突破帶電粒子問題的兩種思路與兩種方法
輝志文
(鳳慶一中云南 臨滄675900)
收稿日期:(2015-02-25)
帶電粒子在磁場中運動的問題,是高中物理學習的重點,對學生的空間想象能力、物理過程的分析能力以及物理規(guī)律的綜合應(yīng)用能力都有很高的要求.尤其是臨界問題,粒子的運動軌跡往往是一個殘缺圓,因此會出現(xiàn)一系列最值.由于此類問題綜合性強,思維能力要求較高,具有很強的選拔功能,因此成為歷年高考的熱點.筆者在實際教學中做了兩種方法和兩種思路突破嘗試,僅供各位同仁參考.
1確定半徑的兩種方法
方法1:已知磁感應(yīng)強度和入射速度,直接用洛倫茲力提供向心力計算.
(1)粒子在Ⅱ區(qū)域勻強磁場中運動的軌跡半徑;
(2)O,M間的距離;
(3)粒子從M點出發(fā)到第二次通過CD邊界所經(jīng)歷的時間.
圖1
解析:(1)如圖2所示,從M到A的過程中,粒子做類平拋運動,則
由洛倫茲力提供向心力
可得
(2)、(3)略.
圖2
方法2:已知某段距離,磁感應(yīng)強度或者入射速度未知,構(gòu)建直角三角形,用幾何關(guān)系求解.
圖3
【例2】如圖3所示,電子自靜止開始經(jīng)M,N板間(兩板間的電壓為U)的電場加速后,從A點垂直于磁場邊界射入寬度為d的勻強磁場中,電子離開磁場時的位置P偏離入射方向的距離為L,如圖所示.求:勻強磁場的磁感應(yīng)強度.(已知電子的質(zhì)量為m,電荷量為e)
解析:設(shè)電子經(jīng)加速電場加速后速度為v0,則
可得
由幾何關(guān)系得
d2+(r-L)2=r2
可得
洛倫茲力提供向心力
則
2動態(tài)問題兩種思路
思路1:已知磁感應(yīng)強度B和速度的方向,不知道速度的大小,或者已知速度,磁感應(yīng)強度B大小未知,運動軌跡是一簇圓心共線、大小不等的內(nèi)切圓,即通過改變圓的大小找臨界條件.
【例3】如圖4所示,一帶電微粒質(zhì)量m=2.0×10-11kg,電荷量q=+1.0×10-5C,從靜止開始經(jīng)電壓U1=100 V的電場加速后,水平進入兩平行金屬板間的偏轉(zhuǎn)電場中,微粒射出電場時的偏轉(zhuǎn)角θ=30°,并接著進入一個方向垂直紙面向里、寬度D=34.6 cm的勻強磁場區(qū)域.已知偏轉(zhuǎn)電場中金屬板長L=20 cm,兩板間距d=17.3 cm,重力忽略不計.求:
(1)帶電微粒進入偏轉(zhuǎn)電場時的速率v1;
(2)偏轉(zhuǎn)電場中兩金屬板間的電壓U2;
(3)為使帶電微粒不會由磁場右邊射出,該勻強磁場的磁感應(yīng)強度B至少多大.
圖4
分析:如圖5所示,通過作圖可以看到,隨著v0的增大,圓半徑增大,臨界狀態(tài)就是圓與右邊界相切.
圖5
類似還有圖6幾種情況.
圖6
思路2:磁感應(yīng)強度和速度大小已知,速度方向具有任意性,以入射點為固定點,將運動軌跡圓旋轉(zhuǎn)一周找臨界條件.
圖7
圖8
【例5】電子質(zhì)量為m,電荷量為e,從坐標原點O處沿xOy平面射入第一象限,射入時速度方向不同,速度大小均為v0,如圖9所示.現(xiàn)在某一區(qū)域加一方向向外且垂直于xOy平面的勻強磁場,磁感應(yīng)強度為B,若這些電子穿過磁場后都能垂直射到熒光屏MN上,熒光屏與y軸平行,求:
(1)熒光屏上光斑的長度;
(2)所加磁場范圍的最小面積.
圖9
圖10
若改為“磁場方向垂直于xOy平面向里,熒光屏MN移至y軸右側(cè)”,其他條件不變,情況又怎樣呢?(所加磁場的最小范圍為一“樹葉”形狀,如圖11所示)
圖11
綜合以上題型,我們可以看到,這些問題的解答要求學生有較高分析思維能力以及想象能力,這需要在平時的復習中讓學生涉獵一些有代表性的習題,這樣才能使學生在高考應(yīng)試中得心就手,應(yīng)對自如.
參 考 文 獻
1王良調(diào).聯(lián)想解題 高中物理.吉林:吉林人民出版社,2000.750~752
2胡開文.北大考典(物理).北京:北京大學出版社, 2005.76~77
3陳宜生.大學物理(上冊) .天津:天津大學出版社,1999.61~63