 生態(tài)學(xué)雜志, 2010, 29(7): 1432-1439. Wu X, Shen Z Y. Effects of freezing thawing cycle on greenhouse gases production and emission from soil: A review[J]. Chinese Journal of Ecology, 2010, 29(7): 1432-1439.
[7] 王風(fēng), 高尚賓, 張克強, 等. 凍融條件下土壤N2O排放研究進(jìn)展[J]. 生態(tài)環(huán)境學(xué)報, 2009, 18(5): 1933-1937. Wang F, Gao S B, Zhang K Qetal. Progress on N2O emission from soil in the freeze-thaw process[J]. Ecology and Environmental Sciences, 2009, 18(5): 1933-1937.
[8] 楊思忠, 金會軍. 凍融作用對凍土區(qū)微生物生理和生態(tài)的影響[J]. 生態(tài)學(xué)報, 2008, 28(10): 5066-5074. Yang S Z, Jin H J. Physilogical and ecological effect of freezing and thawing processes on microorganisms in seasonally-froze of ground and in permafrost[J]. Acta Ecologica Sinica, 2008, 28(10): 5066-5074.
[9] Teepe R, Vor A, Beese Fetal. Emissions of N2O from soils during cycles of freezing and thawing and the effects of soil water, texture and duration of freezing[J]. European Journal of Soil Science, 2004, 55: 357-365.
[10] Burton D L, Beauchamp E G. Denitrification rate relationship with soil parameters in the field[J]. Communications in Soil Science and Plant Analysis, 1985, 16: 539-549.
[11] Yang L F, Cai Z C. The effect of growing soybean(Glycinemax. L.) on N2O emission from soil[J]. Soil Biology and Biochemistry, 2005, 37(6): 120-129.
[12] Chen Y, Tessier S, Mackenzie A Fetal. Nitrous oxide emission from an agricultural soil subjected to different freeze-thaw cycles[J]. Agriculture, Ecosystems and Environment, 1995, 55: 123-128.
[13] 鄭殷恬, 趙紅. 黑土栗鈣土和潮土胡敏酸分子結(jié)構(gòu)的差異性分析[J]. 土壤, 2011, 43(25): 804-808. Zheng Y H, Zhao H. Molecular structure differences of humic acid in black soil, chestnut soil and fluvo-aquic soil[J]. Soils, 2011, 43(25): 804-808.
[14] Steve B, Léveillé R, Pollard W Hetal. Microbial ecology and biodiversity in permafrost[J]. Extremophiles, 2006, 10(4): 259-267.
[15] 楊黎, 王立剛, 李虎, 等. 基于DNDC模型的東北地區(qū)春玉米農(nóng)田固碳減排措施研究[J]. 植物營養(yǎng)和肥料學(xué)報, 2014, 20(1): 75-86. Yang L, Wang L G, Li Hetal. Modeling impacts of alternative farming management practices on carbon sequestration and mitigating N2O emissions from spring maize fields[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(1): 75-86.
[16] 何亞婷, 齊玉春, 董云社, 等. 外源氮輸入對草地土壤微生物特性影響的研究進(jìn)展[J]. 地球科學(xué)進(jìn)展, 2010, 25(8): 965-973. He Y T, Qi Y C, Dong Y Setal. Advances in the influence of external nitrogen input on soil microbiological characteristics of grassland ecosystem[J]. Advances in Earth Science, 2010, 25(8): 965-973.
[17] 陳寶明. 施氮對植物生長、硝態(tài)氮累積及土壤硝態(tài)氮殘留的影響[J]. 生態(tài)環(huán)境, 2006, 15(3): 630-632. Chen B M. Effect of N supply on plant growth, nitrate accumulation and soil nitrate residue[J]. Ecology and Environment, 2006, 15(3): 630-632.
[18] Crawford L D, Crawford L R, Funk B Setal. Biological isolates for degrading nitroaromatics and nitramines in water and soils[P]. US: 5455173A. 1995-10-03.
[19] 方晰, 田大倫, 項文華. 杉木人工林林地土壤CO2釋放量及其影響因子的研究[J]. 林業(yè)科學(xué), 2005, 41(2): 1-7. Fang X, Tian D L, Xiang W Hetal. Soil CO2release rate and its effect factors in Chinese Fir Plantation[J]. Scientia Silvae Science, 2005, 41(2): 1-7.
[20] Tourna M, Freitag T E, Nicol G Wetal. Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms[J]. Environmental Microbiology, 2008, 10: 1357-1364.
[21] 王風(fēng), 白麗靜, 張克強, 等. 氮素調(diào)控對凍融過程中土壤N2O排放的影響[J]. 環(huán)境科學(xué), 2009, 30(11): 3142-3145. Wang F, Bai L J, Zhang K Qetal. Effects of nitrogen application on N2O flux from Fluvo-aquic soil subject to freezing and thawing process[J]. Environmental Science, 2009, 30(11): 3142-3145.
[22] Holtan-Hartwig L, Dorsch P, Bakken L R L. Low temperature control of soil denitrifying communities: kinetics of N2O production and reduction[J]. Soil Biology and Biochemistry, 2002, 34: 1797-1806.
[23] Mazur P. Cryobiogy: the freezing of biological system[J]. Science, 1970, 168: 939-949.
[24] Wu D M, Dong W X, Oenema Oetal. N2O consumption by low-nitrogen soil and its regulation by water and oxygen[J]. Soil Biology and Biochemistry, 2013, 60: 165-172.
[25] Reinhard W, Irina K, Valentin L Getal. Isotopomer signatures of soil-emitted N2O under different moisture conditions-A microcosm study with arable loess soil[J]. Soil Biology and Biochemistry, 2006, 38(9): 2923-2933.
[26] 李貴桐, 李保國, 黃元仿. 碳源與底物對不同層次土壤產(chǎn)生N2O 能力的影響[J]. 土壤與環(huán)境, 2002, 11(3): 227-231. Li G T, Li B G, Hang Y F. Effects of carbon and substrate on the N2O productivity of different soil layers[J]. Soil and Environmental Sciences, 2002, 11(3): 227-231.
[27] 陳思, 張克強, 麻曉越, 等. 外源硝態(tài)氮對典型性耕作土壤凍結(jié)過程N2O排放的影響[J]. 環(huán)境科學(xué)研究, 2014, 27(6): 635-641. Chen S, Zhang K Q, Ma X Yetal. Effects of nitrate nitrogen application on N2O emission from three types of soils during freezing process[J]. Research of Environmental Sciences, 2014, 27(6): 635-641.
Effects of ammonium-N application on N2O emission from three types of soils in freezing process
CHEN Si1, 2, ZHANG Ke-qiang2, SHEN Shi-zhou2, WANG Feng2*, XU Ning-tong1*
(1DepartmentofAgriculturalResourcesandEnvironments,NortheastAgriculturalUniversity,Harbin150030,China;2Agro-EnvironmentalProtectionInstitute,MinistryofAgriculture,Tianjin300191,China)
cultivated soil; freezing process; ammonium nitrogen; N2O; flux
2013-12-16 接受日期: 2014-04-26
國家自然科學(xué)基金項目(41001043);天津市自然科學(xué)基金項目(13JCQNJC08400)資助。
陳思(1989—),女,黑龍江友誼縣人,碩士研究生,主要從事土壤溫室氣體排放機(jī)制研究。E-mail: shenshenbian@163.com * 通信作者 E-mail: wangfeng_530@163.com; xuningtong000@163.com
S153.6+2;X131
A
1008-505X(2015)03-0608-07