許紹元
(韓山師范學(xué)院數(shù)學(xué)與統(tǒng)計學(xué)院,廣東潮州 521041)
由6個相似壓縮確定的自相似Cantor集的Hausdorff測度的準(zhǔn)確值
許紹元
(韓山師范學(xué)院數(shù)學(xué)與統(tǒng)計學(xué)院,廣東潮州 521041)
研究了一個由6個相似壓縮確定的滿足開集條件的自相似Cantor集,得到了它的Hausdorff測度的準(zhǔn)確值.
自相似Cantor集;Hausdorff維數(shù)與Hausdorff測度;開集條件
眾所周知,Hausdorff維數(shù)與Hausdorff測度是分形幾何的理論基礎(chǔ),因此計算或估計分形集的Hausdorff維數(shù)與Hausdorff測度是十分重要的問題.一般來說,分形集的Hausdorff維數(shù)與Hausdorff測度計算或估計都十分困難,而計算分形的Hausdorff測度就更難了.至今為止,研究最成功的分形是滿足開集條件的自相似集,它的Hausdorff維數(shù)等于自相似維數(shù),其Hausdorff測度則是一個有限正數(shù).但目前,就是對這么一個簡單的分形,其Hausdorff測度的計算仍然十分困難.
近年來,許多學(xué)者試圖計算自相似集的Hausdorff測度的準(zhǔn)確值,并得到一些有用的結(jié)果(見文獻[1-12]),其中文獻[12]介紹的一種基本方法(見下文引理2.1)計算滿足開集條件的自相似集的Hausdorff測度的準(zhǔn)確值,并舉例計算出由4個相似壓縮構(gòu)成的迭代函數(shù)系所確定自相似Cantor集的Hausdorff測度的準(zhǔn)確值.本文同樣采用這一方法,討論了由六個相似壓縮構(gòu)成的迭代函數(shù)系所確定的自相似Cantor集,得到了它的Hausdorff測度的準(zhǔn)確值.
一些基本概念、符號和已知結(jié)果見文獻[9-12].
首先,給出一個有用的引理.
(致謝:衷心感謝審稿人仔細審閱原稿,并提出了寶貴的修改意見.)
[1]ZHOU Z,F(xiàn)ENG L.Twelve Open Problems on the Exact Value of the Hausdorff Measure and on Topological Entropy:a Brief Survey of Recent Results[J].Nonlinearity,2004,17:493-502.
[2]MARION J.Mesures de Hausdorff D’ensembles Fractals[J].Ann.Sci.Math.Quebec,1987,11(1):111-132.
[3]SRICHARTS R S.Exact Hausdorff Measure and Intervals of Maximum Density for Cantor Sets[J].Trans.Amer.Math.Soc.,1999,351(9):3725-3741.
[4]WU M.The Hausdorff Measure of Some Sierpinski Carpets[J].Chaos,Solitons and Fractals,2005(24):717-731.
[5]ZHOU Z.Hausdorff Measure of Self-Similar Set-the Koch Curve[J].Sci.China.(Ser.A):1998,41(7):723-728.
[6]ZHOU Z,F(xiàn)ENG L.A New Estimate of the Hausdorff Measure of the Sierpinski Gasket[J].Nonlinearity,2000,13:479-491.
[7]ZHOU Z,WU M.The Hausdorff Measure of a Sierpinski Carpet[J].Sci.China,(Ser.A),1999,29(2):138-144(in Chinese).
[8]ZHOU Z,WU M,Zhao Y.The Hausdorff Measure of a Class of Generalized Sierpinski Sponges[J].Chin.J.Contemp.Math.,2001,22:55-64.
[9]FALCONER K J.The Geometry of Fractal Set[M].Cambridge:Cambridge University Press,1985.
[10]FALCONER K J.Fractal Geometry-Mathematical Foundations and Applications[M].New York:John and Sons,1990.
[11]HUTCHINSON J E.Fractals and Self-similarity[J].Indiana Univ.Math.J.1981,30:713-747.
[12]許紹元,周作領(lǐng),蘇維宜.自相似集的質(zhì)量分布原理與Hausdorff測度及其應(yīng)用[J].數(shù)學(xué)學(xué)報,2010,53(1): 117-124.
On the Exact Hausdorff Measure of a Self-similar Cantor Set Yielded by 6 Similarities
XU Shao-yuan
(School of Mathematics and Statistics,Hanshan Normal University,Chaozhou,Guangdong,521041)
In this paper,a self-similar Cantor set with the open set condition(OSC)yielded by 6 similarities is discussed and its exact Hausdorff measure is computed.
self-similar Cantor set;Hausdorff measure and dimension;open set condition
O 189.1
A
1007-6883(2015)06-0001-07
責(zé)任編輯 朱本華
2015-10-29
韓山師范學(xué)院創(chuàng)新強系項目(項目編號:2013).
許紹元(1964-),男,湖北武漢人,韓山師范學(xué)院數(shù)學(xué)與統(tǒng)計學(xué)院教授.