• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      腸道菌群失調(diào)與生物鐘紊亂的相關(guān)性*

      2015-09-18 12:06:14黃文雅陸付耳董慧華中科技大學(xué)同濟(jì)醫(yī)學(xué)院附屬同濟(jì)醫(yī)院中西醫(yī)結(jié)合研究所湖北武漢430030
      中國病理生理雜志 2015年5期
      關(guān)鍵詞:菌群失調(diào)生物鐘屏障

      黃文雅,陸付耳,董慧(華中科技大學(xué)同濟(jì)醫(yī)學(xué)院附屬同濟(jì)醫(yī)院中西醫(yī)結(jié)合研究所,湖北武漢430030)

      ·綜述·

      腸道菌群失調(diào)與生物鐘紊亂的相關(guān)性*

      黃文雅,陸付耳,董慧△
      (華中科技大學(xué)同濟(jì)醫(yī)學(xué)院附屬同濟(jì)醫(yī)院中西醫(yī)結(jié)合研究所,湖北武漢430030)

      [ABSTRACT]The human gut harbours a certain quantity and variety ofmicrobes called intestinal flora,which is in a state of balance under normal circumstances,and dysbacteriosis occurswhen the balance of the intestinal flora is disturbed by the host and the changes of the external environment.Circadian clock is the biological regulation system to adapt to natural circadian rhythm,including central clock and peripheral clock.Circadian clock disturbance,particularly rotating shift-workerswith irregular light-night schedules,is associated with an increased risk of immune-related diseases.The development of these diseases is closely related to intestinal dysbacteriosis.Therefore,the correlation between intestinal dysbacteriosis and circadian clock disturbance has attractedmuch attention.This review aims to explore the pathophysiological basis of the development in some immune-related diseases based on the latest scientific findings about the relationship between intestinalmicrobial flora and circadian clock.

      腸道菌群;菌群失調(diào);生物鐘

      [KEY WORDS]Intestinal flora;Dysbacteriosis;Circadian clocks

      正常人體腸道內(nèi)寄生著種類繁多、數(shù)量龐大的微生物,以細(xì)菌為主,統(tǒng)稱為腸道菌群。據(jù)統(tǒng)計(jì)其種類大于1 000種,總數(shù)高達(dá)1014,是人體細(xì)胞總和的10倍[1]。正常情況下,腸道內(nèi)的微生物與宿主相互依存彼此制約,共同維持動(dòng)態(tài)的生物平衡。一旦外界環(huán)境或內(nèi)在平衡受到破壞,腸道菌群種類、數(shù)量及比例等發(fā)生改變,造成腸道內(nèi)菌群失調(diào)[2]。研究發(fā)現(xiàn)腸道菌群的失調(diào)與生物鐘紊亂有著不可分割錯(cuò)綜復(fù)雜的關(guān)系,彼此影響,給機(jī)體帶來一系列病理生理改變。本文就腸道菌群失調(diào)與生物鐘紊亂相關(guān)性的研究進(jìn)展綜述如下:

      1生物鐘系統(tǒng)與生物鐘基因

      在生物進(jìn)化過程中,機(jī)體已經(jīng)適應(yīng)了外部環(huán)境。其中最重要的外部環(huán)境因素則是由于地球自轉(zhuǎn)并圍繞太陽公轉(zhuǎn)而產(chǎn)生的24 h白天與黑夜的交替節(jié)律。為了應(yīng)對這些變化,植物和動(dòng)物制定了一個(gè)時(shí)段近24 h的通用內(nèi)在計(jì)時(shí)系統(tǒng),該系統(tǒng)與太陽光周期變化、能量攝取和代謝過程同步,被稱為生物鐘系統(tǒng),亦稱晝夜節(jié)律[3]。在哺乳動(dòng)物中,生物鐘系統(tǒng)是一個(gè)復(fù)雜的分層網(wǎng)絡(luò)結(jié)構(gòu),包括中樞生物鐘網(wǎng)絡(luò)及外周生物鐘網(wǎng)絡(luò)[4]。外周生物鐘網(wǎng)絡(luò)遍布于機(jī)體幾乎所有的組織與細(xì)胞中,包括胰腺、肝臟、腸道、心、腎、肺、骨骼肌與平滑肌、脂肪組織等。中樞生物鐘節(jié)律起搏器是位于下丘腦前區(qū)的視交叉上核的一些特殊的神經(jīng)元,這些神經(jīng)元通過視網(wǎng)膜下丘腦通道接收光線刺激信號(hào),同時(shí)接收由其它神經(jīng)傳輸?shù)姆枪饩€刺激生理信號(hào)[5],如飲食節(jié)律、溫度、藥物刺激、社交活動(dòng)等[6-7]。這些生理信號(hào)經(jīng)過視交叉上核的整合之后通過神經(jīng)傳導(dǎo)及內(nèi)分泌調(diào)節(jié)的方式傳到下游的大腦區(qū)域及各大器官系統(tǒng),并協(xié)調(diào)其功能[8]。該過程受一組特殊基因的轉(zhuǎn)錄/翻譯自動(dòng)調(diào)節(jié)反饋環(huán)所調(diào)控,稱生物鐘基因[9](各大核心基因的調(diào)控如圖1所示)。同時(shí)機(jī)體24 h的生物鐘也能反過來調(diào)節(jié)這些生物鐘相關(guān)基因的晝夜節(jié)律表達(dá)[10-11]。生物鐘網(wǎng)絡(luò)系統(tǒng)能使機(jī)體適應(yīng)不斷變化的外部和內(nèi)部狀態(tài),優(yōu)化生理機(jī)能,維護(hù)多個(gè)器官系統(tǒng)之間的協(xié)調(diào)。無論是外界的刺激(如輪班工作和時(shí)差)還是內(nèi)部壓力(如心理精神困擾)都會(huì)擾亂生物鐘原本的節(jié)律,進(jìn)而對機(jī)體的免疫系統(tǒng)產(chǎn)生負(fù)面作用,為菌群失調(diào)的發(fā)生提供了機(jī)會(huì)。

      Figure 1.The gene expression and regulation of core circadian.CLOCK:circadian locomotor output cycles kaput protein;BMAL1: brain and muscle ARNT-like 1;PER:Period;CRY:cryptochrome;REV-ERB:reverse-erythroblastosis;ROR:retinoic acid receptor-related orphan receptor;RORE:ROR response element.BMAL1-CLOCK heterodimers drive the transcriptional expression of PERs and CRYs through the activation of E-box enhancers.PER and CRY proteins in the cytoplasm form heterodimers and then translocate to the nucleus,suppressing their own transcription by interaction with CLOCK-BMAL1 complexes.In another loop,CLOCK-BMAL1 heterodimers drive the expression of REV-ERB and RORs.REV-ERB and ROR proteins in the cytoplasm translocate to the nucleus,which inhibit and activate BMAL1 expression,respectively,thus forming a relatively conservative self-regulatory feedback loop based on the transcription/translation of circadian clock genes.Some clock-controlled genes(CCGs)are also under themodulation of the clock machinery.圖1 中樞生物鐘基因的表達(dá)和調(diào)控

      2腸道菌群失調(diào)與生物鐘網(wǎng)絡(luò)的相關(guān)性

      生物鐘網(wǎng)絡(luò)以中樞生物鐘系統(tǒng)為主,調(diào)控著所有外周生物鐘網(wǎng)絡(luò),同時(shí)外周生物鐘網(wǎng)絡(luò)亦可對中樞生物鐘造成反饋影響。目前哺乳動(dòng)物中樞生物鐘節(jié)律起搏器在下丘腦視交叉上核(suprachiasmatic nucleus,SCN)已確定,但在外圍組織的晝夜定時(shí)的分子基礎(chǔ)還沒有闡明。但可以肯定的是,外周生物鐘網(wǎng)絡(luò)均受到中樞生物鐘節(jié)律起搏器的調(diào)控,包括外周組織特異性和外在調(diào)控之間的相互作用[12]。本文主要闡述腸道菌群失調(diào)與中樞生物鐘、與胰腺、肝臟和腸道等外周生物鐘紊亂的關(guān)系。

      2.1腸道菌群失調(diào)與中樞神經(jīng)系統(tǒng)生物鐘紊亂腸道有許多重要的生理功能,包括對水平衡和營養(yǎng)吸收的調(diào)節(jié),同時(shí)對免疫調(diào)節(jié)有著顯著的作用,并能形成一個(gè)對腸道內(nèi)促炎性微生物的選擇性黏膜屏障[13]。腸道菌群失調(diào)與腸黏膜屏障通透性增強(qiáng)有著直接的聯(lián)系[14]。最近有研究表明腸黏膜屏障的通透性受中樞生物鐘的調(diào)節(jié)。Summa等[15]首次發(fā)現(xiàn),使用生物鐘基因突變方法造成的中樞生物鐘基因缺失模型小鼠,或使用改變環(huán)境(光線/黑暗)所造成的生物鐘紊亂模型小鼠中,均發(fā)現(xiàn)腸上皮屏障破壞,通透性增強(qiáng),并能促進(jìn)乙醇引起的腸黏膜屏障的破壞,加重內(nèi)毒素血癥及脂肪肝,然而確切的機(jī)制卻不清楚。最近有研究提出,生物鐘網(wǎng)絡(luò)影響腸道屏障通透性機(jī)制可能與緊密連接蛋白有關(guān)。Kyoko等[16]研究發(fā)現(xiàn),在正常晝夜節(jié)律改變環(huán)境下,野生型小鼠閉合蛋白(occludin)和密封蛋白1(claudin-1)的mRNA和蛋白表達(dá)水平在結(jié)腸呈現(xiàn)與晝夜節(jié)律周期一致的變化,且結(jié)腸通透性也隨著改變;而生物鐘阻遏蛋白基因Period 2(Per2)突變型小鼠體內(nèi)occludin及claudin-1的mRNA和蛋白表達(dá)呈持續(xù)高水平,無晝夜節(jié)律變化,結(jié)腸通透性呈持續(xù)低水平,且對葡聚糖硫酸鈉(dextran sulfate sodium,DSS)造成的腸道炎癥損害抵抗能力比野生型更強(qiáng)。說明生物鐘能影響緊密連接蛋白的表達(dá),從而改變腸道通透性。腸道菌群失調(diào)同時(shí)也受機(jī)體免疫功能影響。Arjona等[17]研究表明生物鐘基因mPer2調(diào)節(jié)血清中γ干擾素mRNA及蛋白的表達(dá),該基因突變小鼠血清中γ干擾素水平失去晝夜節(jié)律變化。另Liu等[18]發(fā)現(xiàn),mPer2基因突變小鼠在細(xì)菌內(nèi)毒素LPS的刺激下,失去了產(chǎn)生IL-10和IFN-γ的能力。同時(shí)有研究發(fā)現(xiàn)BMAL1基因敲除小鼠淋巴細(xì)胞比正常小鼠減少[19],缺乏CRY1和CRY2基因的小鼠血清中細(xì)胞因子水平明顯高于正常小鼠[20]。更值得一提的是,巨噬細(xì)胞在其胞內(nèi)生物鐘基因的表達(dá),吞噬作用和LPS敏感性上都呈現(xiàn)出了內(nèi)源性的生物鐘節(jié)律[21]。Logan等[4]亦報(bào)道NK細(xì)胞的功能,包括分泌細(xì)胞因子、細(xì)胞毒性因子和細(xì)胞溶解能力等,都受生物鐘系統(tǒng)調(diào)控。隨著這一系列的免疫相關(guān)因素的改變,腸道內(nèi)菌群突破機(jī)體免疫抑制的束縛,發(fā)生數(shù)量與種類及比例的改變,發(fā)生菌群失調(diào),并通過高通透性的腸道黏膜屏障進(jìn)入到機(jī)體全身,引起一系列病理改變。而這一切均受到中樞生物鐘網(wǎng)絡(luò)系統(tǒng)的精密調(diào)控。

      2.2腸道菌群失調(diào)與胰腺生物鐘紊亂胰腺生物鐘系統(tǒng)主要調(diào)控胰液的分泌及胰島功能。與胰島功能密切相關(guān)首先是糖尿病。近些年來,生物鐘紊亂已經(jīng)被證實(shí)與糖尿病的發(fā)生發(fā)展有關(guān)。以往人們以為代謝性疾病只與中樞系統(tǒng)的下丘腦生物鐘相關(guān),然而最近有研究表明糖尿病的發(fā)生發(fā)展也與胰腺生物鐘功能受損有關(guān)[22]。Pulimeno等[23]應(yīng)用熒光素標(biāo)記生物鐘基因,熒光顯微鏡測定熒光時(shí)間變化規(guī)律,結(jié)果發(fā)現(xiàn),BMAL1和CRY1與胰島素同步,而REV-ERBα、Per3和D元件結(jié)合蛋白(D-elementbinding protein,DBP)的表達(dá)卻呈負(fù)相關(guān)。Sadacca等[24]研究發(fā)現(xiàn)不同鼠系模型的BMAL1基因敲除鼠均表現(xiàn)出一致的胰島素分泌受損,且胰島素作用減弱,節(jié)律性變化規(guī)律消失,補(bǔ)充外源的BMAL1基因可以恢復(fù)胰島素作用[25]。研究亦表明腸道菌群紊亂與糖尿病的發(fā)生發(fā)展相關(guān)。Furet等[26]研究報(bào)道,與健康對照組相比,2型糖尿病患者腸道中雙歧桿菌整體數(shù)量顯著減少。Roesch等[27]研究發(fā)現(xiàn),患糖尿病小鼠腸道中乳桿菌屬和雙歧桿菌屬的數(shù)量顯著低于非糖尿病小鼠。Wirth等[28]研究發(fā)現(xiàn),在使用脲鏈佐菌素造模的1型糖尿病模型大鼠中,腸道中細(xì)菌的數(shù)量明顯增加,且種類更加多樣性,且回腸比結(jié)腸更顯著。胰島素治療后,雖然無法恢復(fù)正常的腸道菌群狀態(tài),但腸道菌群沒有出現(xiàn)組成及多樣性的特征重排。該糖尿病模型大鼠腸道菌群失調(diào)以變形桿菌類改變?yōu)橹鳎虼俗冃螚U菌類已成為診斷和治療1型糖尿病的潛在焦點(diǎn),其中克雷伯桿菌已被推薦為1型糖尿病的生物標(biāo)志物。故而在胰腺生物鐘網(wǎng)絡(luò)及糖尿病的交錯(cuò)影響下,腸道菌群發(fā)生不同的失調(diào),失調(diào)的菌群進(jìn)一步影響機(jī)體的生理機(jī)能,對糖尿病本身和胰腺生物系統(tǒng)造成不良的影響[29-30]。

      2.3腸道菌群失調(diào)與肝臟生物鐘紊亂隨著腸道微生態(tài)學(xué)研究的深入及腸-肝軸概念的提出,肝臟疾病和腸道菌群失調(diào)之間的關(guān)系引起了人們廣泛的重視。許多研究發(fā)現(xiàn),腸道的屏障功能的破壞與乙醇引起機(jī)體的病理改變的發(fā)生機(jī)制相關(guān),尤其是酒精性肝?。?1]。生物鐘基因BMAL1和CLOCK調(diào)控肝酶基因的表達(dá)[32],影響乙醇代謝的平衡。乙醇會(huì)導(dǎo)致人類腸道細(xì)菌過度生長[33]。腸道在代謝乙醇時(shí)會(huì)產(chǎn)生高濃度的毒性物質(zhì)乙醛,改變腸上皮細(xì)胞滲通透性以及菌群平衡。此外,乙醛還能對肝臟造成直接的傷害。在攝取乙醇達(dá)到一定年限的患者中發(fā)現(xiàn),腸道菌群發(fā)生了一定的失調(diào),尤其是革蘭氏陰性細(xì)菌數(shù)量上的增多,甚至發(fā)生內(nèi)毒素血癥及免疫系統(tǒng)的過度活化[34]。Casafont等[35]研究發(fā)現(xiàn),在酒精性肝硬化患者中,空腸內(nèi)的厭氧菌及非厭氧菌的數(shù)量都顯著高于對照組。Liu等[36]利用實(shí)時(shí)熒光定量PCR分析肝硬化患者的腸道菌群,與健康對照組比較,腸桿菌和腸球菌數(shù)量顯著增加,腸道抵抗力下降。肝病時(shí)發(fā)生腸道菌群失調(diào)的原因很多,涉及肝臟系統(tǒng)、腸道系統(tǒng)與免疫系統(tǒng)[37]。肝病時(shí)腸管蠕動(dòng)減慢,抗體、溶菌酶分泌減少,腸道pH值改變,細(xì)菌大量繁殖。大量繁殖的細(xì)菌發(fā)生移位,代謝產(chǎn)物及內(nèi)毒素進(jìn)入門靜脈系統(tǒng)。肝病時(shí)免疫功能下降,Kupffer細(xì)胞清除細(xì)菌及代謝產(chǎn)物能力減弱,隨之發(fā)生腸源性內(nèi)毒素血癥。與此同時(shí),腸道菌群紊亂也能反過來影響肝臟功能,形成惡性循環(huán)[38-39]。腸道菌群失調(diào)時(shí),伴隨著宿主免疫功能低下與腸黏膜屏障受到破壞,肝病時(shí)伴門靜脈壓力升高致腸道循環(huán)系統(tǒng)受阻,腸系膜水腫,黏膜屏障通透性增強(qiáng),大量生長的細(xì)菌從腸黏膜屏障進(jìn)入腸壁,并移動(dòng)到腸系膜淋巴結(jié)中,并最終進(jìn)入到肝臟循環(huán)系統(tǒng),直接侵犯肝細(xì)胞,肝臟功能受損,進(jìn)而發(fā)生肝臟炎癥甚至肝硬化[40-41]。同時(shí)細(xì)菌及其代謝產(chǎn)物激活機(jī)體免疫系統(tǒng)引起異常免疫反應(yīng),導(dǎo)致肝細(xì)胞壞死或凋亡,加快本身肝臟病變惡化程度,最終影響肝臟生物鐘系統(tǒng),加重生理功能紊亂。

      2.4腸道菌群失調(diào)與腸道生物鐘紊亂腸道生物鐘主要受進(jìn)食規(guī)律和晝夜節(jié)律影響。腸道的蠕動(dòng)機(jī)械運(yùn)動(dòng)、分泌功能及腸道內(nèi)的細(xì)菌寄生等生理機(jī)能均具有本身的生物鐘節(jié)律[42]。當(dāng)發(fā)生腸道疾病時(shí),機(jī)體內(nèi)外界環(huán)境改變,腸道生物鐘先受到影響,表現(xiàn)最明顯的就是發(fā)生腸道菌群失調(diào)。許多研究發(fā)現(xiàn)炎癥性腸病(克羅恩病與潰瘍性結(jié)腸炎)、腸應(yīng)激綜合征及腸道癌癥均發(fā)生一定程度的腸道菌群失調(diào)[43-44]。Minamoto等[45]研究發(fā)現(xiàn),特發(fā)性炎性腸病(inflammatory bowel disease,IBD)犬伴有一定的腸道菌群失調(diào),其糞便中γ-變形菌比例增高,梭狀芽胞桿菌、丹毒絲菌、擬桿菌等比例降低。Parkes等[46]研究發(fā)現(xiàn),腸易激綜合征患者多伴有不同程度的腸道菌群失調(diào),主要表現(xiàn)為雙歧桿菌、乳桿菌數(shù)量減少,大腸埃希菌、類桿菌、腸桿菌等數(shù)量增多,腸道定植抗力明顯降低。腸道相關(guān)疾病引起腸道菌群失調(diào)原因主要與腸道免疫功能、黏膜屏障及腸道物理化學(xué)環(huán)境改變相關(guān)。腸道正常免疫功能的主要來源是黏膜固有層的漿細(xì)胞,漿細(xì)胞能產(chǎn)生大量免疫球蛋白,對腸道細(xì)菌具有抑制作用。分泌型免疫球蛋白A是腸黏膜主要的免疫球蛋白,對黏膜抵抗固有及入侵的病原體有重要作用,亦是阻止腸道細(xì)菌移位的重要環(huán)節(jié)[47]。腸道相關(guān)疾病如炎癥性腸病等發(fā)生時(shí),免疫功能出現(xiàn)障礙,漿細(xì)胞分泌型免疫球蛋白A缺乏,腸道細(xì)菌因失去抑制而過度繁殖,造成腸道菌群失調(diào)。然而,腸道菌群失調(diào)也被證實(shí)是腸道疾病發(fā)生的重要調(diào)控機(jī)制。許多研究均發(fā)現(xiàn)腸道菌群失調(diào)能加重炎性腸病及腸應(yīng)激綜合征的嚴(yán)重程度[48],同時(shí)益生菌的治療能改善腸道疾病的發(fā)生發(fā)展[49-50]。原因歸結(jié)于腸道菌群失調(diào)導(dǎo)致有益菌減少,致病菌增多,腸道黏膜屏障受損,細(xì)菌及代謝物移位從而誘發(fā)機(jī)體異常的免疫反應(yīng),產(chǎn)生一系列炎癥因子和大量活性物質(zhì),并引起免疫功能的進(jìn)一步失調(diào),引起或加重炎癥性腸?。?1],同時(shí)腸道機(jī)械運(yùn)動(dòng)減慢,吸收功能減弱,引起腹痛、腹脹、腹瀉等臨床表現(xiàn),最終導(dǎo)致腸應(yīng)激綜合征。

      3結(jié)語

      盡管生物鐘基因參與腸道菌群紊亂的證據(jù)越來越多,但目前研究僅限于發(fā)現(xiàn)腸道菌群失調(diào)與生物鐘網(wǎng)絡(luò)相關(guān)的間接聯(lián)系,而且對具體的機(jī)制尚不清楚。如中樞生物鐘網(wǎng)絡(luò)系統(tǒng)與外周生物鐘網(wǎng)絡(luò)系統(tǒng)是如何相互作用的,各種生物鐘信號(hào)如何在各大外周器官集中、傳導(dǎo)并影響下游一系列的生理反應(yīng),并最終導(dǎo)致腸道菌群失調(diào)等等環(huán)節(jié)都有待進(jìn)一步探討。筆者認(rèn)為后續(xù)研究可以著力于探索生物鐘與腸道菌群失調(diào)的關(guān)聯(lián)以及所帶來的免疫、內(nèi)分泌、代謝的改變,為以后防治腸道菌群失調(diào)和生物鐘紊亂提供可靠的科學(xué)依據(jù)。

      [1]黃秀艷,曾耀英.腸道微生物群的病理生理學(xué)進(jìn)展[J].中國病理生理雜志,2014,30(6):1127-1135.

      [2]Bringiotti R,Ierardi E,Lovero R,et al.Intestinalmicrobiota:the explosive mixture at the origin of inflammatory bowel disease?[J].World JGastrointest Pathophysiol,2014,5(4):550-559.

      [3]Chan MC,Spieth PM,Quinn K,et al.Circadian rhythms:from basic of the intensive care unit[J].Crit Care Med,2012,40(1):246-253.

      [4]Logan RW,Sarkar DK.Circadian nature of immune function[J].Mol Cell Endocrinol,2012,349(1):82-90.

      [5]Rosenwasser AM.Functional neuroanatomy of sleep and circadian rhythms[J].Brain Res Rev,2009,61(2): 281-306.

      [6]Lucas RJ,F(xiàn)reedman MS,Lupi D,et al.Identifying the photoreceptive inputs to the mammalian circadian system using transgenic and retinally degeneratemice[J].Behav Brain Res,2001,125(1-2):97-102.

      [7]Golombek DA,Rosenstein RE.Physiology of circadian entrainment[J].Physiol Rev,2010,90(3):1063-1102.

      [8]Albrecht U,Oster H.The circadian clock and behavior[J].Behav Brain Res,2001,125(1-2):89-91.

      [9]Vieira E,Burris TP,Quesada I.Clock genes,pancreatic function,and diabetes[J].Trends Mol Med,2014,20 (12):685-693.

      [10]Panda S,Antoch MP,Miller BH,et al.Coordinated transcription of key pathways in the mouse by the circadian clock[J].Cell,2002,109(3):307-320.

      [11]Lowrey PL,Takahashi JS.Genetics of circadian rhythms in mammalian model organisms[J].Adv Genet,2011,74:175-230.

      [12]Akhtar RA,Reddy AB,Maywood ES,et al.Circadian cycling of the mouse liver transcriptome,as revealed by cDNA microarray,is driven by the suprachiasmatic nucleus[J].Curr Biol,2002,12(7):540-550.

      [13]Farhadi A,Banan A,F(xiàn)ields J,et al.Intestinal barrier: an interface between health and disease[J].JGastroenterol Hepatol,2003,18(5):479-497.

      [14]Suzuki T.Regulation of intestinal epithelial permeability by tight junctions[J].Cell Mol Life Sci,2013,70(4):631-659.

      [15]Summa KC,Voigt RM,F(xiàn)orsyth CB,et al.Disruption of the circadian clock inmice increases intestinal permeability and promotes alcohol-induced hepatic pathology and inflammation[J].PLoSOne,2013,8(6):e67102.

      [16]Kyoko OO,Kono H,Ishimaru K,et al.Expressions of tight junction proteins Occludin and Claudin-1 are under the circadian control in themouse large intestine:implications in intestinal permeability and susceptibility to colitis[J].PLoSOne,2014,9(5):e98016.

      [17]Arjona A,Sarkar DK.The circadian gene mPer2 regulates the daily rhythm of IFN-gamma[J].J Interferon Cytokine Res,2006,26(9):645-649.

      [18]Liu J,Malkani G,Shi X,et al.The circadian clock Period 2 gene regulates gamma interferon production of NK cells in host response to lipopolysaccharide-induced endotoxic shock[J].Infect Immun,2006,74(8):4750-4756.

      [19]Kondratov RV,Kondratova AA,Gorbacheva VY,et al.Early aging and age-related pathologies inmice deficient in BMAL1,the core component of the circadian clock[J].Genes Dev,2006,20(14):1868-1873.

      [20]Hashiramoto A,Yamane T,Tsumiyama K,et al.Mammalian clock gene cryptochrome regulates arthritis via proinflammatory cytokine TNF-alpha[J].J Immunol,2010,184(3):1560-1565.

      [21]KellerM,Mazuch J,Abraham U,etal.A circadian clock in macrophages controls inflammatory immune responses[J].Proc Natl Acad Sci U SA,2009,106(50):21407-21412.

      [22]Marcheva B,Ramsey KM,Buhr ED,et al.Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes[J].Nature,2010,466 (7306):627-631.

      [23]Pulimeno P,Mannic T,Sage D,et al.Autonomous and self-sustained circadian oscillators displayed in human islet cells[J].Diabetologia,2013,56(3):497-507.

      [24]Sadacca LA,Lamia KA,Delemos AS,et al.An intrinsic circadian clock of the pancreas is required for normal insulin release and glucose homeostasis inmice[J].Diabetologia,2011,54(1):120-124.

      [25]Shi SQ,Ansari TS,Mcguinness OP,et al.Circadian disruption leads to insulin resistance and obesity[J].Curr Biol,2013,23(5):372-381.

      [26]Furet JP,Kong LC,Tap J,et al.Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss:links with metabolic and low-grade inflammationmarkers[J].Diabetes,2010,59(12):3049-3057.

      [27]Roesch LF,Lorca GL,Casella G,et al.Culture-independent identification of gut bacteria correlated with the onsetof diabetes in a ratmodel[J].Isme J,2009,3(5): 536-548.

      [28]Wirth R,Bodi N,MarotiG,et al.Regionally distinct alterations in the composition of the gut microbiota in rats with streptozotocin-induced diabetes[J].PLoS One,2014,9(12):e110440.

      [29]Han J,Lin H.Intestinalmicrobiota and type 2 diabetes: from mechanism insights to therapeutic perspective[J].World JGastroenterol,2014,20(47):17737-17745.

      [30]Allin KH,Nielsen T,Pedersen O.Mechanisms in endocrinology:gutmicrobiota in patients with type 2 diabetes mellitus[J].Eur J Endocrinol,2015,172(4):R167-R177.

      [31]Purohit V,Bode JC,Bode C,et al.Alcohol,intestinal bacterial growth,intestinal permeability to endotoxin,and medical consequences:summary of a symposium[J].Alcohol,2008,42(5):349-361.

      [32]Marcheva B,Ramsey KM,Affinati A,et al.Clock genes and metabolic disease[J].JAppl Physiol(1985),2009,107(5):1638-1646.

      [33]Bode C,Bode JC.Effectof alcohol consumption on the gut[J].Best Pract Res Clin Gastroenterol,2003,17(4): 575-592.

      [34]Malaguarnera G,Giordano M,NunnariG,et al.Gutmicrobiota in alcoholic liver disease:Pathogenetic role and therapeutic perspectives[J].World JGastroenterol,2014,20(44):16639-16648.

      [35]Casafont MF,de Las HC G,Martin RL,et al.Small bowel bacterial overgrowth in patients with alcoholic cirrhosis[J].Dig Dis Sci,1996,41(3):552-556.

      [36]Liu J,Wu D,Ahmed A,etal.Comparison of the gutmicrobe profiles and numbers between patientswith liver cirrhosis and healthy individuals[J].Curr Microbiol,2012,65(1):7-13.

      [37]Ma HD,Wang YH,Chang C,etal.The intestinalmicrobiota andmicroenvironment in liver[J].Autoimmun Rev,2015,14(3):183-191.

      [38]Chen P,Starkel P,Turner JR,et al.Dysbiosis-induced intestinal inflammation activates TNFRIand mediates alcoholic liver disease in mice[J].Hepatology,2015,61 (3):883-894.

      [39]Schnabl B,Brenner DA.Interactions between the intestinalmicrobiome and liver diseases[J].Gastroenterology,2014,146(6):1513-1524.

      [40]Gomez-Hurtado I,Such J,Sanz Y,et al.Gutmicrobiotarelated complications in cirrhosis[J].World JGastroenterol,2014,20(42):15624-15631.

      [41]Chen P,Schnabl B.Host-microbiome interactions in alcoholic liver disease[J].Gut Liver,2014,8(3):237-241.

      [42]Liang X,Bushman FD,F(xiàn)itzgerald GA.Time in motion:the molecular clock meets the microbiome[J].Cell,2014,159(3):469-470.

      [43]Satokari R.Contentious host-microbiota relationship in inflammatory bowel disease:can foes become friends again?[J].Scand JGastroenterol,2015,50(1):34-42.

      [44]Keku TO,Dulal S,Deveaux A,etal.The gastrointestinal microbiota and colorectal cancer[J].Am J Physiol Gastrointest Liver Physiol,2015,308(5):G351-G363.

      [45]Minamoto Y,OtoniCC,Steelman SM,etal.Alteration of the fecalmicrobiota and serum metabolite profiles in dogs with idiopathic inflammatory bowel disease[J].Gut Microbes,2015,6(1):33-47.

      [46]Parkes GC,Sanderson JD,Whelan K.Treating irritable bowel syndrome with probiotics:the evidence[J].Proc Nutr Soc,2010,69(2):187-194.

      [47]Barman M,Unold D,Shifley K,et al.Enteric salmonellosis disrupts themicrobial ecology of themurine gastrointestinal tract[J].Infect Immun,2008,76(3):907-915.

      [48]Privalov MA,Sizenko AK.Fecal microbiota transplantation in treatment of inflammatory bowel diseases[J].Lik Sprava,2014,(11):15-21.

      [49]Ghouri YA,Richards DM,Rahimi EF,et al.Systematic review of randomized controlled trials of probiotics,prebiotics,and synbiotics in inflammatory bowel disease[J].Clin Exp Gastroenterol,2014,7:473-487.

      [50]An D,Oh SF,Olszak T,etal.Sphingolids from a symbiotic microbe regulate homeostasis of host intestinal natural killer T cells[J].Cell,2014,156(1-2):123-133.

      [51]Matsuoka K,Kanai T.The gutmicrobiota and inflammatory bowel disease[J].Semin Immunopathol,2015,37 (1):47-55.

      Relationship between intestinal dysbacteriosis and circadian clock disturbance

      HUANGWen-ya,LU Fu-er,DONG Hui
      (Institute of Integrated Traditional Chinese&Western Medicine,Tongji Hospital,TongjiMedical College,Huazhong University of Science&Technology,Wuhan 430030,China.E-mail:tjhdonghui@163.com)

      R574.4;R363[文獻(xiàn)標(biāo)志碼]A

      10.3969/j.issn.1000-4718.2015.05.033

      1000-4718(2015)05-0950-06

      2015-01-31[修回日期]2015-03-31

      國家自然科學(xué)基金資助項(xiàng)目(No.81373871;No.81473637)

      Tel:027-83663660;E-mail:tjhdonghui@163.com

      猜你喜歡
      菌群失調(diào)生物鐘屏障
      周末“補(bǔ)覺”是一個(gè)謊言
      咬緊百日攻堅(jiān) 筑牢安全屏障
      屏障修護(hù)TOP10
      從計(jì)時(shí)鐘到生物鐘
      腸道菌群失調(diào)通過促進(jìn)炎性反應(yīng)影響頸動(dòng)脈粥樣硬化的形成
      一道屏障
      維護(hù)網(wǎng)絡(luò)安全 筑牢網(wǎng)絡(luò)強(qiáng)省屏障
      打亂生物鐘會(huì)讓人變丑
      奧秘(2018年1期)2018-07-02 10:56:34
      宮頸高危HPV持續(xù)感染與陰道微生態(tài)相關(guān)性研究進(jìn)展
      細(xì)菌裝上生物鐘
      彰武县| 墨竹工卡县| 锡林浩特市| 台前县| 偏关县| 临武县| 汉中市| 榆社县| 桦川县| 天气| 平山县| 华阴市| 区。| 溧阳市| 上林县| 马山县| 崇礼县| 潼关县| 定结县| 顺昌县| 河津市| 新安县| 上杭县| 应用必备| 杭锦后旗| 阜宁县| 福鼎市| 侯马市| 张家界市| 桐庐县| 盐津县| 张北县| 广汉市| 漾濞| 翼城县| 辽宁省| 宁波市| 岱山县| 陵水| 和龙市| 清丰县|