• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      非局域非線性介質(zhì)中厄米高斯光束的變分解

      2015-09-24 03:48白東峰王毅盧宏炎
      光學(xué)儀器 2015年4期
      關(guān)鍵詞:孤子

      白東峰 王毅 盧宏炎

      摘要: 非局域非線性介質(zhì)中的薛定諤方程很難用傳統(tǒng)的方法得出精確解析解,利用變分法系統(tǒng)研究了強(qiáng)非局域非線性介質(zhì)中厄米高斯光束的傳輸問(wèn)題。通過(guò)對(duì)非線性介質(zhì)中響應(yīng)函數(shù)的展開(kāi),使得非線性薛定諤方程得以簡(jiǎn)化,求解出高階高斯光束孤子解。利用數(shù)值模擬研究了厄米高斯光束在介質(zhì)中傳輸時(shí)束寬不變的問(wèn)題,結(jié)果顯示當(dāng)非局域程度非常大時(shí),解析解非常接近數(shù)值解。

      關(guān)鍵詞: 非局域非線性介質(zhì); 變分法; 孤子

      中圖分類(lèi)號(hào): O 437 文獻(xiàn)標(biāo)志碼: A doi: 10.3969/j.issn.1005-5630.2015.04.005

      Abstract: It is difficult to use the conventional method to obtain accurate analytical solution of the Schrodinger equation in the nonlocal nonlinear media. The propagation of Hermite-Gaussian (HG) beams in the strongly nonlocal nonolinear media is discussed with a variational method in this paper. The nonlinear Schrodinger equation can be simplified through expanding the response function in the nonlinear medium. The solution of high-order Gaussian beam soliton is obtained. The beam width of HG beam is unchanged when it propagates in the media by using numerical simulations. The results show that the analytical solution is closer to the numerical solution when the degree of the nonlocality is very large.

      Keywords: nonlocal nonlinear media; variational approach; solitons

      引 言

      空間光孤子是指在介質(zhì)里面?zhèn)鬏敃r(shí)其束寬不變的光束,近年來(lái)由于其獨(dú)特的傳輸特性在世界范圍內(nèi)引起了極大的關(guān)注[1-16]。Snyder和 Mitchell的研究引起了廣泛的關(guān)注[1]。 Guo等研究了非局域非線性薛定諤方程揭示了高斯孤子的大相移[7]。Huang等利用變分法研究了亞強(qiáng)非局域介質(zhì)中的光束傳輸問(wèn)題[8]。Hu等討論了向列相液晶中非局域孤子的相互作用[9]。Deng等也得到了拉蓋爾高斯光束的討論并且獲得了精確解析解[11]。Bai等利用變分法討論了非局域非線性介質(zhì)中的高斯光束的傳輸問(wèn)題[12]。

      本文利用變分法解析出了(1+2)維非局域非線性薛定諤方程的解,并給出了數(shù)值模擬。討論了厄米高斯光束在非局域非線性介質(zhì)里面的傳輸特性,得到了厄米高斯光束解析解。數(shù)值模擬顯示厄米高斯光束能夠傳輸一段較長(zhǎng)的距離而束寬保持不變,隨著非局域程度的增大,解析解愈加接近數(shù)值解。

      3 結(jié) 論

      用解析的方法研究了非局域非線性介質(zhì)中光束的傳輸特性,通過(guò)對(duì)非線性介質(zhì)中響應(yīng)函數(shù)的展開(kāi),使得非線性薛定諤方程得以簡(jiǎn)化,得到光束各參量在傳輸過(guò)程中的演化規(guī)律,求解出高階高斯光束孤子解。通過(guò)解析解與數(shù)值模擬比較,發(fā)現(xiàn)隨著非局域程度的增加,解析解更加接近數(shù)值解。

      參考文獻(xiàn):

      [1] SNYDER A W,MITCHELL D J.Accessible solitons[J].Science,1997,276(6):1538-1541.

      [2] CONTI C,PECCIANTI M,ASSANTO G.Route to nonlocality and observation of accessible solitons[J].Physical Review Letters,2003,91(7):073901-1-4.

      [3] CONTI C,PECCIANTI M,ASSANTO G.Observation of optical spatial solitons in a highly nonlocal medium[J].Physical Review Letters,2004,92(11):113902-1-4.

      [4] ROTSCHILD C,COHEN O,MANELA O,et al.Solitons in nonlinear media with an infinite range of nonlocality: First observation of coherent elliptic solitons and of vortex-ring solitons[J].Physical Review Letters2005,95(21):213904-1-4.

      [5] PECCIANTI M,CONTI C,ASSANTO G.All-optical switching and logic gating with spatial solitons in liquid crystals[J].Applied Physics Letters,2002,81(18):3335-3337.

      [6] PECCIANTI M,BRZDAKIEWICZ K A,ASSANTO G.Nonlocal spatial soliton interactions in nematic liquid crystals[J].Optics Letters,2002,27(16):1460-1462.

      [7] GUO Q,LUO B R,YI F H, et al.Large phase shift of nonlocal optical solitons[J].Physical Review,2004,69(1):016602-1-8.

      [8] HUANG Y,GUO Q,CAO J N.Optical beams in lossy nonlocal Kerr media[J].Optics Communications,2006,261(1):175-180.

      [9] HU W,ZHANG T,GUO Q,et al.Nonlocality-controlled interaction of spatial solitons in nematic liquid crystals[J].Applied Physics Letters,2006,89(7):071111-1-3.

      [10] BUCCOLIERO D,DESYATNIKOV A S,KROLIKOWSKI W,et al.Laguerre and Hermite soliton clusters in nonlocal nonlinear media[J].Physical Review Letters,2007,98(5):053901-1-4.

      [11] DENG D M,ZHAO X,GUO Q, et al.Hermite-Gaussian breathers and solitons in strongly nonlocal nonlinear media[J].Journal of the Optical Society of America B,2007,24(9):2537-2544.

      [12] BAI D F,HUANG C C,HE J F, et al.Variational solutions for Hermite-Gaussian solitons in nonlocal nonlinear media[J].Chinese Physics B,2009,18(7):2853-2857.

      [13] OUYANG S G,GUO Q,LAN S, et al.The solutions of the strongly nonlocal spatial solitons with several types of nonlocal response functions[J].Chinese Physics, 2007,16(8):2325-2330.

      [14] OUYANG S G,GUO Q,WU L, et al.Conservation laws of the generalized nonlocal nonlinear Schrodinger equation[J].Chinese Physics,2007,16(8):2331-2337.

      [15] BAI Z Y,DENG D M,GUO Q.Elegant Ince-Gaussian beams in a quadratic-index medium[J].Chinese Physics B,2011,20(9):094202.

      [16] BAI Z Y,DENG D M,GUO Q.Elegant Ince-Gaussian breathers in strongly nonlocal nonlinear media[J].Chinese Physics B,2012,21(6):064218.

      (編輯:程愛(ài)婕)

      猜你喜歡
      孤子
      熔融耦合器中耦合模式與新型孤子結(jié)構(gòu)*
      修正KdV-sinh-Gordon方程的實(shí)N孤子解及復(fù)N孤子解
      一個(gè)新的可積廣義超孤子族及其自相容源、守恒律
      變系數(shù)Hirota方程的相互作用研究
      非線性光學(xué)中的暗孤子分子*
      (3+1)維Potential-Yu-Toda-Sasa-Fukuyama方程新的多周期孤子解
      (2+1)-維破裂孤子方程的群葉狀方法和顯式解
      廣義Broer-Kaup-Kupershmidt孤子方程的擬周期解
      兩個(gè)孤子方程的高階Painlevé截?cái)嗾归_(kāi)
      簡(jiǎn)化的雙線性法求(2+1)維非對(duì)稱(chēng)Nizhnik-Novikov-Veselov系統(tǒng)的多孤子解
      二连浩特市| 丰顺县| 锦屏县| 商河县| 武汉市| 南宫市| 玉林市| 沈阳市| 崇信县| 英超| 武山县| 常宁市| 普陀区| 长宁区| 施秉县| 林芝县| 安新县| 法库县| 孝义市| 沁水县| 台州市| 广灵县| 启东市| 合作市| 玛多县| 兰西县| 静安区| 道孚县| 井研县| 大竹县| 潮州市| 元氏县| 广宗县| 崇礼县| 丹东市| 铜陵市| 民权县| 辰溪县| 平湖市| 定襄县| 海口市|