張四保,劉啟寬
(1.喀什大學(xué)數(shù)學(xué)與統(tǒng)計學(xué)院,新疆喀什844008;2.昆明學(xué)院數(shù)學(xué)系,云南昆明650214)
關(guān)于Euler函數(shù)一個方程的正整數(shù)解
張四保1,劉啟寬2
(1.喀什大學(xué)數(shù)學(xué)與統(tǒng)計學(xué)院,新疆喀什844008;2.昆明學(xué)院數(shù)學(xué)系,云南昆明650214)
研究了方程φ(abc)=6(φ(a)+φ(b)+φ(c))的可解性問題,利用初等方法給出了該方程所有的204組正整數(shù)解,其中φ(n)為Euler函數(shù).
Euler函數(shù);不定方程;正整數(shù)解
不定方程是數(shù)論中的一個重要內(nèi)容,其研究范圍十分廣泛,如文獻(xiàn)[1]就研究了一類方程的正整數(shù)解問題.Euler函數(shù)φ(n)的值等于序列0,1,2,…,n-1中與n互素的整數(shù)的個數(shù).關(guān)于φ(n)方程的研究是初等數(shù)論中非常有意義的課題[2].文獻(xiàn)[3-4]討論了φ(φ(n))=2ω(n)的可解性問題;文獻(xiàn)[5]探討了φ(x1…xk)=φ(x1)+…+φ(xk)的可解性;文獻(xiàn)[6]探討了φ(n2)=2ω(n2)的可解性;文獻(xiàn)[7]探討了φ(x)=S(x3)的可解性,其中S(x)為Smarandache函數(shù);文獻(xiàn)[8]運用初等方法討論了方程φ(n)的可解性;文獻(xiàn)[9]討論了方程φ(abc)=2(φ(a)+φ(b)+φ(c))的可解性,并給出其全部正整數(shù)解.本文將討論方程φ(abc)=6(φ(a)+φ(b)+φ(c))的可解性,給出了如下結(jié)論:
定理 不定方程
有正整數(shù)解(a,b,c)=(49,1,7),(98,1,7),(49,1,14),(49,2,7),(15,3,3),(24,3,3),(30,3,3),(26,3,4),(28,3,4),(12,3,4),(6,3,6),(8,3,6),(10,3,6),(15,3,6),(26,4,3),(28,4,3),(12,4,3),(13,4,4),(21,4,4),(13,4,6),(6,6,3),(8,6,3),(10,6,3),(15,6,3),(13,6,4),(5,6,6),(3,6,6),(49,7,1),(98,7,1),(49,7,2),(49,14,1),(19,3,5),(38,3,5),(9,3,5),(18,3,5),(19,3,10),(9,3,10),(6,3,10),(19,3,8),(9,3,8),(6,3,8),(7,3,12),(4,3,12),(19,4,5),(27,4,5),(3,4,12),(19,6,5),(9,6,5),(6,6,5),(3,6,10),(3,6,8),(19,5,3),(38,5,3),(9,5,3),(18,5,3),(19,10,3),(9,10,3),(6,10,3),(19,8,3),(9,8,3),(6,8,3),(7,12,3),(4,12,3),(19,5,4),(27,5,4),(3,12,4),(19,5,6),(9,5,6),(6,5,6),(3,10,6),(3,8,6),(20,3,7),(16,3,7),(7,3,7),(14,3,7),(12,3,7),(5,3,9),(10,3,9),(8,3,9),(7,3,14),(5,3,18),(15,4,7),(9,4,7),(7,4,9),(7,6,7),(5,6,9),(20,7,3),(16,7,3),(7,7,3),(14,7,3),(12,7,3),(5,9,3),(10,9,3),(8,9,3),(7,14,3),(5,18,3),(15,7,4),(9,7,4),(7,9,4),(7,7,6),(5,9,6),(7,3,20),(7,3,16),(3,3,15),(3,3,24),(3,3,30),(3,6,15),(6,3,15),(7,20,3),(7,16,3),(3,15,3),(3,24,3),(3,30,3),(3,15,6),(6,15,3),(3,4,26),(4,3,26),(3,4,28),(4,3,28),(4,4,13),(4,4,21),(4,6,13),(6,4,13),(3,26,4),(4,26,3),(3,28,4),(4,28,3),(4,13,4),(4,21,4),(4,13,6),(6,13,4),(3,5,9),(3,10,9),(3,5,18),(3,8,9),(3,12,7),(6,5,9),(3,9,5),(3,9,10),(3,18,5),(3,9,8),(3,7,12),(6,9,5),(1,7,49),(1,7,98),(1,14,49),(2,7,49),(1,49,7),(1,98,7),(1,49,14),(2,49,7),(3,5,19),(3,5,38),(3,19,5),(3,38,5),(4,5,19),(4,5,27),(4,19,5),(4,27,5),(6,5,19),(6,19,5),(3,8,19),(3,19,8),(3,10,19),(3,19,10),(3,7,7),(3,7,14),(3,14,7),(4,7,7),(6,7,7),(4,7,9),(4,9,7),(3,7,20),(3,20,7),(3,7,16),(3,16,7),(4,7,15),(4,15,7),(5,3,19),(5,3,38),(5,19,3),(5,38,3),(5,4,19),(5,4,27),(5,19,4),(5,27,4),(5,6,19),(5,19,6),(8,3,19),(8,19,3),(10,3,19),(10,19,3),(7,1,49),(7,1,98),(14,1,49),(7,2,49),(7,49,1),(7,98,1),(14,49,1),(7,49,2),(7,7,4),(7,4,7),(7,4,15),(7,15,4).
引理1[10]對任意正整數(shù)n與m
引理2[10]當(dāng)n≥2是整數(shù)時,φ(n)<n;當(dāng)n≥3是整數(shù)時,φ(n)為偶數(shù).
引理3[9]對任意正整數(shù)n,p為素數(shù),若(n,p)=1,則φ(np)=(p-1)φ(n);若(n,p)=p,則φ(np)=pφ(n).
引理4[11]方程φ(x)=2P的解x為:當(dāng)P=2時,x=5,8,10,12.當(dāng)P=3時,x=7,9,14,18.當(dāng)P≥5時,若g=2P+1為素數(shù),則方程φ(x)=2P有兩個解x=g,2g;若g=2P+1不為素數(shù),則方程φ(x)=2P無正整數(shù)解.
引理5[11](1)當(dāng)q=2p+1,且2pq+1為素數(shù)時,方程φ(x)=2pq的解為x=q,q2,2pq+1,2(2pq+1);(2)當(dāng)q=2p+1,但2pq+1不為素數(shù)時,方程φ(x)=2pq的解為x=q,2q2;(3)當(dāng)q≠2p+1,但2pq+1為素數(shù)時,方程φ(x)=2pq的解為x=2pq+1,2(2pq+1);(4)其他情形,方程φ(x)=2pq無解,其中p,q是滿足q>p>2的素數(shù).
由于φ(abc)=6(φ(a)+φ(b)+φ(c)),則有
從而有
即
下面將φ(b)φ(c)值分兩種情況分別加以討論:
情況1 φ(b)φ(c)≤6.
當(dāng)φ(b)φ(c)≤6時,有(b,c)=(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10),(1,12),(1,14),(1,18),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(2,10),(2,12),(2,14),(2,18),(3,1),(3,2),(3,3),(3,4),(3,6),(4,1),(4,2),(4,3),(4,4),(4,6),(5,1),(5,2),(6,1),(6,2),(6,3),(6,4),(6,6),(7,1),(7,2),(8,1),(8,2),(9,1),(9,2),(10,1),(10,2),(12,1),(12,2),(14,1),(14,2),(18,1),(18,2).
將以上(b,c)的可能值代入方程(1),結(jié)合以上所給的引理可得,方程(1)有正整數(shù)解(a,b,c)=(49,1,7),(98,1,7),(49,1,14),(49,2,7),(15,3,3),(24,3,3),(30,3,3),(26,3,4),(28,3,4),(12,3,4),(6,3,6),(8,3,6),(10,3,6),(15,3,6),(26,4,3),(28,4,3),(12,4,3),(13,4,4),(21,4,4),(13,4,6),(6,6,3),(8,6,3),(10,6,3),(15,6,3),(13,6,4),(5,6,6),(3,6,6),(49,7,1),(98,7,1),(49,7,2),(49,14,1).
情況2 φ(b)φ(c)>6.
情況2.1 當(dāng)φ(b)φ(c)=8時,有:φ(b)=1,φ(c)=8或φ(b)=2,φ(c)=4或φ(b)=4,φ(c)=2或φ(b)=8,φ(c)=1.
當(dāng)φ(b)=1,φ(c)=8時,有b=1,2;c=15,16,20,24,30.此時,當(dāng)(b,c)=(1,15)時,有φ(15a)=6φ(a)+54.而當(dāng)(a,15)=1時,φ(15a)=8φ(a);當(dāng)(a,15)=3時,φ(15a)=12φ(a);當(dāng)(a,15)=5時,φ(15a)=10φ(a);當(dāng)(a,15)=15時,φ(15a)=15φ(a).因而,方程(1)無正整數(shù)解.仿(b,c)=(1,15)的討論可得,對于b與c的所有組合,方程(1)無正整數(shù)解.由此可知,當(dāng)φ(b)=1,φ(c)=8與φ(b)=8,φ(c)=1時,方程(1)無正整數(shù)解.
當(dāng)φ(b)=2,φ(c)=4時,有:b=3,4,6;c=5,10,8,12.此時,當(dāng)(b,c)=(3,5)時,方程(1)有正整數(shù)解(a,b,c)=(19,3,5),(38,3,5),(9,3,5),(18,3,5);當(dāng)(b,c)=(3,10)時,方程(1)有正整數(shù)解(a,b,c)=(19,3,10),(9,3,10),(6,3,10);當(dāng)(b,c)=(3,8)時,方程(1)有正整數(shù)解(a,b,c)=(19,3,8),(9,3,8),(6,3,8);當(dāng)(b,c)=(3,12)時,方程(1)有正整數(shù)解(a,b,c)=(7,3,12),(4,3,12);當(dāng)(b,c)=(4,5)時,方程(1)有正整數(shù)解(a,b,c)=(19,4,5),(27,4,5);當(dāng)(b,c)=(4,12)時,方程(1)有正整數(shù)解(a,b,c)=(3,4,12);當(dāng)(b,c)=(6,5)時,方程(1)有正整數(shù)解(a,b,c)=(19,6,5),(9,6,5),(6,6,5);當(dāng)(b,c)=(6,10)時,方程(1)有正整數(shù)解(a,b,c)=(3,6,10);當(dāng)(b,c)=(6,8)時,方程(1)有正整數(shù)解(a,b,c)=(3,6,8);而其余情況均無正整數(shù)解.
由此可得,當(dāng)φ(b)=4,φ(c)=2時,方程(1)有正整數(shù)解(a,b,c)=(19,5,3),(38,5,3),(9,5,3),(18,5,3),(19,10,3),(9,10,3),(6,10,3),(19,8,3),(9,8,3),(6,8,3),(7,12,3),(4,12,3),(19,5,4),(27,5,4),(3,12,4),(19,5,6),(9,5,6),(6,5,6),(3,10,6),(3,8,6).
情況2.2 當(dāng)φ(b)φ(c)=10時,有φ(b)=1,φ(c)=10或φ(b)=10,φ(c)=1.
當(dāng)φ(b)=1,φ(c)=10時,有:b=1,2;c=11,22.仿φ(b)φ(c)=8情況的討論可得,此時方程(1)無正整數(shù)解.從而,當(dāng)φ(b)φ(c)=10時,方程(1)無正整數(shù)解.
情況2.3 當(dāng)φ(b)φ(c)=12時,有φ(b)=1,φ(c)=12或φ(b)=2,φ(c)=6或φ(b)=6,φ(c)=2或φ(b)=12,φ(c)=1.
當(dāng)φ(b)=1,φ(c)=12時,有:b=1,2;c=13,21,26,28,36,42.此時,方程(1)無正整數(shù)解.
當(dāng)φ(b)=2,φ(c)=6時,有:b=3,4,6;c=7,9,14,18.此時,當(dāng)(b,c)=(3,7)時,方程(1)有正整數(shù)解(a,b,c)=(20,3,7),(16,3,7),(7,3,7),(14,3,7),(12,3,7);當(dāng)(b,c)=(3,9)時,方程(1)有正整數(shù)解(a,b,c)=(5,3,9),(10,3,9),(8,3,9);當(dāng)(b,c)=(3,14)時,方程(1)有正整數(shù)解(a,b,c)=(7,3,14);當(dāng)(b,c)=(3,18)時,方程(1)有正整數(shù)解(a,b,c)=(5,3,18);當(dāng)(b,c)=(4,7)時,方程(1)有正整數(shù)解(a,b,c)=(15,4,7),(9,4,7);當(dāng)(b,c)=(4,9)時,方程(1)有正整數(shù)解(a,b,c)=(7,4,9);當(dāng)(b,c)=(6,7)時,方程(1)有正整數(shù)解(a,b,c)=(7,6,7);當(dāng)(b,c)=(6,9)時,方程(1)有正整數(shù)解(a,b,c)=(5,6,9);而其余情況均無正整數(shù)解.
從而,此時方程(1)有正整數(shù)解(a,b,c)=(20,3,7),(16,3,7),(7,3,7),(14,3,7),(12,3,7),(5,3,9),(10,3,9),(8,3,9),(7,3,14),(5,3,18),(15,4,7),(9,4,7),(7,4,9),(7,6,7),(5,6,9),(20,7,3),(16,7,3),(7,7,3),(14,7,3),(12,7,3),(5,9,3),(10,9,3),(8,9,3),(7,14,3),(5,18,3),(15,7,4),(9,7,4),(7,9,4),(7,7,6),(5,9,6).
情況2.4 當(dāng)φ(b)φ(c)=14時,有φ(b)=1,φ(c)=14或φ(b)=14,φ(c)=1.
根據(jù)引理4可知,φ(b)=14無正整數(shù)解,因而,此時方程(1)無正整數(shù)解.
情況2.5 當(dāng)φ(b)φ(c)=16時,有φ(b)=1,φ(c)=16或φ(b)=2,φ(c)=8或φ(b)=4,φ(c)=4或φ(b)=8,φ(c)=2或φ(b)=16,φ(c)=1.
當(dāng)φ(b)=1,φ(c)=16時,有:b=1,2;c=17,34,60,40,32,48.此時,方程(1)無正整數(shù)解.
當(dāng)φ(b)=2,φ(c)=8時,有:b=3,4,6;c=15,30,20,16,24.此時,方程(1)有正整數(shù)解(a,b,c)=(7,3,20),(7,3,16),(3,3,15),(3,3,24),(3,3,30),(3,6,15),(6,3,15).
因而,此時方程(1)有正整數(shù)解(a,b,c)=(7,3,20),(7,3,16),(3,3,15),(3,3,24),(3,3,30),(3,6,15),(6,3,15),(7,20,3),(7,16,3),(3,15,3),(3,24,3),(3,30,3),(3,15,6),(6,15,3).
當(dāng)φ(b)=4,φ(c)=4時,有b=c=5,8,10,12.此時,方程(1)無正整數(shù)解.
情況2.6 當(dāng)φ(b)φ(c)=18時,有φ(b)=1,φ(c)=18或φ(b)=18,φ(c)=1.
當(dāng)φ(b)=1,φ(c)=18時,有:b=1,2;c=27,54,19,38.此時,方程(1)無正整數(shù)解.
情況2.7 當(dāng)φ(b)φ(c)=20時,有φ(b)=1,φ(c)=20或φ(b)=2,φ(c)=10或φ(b)=10,φ(c)=2或φ(b)=20,φ(c)=1.經(jīng)計算可知,此時方程(1)無正整數(shù)解.
情況2.8 當(dāng)φ(b)φ(c)=22時,有φ(b)=1,φ(c)=22或φ(b)=22,φ(c)=1.
當(dāng)φ(b)=1,φ(c)=22時,有:b=1,2;c=23,46.此時,方程(1)無正整數(shù)解.
情況2.9 當(dāng)φ(b)φ(c)=24時,有φ(b)=1,φ(c)=24或φ(b)=2,φ(c)=12或φ(b)=4,φ(c)=6或φ(b)=6,φ(c)=4或φ(b)=12,φ(c)=2或φ(b)=24,φ(c)=1.
經(jīng)計算,當(dāng)φ(b)=1,φ(c)=24時,方程(1)無正整數(shù)解;當(dāng)φ(b)=2,φ(c)=12時,方程(1)有正整數(shù)解(a,b,c)=(3,4,26),(4,3,26),(3,4,28),(4,3,28),(4,4,13),(4,4,21),(4,6,13),(6,4,13);當(dāng)φ(b)=4,φ(c)=6時,方程(1)有正整數(shù)解(a,b,c)=(3,5,9),(3,10,9),(3,5,18),(3,8,9),(3,12,7),(6,5,9).
因而,此時方程(1)有正整數(shù)解(a,b,c)=(3,4,26),(4,3,26),(3,4,28),(4,3,28),(4,4,13),(4,4,21),(4,6,13),(6,4,13),(3,26,4),(4,26,3),(3,28,4),(4,28,3),(4,13,4),(4,21,4),(4,13,6),(6,13,4),(3,5,9),(3,10,9),(3,5,18),(3,8,9),(3,12,7),(6,5,9),(3,9,5),(3,9,10),(3,18,5),(3,9,8),(3,7,12),(6,9,5).
情況2.10 當(dāng)φ(b)φ(c)=26時,有φ(b)=1,φ(c)=26或φ(b)=26,φ(c)=1.
由引理4可知,φ(c)=26無正整數(shù)解,因而此時,方程(1)無正整數(shù)解.
情況2.11 當(dāng)φ(b)φ(c)≥28時,由于φ(b),φ(c)均為正整數(shù),所以有(φ(b)-1)(φ(c)-1)≥0,即φ(b)φ(c)+1≥φ(b)+φ(c).由方程(1)有
所以,φ(a)=1,2,4,6.
情況2.11.1 若φ(a)=1時,方程(1)可化為
于是有
當(dāng)(φ(b)-6)(φ(c)-6)<0時,若φ(b)=1,2,4,則φ(c)>6.此時,有φ(a)=φ(b)=1或φ(a)=1,φ(b)=2或φ(a)=1,φ(b)=4.根據(jù)情況1中有關(guān)φ(b)φ(c)≤6的討論可知,此時方程(1)無正整數(shù)解.同理,當(dāng)φ(c)=1,2,4和φ(a)>6時,方程(1)無正整數(shù)解.
當(dāng)(φ(b)-6)(φ(c)-6)≥0時,此時有(φ(b)-6)(φ(c)-6)=0,1,2,…,42.
當(dāng)(φ(b)-6)(φ(c)-6)=0時,φ(b),φ(c)至少有一個等于6.根據(jù)情況1中有關(guān)φ(b)φ(c)≤6的討論可知,此時方程(1)有正整數(shù)解(a,b,c)=(1,7,49),(1,7,98),(1,14,49),(2,7,49),(1,49,7),(1,98,7),(1,49,14),(2,49,7).
根據(jù)引理2可得,當(dāng)(φ(b)-6)(φ(c)-6)=1,2,3,5,6,7,9,10,11,13,14,15,17,18,19,21,22,23,25,26,27,29,30,31,33,34,35,37,38,39,41,42時,φ(b),φ(c)中至少有一個為奇數(shù),因而只需考慮(φ(b)-6)(φ(c)-6)=4,8,12,16,20,24,28,32,36,40的情形.
當(dāng)(φ(b)-6)(φ(c)-6)=4時,有φ(b)=φ(c)=8;當(dāng)(φ(b)-6)(φ(c)-6)=8時,有φ(b)=8,φ(c)=10或φ(b)=10,φ(c)=8;當(dāng)(φ(b)-6)(φ(c)-6)=12時,有φ(b)=8,φ(c)=12或φ(b)=12,φ(c)=8;當(dāng)(φ(b)-6)(φ(c)-6)=20時,有φ(b)=8,φ(c)=16或φ(b)=16,φ(c)=8;當(dāng)(φ(b)-6)(φ(c)-6)=24時,有φ(b)=8,φ(c)=18或φ(b)=18,φ(c)=8;當(dāng)(φ(b)-6)(φ(c)-6)=28時,有φ(b)=8,φ(c)=20或φ(b)=20,φ(c)=8;當(dāng)(φ(b)-6)(φ(c)-6)=32時,有φ(b)=8,φ(c)=22或φ(b)=22,φ(c)=8;當(dāng)(φ(b)-6)(φ(c)-6)=36時,有φ(b)=8,φ(c)=24或φ(b)=24,φ(c)=8.由此可知,當(dāng)(φ(b)-6)(φ(c)-6)=4,8,12,20,24,28,32,36時,有φ(b)=8或φ(c)=8,那么可以通過討論φ(a)=1且φ(b)=8來確定方程(1)是否有解.當(dāng)φ(a)=1,φ(b)=8時,有:a=1,2;b=15,16,20,24,30.此時,方程(1)無正整數(shù)解.
當(dāng)(φ(b)-6)(φ(c)-6)=16時,有φ(b)=φ(c)=10;當(dāng)(φ(b)-6)(φ(c)-6)=24時,有φ(b)=10,φ(c)=12或φ(b)=12,φ(c)=10;當(dāng)(φ(b)-6)(φ(c)-6)=40時,有φ(b)=10,φ(c)=16或φ(b)=16,φ(c)=10.在這些情況中,可通過討論φ(a)=1,φ(b)=10的情形來確定方程(1)是否有解.當(dāng)φ(a)=1,φ(b)=10時,有a=1,2;b=11,22.此時,方程(1)無正整數(shù)解.
情況2.11.2 若φ(a)=2時,方程(1)可化為
于是有
當(dāng)(φ(b)-3)(φ(c)-3)<0時,若φ(b)=1,則φ(c)≥4,此時有a=3,4,6;b=1,2.根據(jù)情況1中有關(guān)φ(b)φ(c)≤6的討論可知,此時方程(1)無正整數(shù)解.同理,當(dāng)φ(c)=1,φ(b)≥4時,方程(1)無正整數(shù)解.
當(dāng)(φ(b)-3)(φ(c)-3)=0時,φ(b),φ(c)中至少有一個等于3.由引理2可知,方程φ(b)=3無正整數(shù)解,因而,此時方程(1)無正整數(shù)解.
當(dāng)(φ(b)-3)(φ(c)-3)=1時,有φ(b)=φ(c)=4或φ(b)=φ(c)=2.當(dāng)φ(b)=φ(c)=4時,方程(1)無正整數(shù)解;當(dāng)φ(b)=φ(c)=2時,方程(1)有正整數(shù)解(a,b,c)=(6,3,6),(6,6,3),(3,6,6).
當(dāng)(φ(b)-3)(φ(c)-3)=2,4,6,8,10,12,14時,φ(b),φ(c)中至少有一個為奇數(shù),因而此時方程(1)無正整數(shù)解,只需討論(φ(b)-3)(φ(c)-3)=3,5,7,9,11,13,15的情形.
當(dāng)(φ(b)-3)(φ(c)-3)=11時,有φ(b)=4,φ(c)=14或φ(b)=14,φ(c)=4.由引理4可知,方程φ(x)=14無正整數(shù)解,因而此時方程(1)無正整數(shù)解.
除去當(dāng)(φ(b)-3)(φ(c)-3)=9中的φ(b)=φ(c)=6與當(dāng)(φ(b)-3)(φ(c)-3)=15中的φ(b)=6,φ(c)=8或φ(b)=8,φ(c)=6的情況之外,在(φ(b)-3)(φ(c)-3)=3,5,7,9,11,13,15的情形中都有φ(x)=4這樣的式子,結(jié)合φ(a)=2的情況,只需討論φ(a)=2,φ(b)=4的情況來決定方程(1)是否有正整數(shù)解.當(dāng)φ(a)=2,φ(b)=4時,有a=3,4,6;b=5,8,10,12.因而,方程(1)有正整數(shù)解(a,b,c)=(3,5,9),(3,5,18),(3,9,5),(3,18,5),(6,5,9),(6,9,5),(3,8,9),(3,9,8),(3,5,19),(3,5,38),(3,19,5),(3,38,5),(4,5,19),(4,5,27),(4,19,5),(4,27,5),(6,5,19),(6,19,5),(3,8,19),(3,19,8),(3,10,19),(3,19,10).
在當(dāng)(φ(b)-3)(φ(c)-3)=9時,φ(b)=φ(c)=6與當(dāng)(φ(b)-3)(φ(c)-3)=15時,φ(b)=6,φ(c)=8或φ(b)=8,φ(c)=6這些情況下,都有φ(x)=6,結(jié)合φ(a)=2,討論φ(a)=2,φ(b)=6的情況來決定方程(1)是否有正整數(shù)解.當(dāng)φ(a)=2,φ(b)=6時,有:a=3,4,6;b=7,9,14,18.因而,方程(1)有正整數(shù)解(a,b,c)=(3,7,7),(3,7,14),(3,14,7),(4,7,7),(6,7,7),(4,7,9),(4,9,7),(3,7,20),(3,20,7),(3,7,16),(3,16,7),(4,7,15),(4,15,7).
情況2.11.3 若φ(a)=4時,方程(1)可化為
于是有
當(dāng)(2φ(b)-3)(2φ(c)-3)<0時,有φ(b)=1,φ(c)≥2或φ(b)≥2,φ(c)=1.根據(jù)情況1中有關(guān)φ(b)φ(c)≤6的討論可知,此時方程(1)無正整數(shù)解.
當(dāng)(2φ(b)-3)(2φ(c)-3)=1時,有φ(b)=φ(c)=1或φ(b)=φ(c)=2.根據(jù)情況1中有關(guān)φ(b)φ(c)≤6的討論可知,當(dāng)φ(b)=φ(c)=1時,方程(1)無正整數(shù)解;而當(dāng)φ(b)=φ(c)=2時,方程(1)有正整數(shù)解(a,b,c)=(5,6,6),(8,3,6),(8,6,3),(10,3,6),(10,6,3),(12,3,4),(12,4,3).
當(dāng)(2φ(b)-3)(2φ(c)-3)=2,3,4,6,7,8,10,11,12,14,15,16,18,19,20,22,23,24,26,27,28,30,31,32時,方程(1)無正整數(shù)解.
當(dāng)(2φ(b)-3)(2φ(c)-3)=25時,有φ(b)=2,φ(c)=14或φ(b)=14,φ(c)=2或φ(b)=φ(c)=4.由于方程φ(x)=14無正整數(shù)解,因而只需討論φ(b)=φ(c)=4的情形.
當(dāng)(2φ(b)-3)(2φ(c)-3)=5,9,13,17,21,29,33時,都有(b)=2或φ(c)=2這一關(guān)系式,結(jié)合φ(a)=4,方程(1)有正整數(shù)解(a,b,c)=(5,3,9),(5,3,18),(5,9,3),(5,18,3),(5,6,9),(5,9,6),(8,3,9),(8,9,3),(5,3,19),(5,3,38),(5,19,3),(5,38,3),(5,4,19),(5,4,27),(5,19,4),(5,27,4),(5,6,19),(5,19,6),(8,3,19),(8,19,3),(10,3,19),(10,19,3).
當(dāng)(2φ(b)-3)(2φ(c)-3)=25時,有φ(b)=φ(c)=4.此時,方程(1)無正整數(shù)解.
情況2.11.4 若φ(a)=6時,方程(1)可化為
于是有
當(dāng)(φ(b)-1)(φ(c)-1)=0時,有φ(b)=1或φ(c)=1.根據(jù)情況1中有關(guān)φ(b)φ(c)≤6的討論可知,此時方程(1)有正整數(shù)解(a,b,c)=(7,1,49),(7,1,98),(14,1,49),(7,2,49),(7,49,1),(7,98,1),(14,49,1),(7,49,2).
當(dāng)(φ(b)-1)(φ(c)-1)=2,4,6時,φ(b),φ(c)中至少有一個不成立,方程(1)無正整數(shù)解.
當(dāng)(φ(b)-1)(φ(c)-1)=1時,有φ(b)=φ(c)=2;當(dāng)(φ(b)-1)(φ(c)-1)=3時,有φ(b)=2,φ(c)=4或φ(b)=4,φ(c)=2;當(dāng)(φ(b)-1)(φ(c)-1)=5時,有φ(b)=2,φ(c)=6或φ(b)=6,φ(c)=2;當(dāng)(φ(b)-1)(φ(c)-1)=7時,有φ(b)=2,φ(c)=8或φ(b)=8,φ(c)=2.這4種情況中都有φ(b)=2或φ(c)=2,結(jié)合φ(a)=6,只需討論φ(a)=6,φ(b)=2.此時,有a=7,9,14,18;b=3,4,6.從而,方程(1)有正整數(shù)解(a,b,c)=(9,3,5),(18,3,5),(9,5,3),(18,5,3),(9,3,8),(9,8,3),(9,3,10),(9,10,3),(7,3,12),(7,12,3),(9,5,6),(9,6,5),(7,3,7),(7,3,14),(7,7,3),(7,14,3),(7,7,4),(7,4,7),(7,7,6),(7,6,7),(14,3,7),(14,7,3),(7,3,20),(7,3,16),(7,20,3),(7,16,3),(7,4,15),(7,15,4).
對上述正整數(shù)解進行歸納即可得本文結(jié)論.證畢.
[1] 瞿云云,曹慧,牟全武.關(guān)于廣義Ramanujan-Nagell方程x2-D=3n的解數(shù)[J].東北師大學(xué)報:自然科學(xué)版,2014,46(4):52-55.
[2] 呂志宏.兩個數(shù)論函數(shù)及其方程[J].純粹數(shù)學(xué)與應(yīng)用數(shù)學(xué),2006,22(3):303-306.
[3] 呂志宏.一個包含Euler函數(shù)的方程[J].西北大學(xué)學(xué)報:自然科學(xué)版,2006,36(1):17-20.
[4] 田呈亮,付靜,白維祖.一個包含歐拉函數(shù)的方程[J].純粹數(shù)學(xué)與應(yīng)用數(shù)學(xué),2010,26(1):96-98.
[5] 左可正.含歐拉函數(shù)不定方程的可解性探討[J].黃石理工學(xué)院學(xué)報,2008,24(2):49-50.
[6] 陳斌,吉宇鋒.關(guān)于一類包含Euler函數(shù)方程的解[J].河南科學(xué),2009,27(12):1500-1501.
[7] 劉艷艷.一個算術(shù)函數(shù)方程及其正整數(shù)解[J].西安石油大學(xué)學(xué)報:自然科學(xué)版,2012,27(2):108-110.
[8] 呼家源,秦偉.一個包含Smarandache Ceil函數(shù)的對偶函數(shù)及Euler函數(shù)的方程及其可解性[J].西北大學(xué)學(xué)報:自然科學(xué)版,2013,43(3):364-366.
[9] 孫翠芳,程智.關(guān)于方程φ(xyz)=2(φ(x)+φ(y)+φ(z))[J].數(shù)學(xué)的實踐與認(rèn)識,2012,42(23):267-271.
[10] ROSEN K H.Elementary theory and its applications[M].Fifth edition.NJ:Pearson Educatin,Inc,Addison Wesley,2005:225.
[11] 姜友誼.關(guān)于Euler函數(shù)方程φ(x)=m的解[J].重慶工業(yè)管理學(xué)院學(xué)報,1998,12(5):91-94.
The positive integer solutions of an equation on the Euler function
ZHANG Si-bao1,LIU Qi-kuan2
(1.School of Mathematics and Statistics,Kashgar University,Kashgar 844008,China;2.Department of Mathematics,Kunming University,Kunming 650214,China)
The main purpose of this paper is to study the solvability of the equationφ(abc)=6(φ(a)+φ(b)+φ(c)),and all positive integer solutions were obtained by using the elementary method,where φ(n)is Euler function.
Euler function;diophantine equation;positive integer solutions
O 156 [學(xué)科代碼] 110·17
A
(責(zé)任編輯:陶 理)
1000-1832(2015)03-0049-06
10.16163/j.cnki.22-1123/n.2015.03.011
2013-10-16
四川省應(yīng)用基礎(chǔ)研究計劃項目(2010JY0079);昆明學(xué)院引進人才科研項目(YJL12005).
張四保(1978—),男,碩士,副教授,主要從事數(shù)論研究.