劉艷秋,盛樹力,張新卿
星形膠質(zhì)細(xì)胞在阿爾茨海默病發(fā)病機(jī)制中的作用
劉艷秋,盛樹力,張新卿*
(首都醫(yī)科大學(xué)宣武醫(yī)院神經(jīng)內(nèi)科,北京 100053)
星形膠質(zhì)細(xì)胞是維持中樞神經(jīng)系統(tǒng)內(nèi)環(huán)境穩(wěn)定、實(shí)現(xiàn)防御和再生功能的基石。星形膠質(zhì)細(xì)胞功能缺失和反應(yīng)性下降導(dǎo)致了大腦的生理老化和神經(jīng)系統(tǒng)變性病的發(fā)生。星形膠質(zhì)細(xì)胞在大腦老化以及阿爾茨海默病(AD)的病理生理機(jī)制中起重要作用,且參與人腦能量代謝。藥物干預(yù)可以調(diào)節(jié)星形膠質(zhì)細(xì)胞的形態(tài)和功能,這提示星形膠質(zhì)細(xì)胞有可能被用來作為治療AD的靶點(diǎn)。本文就星形膠質(zhì)細(xì)胞在正常老化機(jī)制及AD發(fā)病機(jī)制中的作用進(jìn)行綜述。
星形膠質(zhì)細(xì)胞;生理老化;阿爾茨海默病
認(rèn)知功能的減退與腦萎縮常相伴出現(xiàn)。隨著年齡的增長,認(rèn)知域的各個組成部分都可能受到不同程度的影響[1]。阿爾茨海默?。ˋlzheimer’s disease,AD)作為老年期癡呆中最常見的癡呆類型,受其影響的世界人口數(shù)不斷持續(xù)增加。既往研究認(rèn)為,老化是神經(jīng)系統(tǒng)退行性疾病的主要危險因素,與年齡相關(guān)的神經(jīng)元的體積變小或丟失,導(dǎo)致了腦萎縮。實(shí)際上,正常的大腦老化與神經(jīng)元的顯著缺失并無關(guān)聯(lián),神經(jīng)元的數(shù)量在生理老化過程中并沒有顯著改變[2],且突觸的總數(shù)量和密度(至少在海馬)并不受老化的影響[3]。目前研究表明,星形膠質(zhì)細(xì)胞功能缺失和反應(yīng)性下降導(dǎo)致了大腦的生理老化和神經(jīng)系統(tǒng)變性病的發(fā)生[4]。
神經(jīng)膠質(zhì)細(xì)胞的基本功能是維持中樞神經(jīng)系統(tǒng)內(nèi)環(huán)境的穩(wěn)定,防止其受到外界的侵襲[5]。星形膠質(zhì)細(xì)胞是神經(jīng)膠質(zhì)細(xì)胞中最多樣化的細(xì)胞類型,是腦內(nèi)數(shù)量最多的細(xì)胞,具有調(diào)節(jié)血腦屏障,控制中樞神經(jīng)系統(tǒng)微環(huán)境,保護(hù)神經(jīng)系統(tǒng)免于損害的作用[6]?;屹|(zhì)中的星形膠質(zhì)細(xì)胞將神經(jīng)組織劃分為相對獨(dú)立的神經(jīng)元?星形膠質(zhì)細(xì)胞?血管單元,通過其周圍突起連接到血管系統(tǒng),攝取血液中的營養(yǎng)成份供養(yǎng)神經(jīng)元[7]。神經(jīng)元并不直接與腦微血管連接,在某一腦區(qū)神經(jīng)元激活時,通過神經(jīng)元?星形膠質(zhì)細(xì)胞?血管單元向激活的神經(jīng)元提供產(chǎn)能底物,以保證神經(jīng)元的正常功能。星形膠質(zhì)細(xì)胞膜覆蓋大部分突觸聯(lián)接和神經(jīng)元,承載著許多泵和轉(zhuǎn)運(yùn)體,負(fù)責(zé)運(yùn)輸離子、代謝產(chǎn)物、活性氧和維持細(xì)胞間質(zhì)以及神經(jīng)遞質(zhì)的穩(wěn)態(tài)平衡[8]。星形膠質(zhì)細(xì)胞的終足附著于血管壁,產(chǎn)生“神經(jīng)膠質(zhì)?淋巴系統(tǒng)(glymphatic)”,促進(jìn)中樞神經(jīng)系統(tǒng)內(nèi)代謝產(chǎn)物的清除[9]。星形膠質(zhì)細(xì)胞還可作為中樞神經(jīng)系統(tǒng)的分泌細(xì)胞,釋放神經(jīng)遞質(zhì)、神經(jīng)調(diào)質(zhì)和營養(yǎng)因子影響中樞神經(jīng)系統(tǒng)的可塑性以及信息處理能力[10]。
神經(jīng)膠質(zhì)細(xì)胞通過神經(jīng)保護(hù)作用或啟動復(fù)雜的激活程序來應(yīng)對病理損傷,這個過程也被稱為神經(jīng)膠質(zhì)細(xì)胞增生[11]。膠質(zhì)細(xì)胞增生反應(yīng)是一種保護(hù)性反應(yīng),神經(jīng)膠質(zhì)細(xì)胞功能障礙會導(dǎo)致中樞神經(jīng)系統(tǒng)內(nèi)環(huán)境失衡和防御能力下降。
星形膠質(zhì)細(xì)胞病理學(xué)是近年來提出的新理論[12]。越來越多的實(shí)驗(yàn)數(shù)據(jù)表明,人們對于星形膠質(zhì)細(xì)胞在不同形式的神經(jīng)病理學(xué)中的作用有了更廣闊更有深度的認(rèn)識。新觀點(diǎn)認(rèn)為:反應(yīng)性的星形膠質(zhì)細(xì)胞增生代表在不同的病理背景下大量細(xì)胞的特異性改變,是一種防御過程。反應(yīng)性的星形膠質(zhì)細(xì)胞增加了神經(jīng)保護(hù)作用,給受損的神經(jīng)元以營養(yǎng)支持,有助于星形膠質(zhì)瘢痕的形成,將中樞神經(jīng)系統(tǒng)內(nèi)的受損區(qū)域與未受損區(qū)域隔離開,以重建血腦屏障,有助于損傷后細(xì)胞再生[11]。神經(jīng)系統(tǒng)變性病中所見到的星形膠質(zhì)細(xì)胞在形態(tài)學(xué)上的萎縮或功能上的缺陷則是支持這一新觀點(diǎn)的證據(jù)之一[13]。
星形膠質(zhì)細(xì)胞的數(shù)量并不隨年齡的變化而變化[2,14]。隨著年齡的增長,星形膠質(zhì)細(xì)胞具有復(fù)雜的特定區(qū)域的變化[15]。星形膠質(zhì)細(xì)胞的氧化代謝隨年齡增加,可能會限制它們供給神經(jīng)元代謝底物的能力[16]。年齡依賴性的膠質(zhì)纖維酸性蛋白(glial fibrillary acidic protein,GFAP)表達(dá)增加及星形膠質(zhì)細(xì)胞肥大可以反映星形膠質(zhì)細(xì)胞的可塑性。年老的大鼠參加體力活動時,海馬區(qū)的GFAP表達(dá)增加,星形膠質(zhì)細(xì)胞體積增加,形態(tài)學(xué)復(fù)雜性增加,星形膠質(zhì)細(xì)胞的這些改變與認(rèn)知功能的改善是一致的[17]。
年齡影響星形膠質(zhì)細(xì)胞的生理機(jī)制至今未明。年齡影響促離子型谷氨酸和嘌呤受體的功能表達(dá)[18],這些受體的密度先成倍增加,然后迅速下降。老年人星形膠質(zhì)細(xì)胞中Ca2+信號轉(zhuǎn)導(dǎo)下降[19],引起星形膠質(zhì)細(xì)胞釋放神經(jīng)活性物質(zhì)減少。年老時星形膠質(zhì)細(xì)胞血管周圍突起的水通道蛋白4(aquaporin-4,AQP4)表達(dá)減少,通過神經(jīng)膠質(zhì)?淋巴通路的腦實(shí)質(zhì)的廓清會顯著減少[20]。調(diào)節(jié)星形膠質(zhì)細(xì)胞膜上的AQP4密度的囊泡轉(zhuǎn)運(yùn),可能是促進(jìn)老化、引起一系列神經(jīng)系統(tǒng)疾病的關(guān)鍵環(huán)節(jié)。囊泡轉(zhuǎn)運(yùn)可能涉及星形膠質(zhì)細(xì)胞形態(tài)學(xué)改變,促進(jìn)腦脊液波動性清除的晝夜間隙流量的變化[21]。
Alois Alzheimer博士最早發(fā)現(xiàn)了AD的神經(jīng)膠質(zhì)細(xì)胞在病理學(xué)上的可能意義,發(fā)現(xiàn)了神經(jīng)膠質(zhì)細(xì)胞與受損神經(jīng)元的緊密聯(lián)系,且神經(jīng)膠質(zhì)細(xì)胞是老年斑的組成部分[22]。AD中星形膠質(zhì)細(xì)胞的改變往往先于老年斑和神經(jīng)原纖維纏結(jié)的形成[23]。
AD的發(fā)病機(jī)制不明,依據(jù)β淀粉樣肽(amyloid β,Aβ)沉積學(xué)說進(jìn)行的藥物研發(fā)迄今未取得預(yù)期效果。越來越多的人開始關(guān)注AD的“星形膠質(zhì)細(xì)胞假說[5]”,該假說認(rèn)為,AD早期,星形膠質(zhì)細(xì)胞的萎縮減少了其覆蓋區(qū)域神經(jīng)元和神經(jīng)突觸的數(shù)量,影響了突觸傳遞并降低了突觸的可塑性,從而影響神經(jīng)突觸的功能活動。星形膠質(zhì)細(xì)胞的萎縮也影響離子和神經(jīng)遞質(zhì)的穩(wěn)態(tài)平衡,減少其對神經(jīng)元的代謝支持。此外,星形膠質(zhì)細(xì)胞萎縮可能會累及神經(jīng)元?星形膠質(zhì)細(xì)胞?血管單元,減少腦血管的終足覆蓋,從而導(dǎo)致AD早期血管功能障礙。以上這些因素均可導(dǎo)致臨床上出現(xiàn)認(rèn)知功能損害。AD晚期,老年斑的形成觸發(fā)了星形膠質(zhì)細(xì)胞和小膠質(zhì)細(xì)胞的激活,反應(yīng)性星形膠質(zhì)細(xì)胞增生產(chǎn)生炎癥因子前體,上調(diào)誘導(dǎo)型一氧化氮合成酶的表達(dá),為以后老年斑的形成創(chuàng)造條件[24],從而形成了星形膠質(zhì)細(xì)胞與老年斑之間的惡性循環(huán)。反應(yīng)性膠質(zhì)細(xì)胞釋放炎癥因子和神經(jīng)毒性因子,引起神經(jīng)元死亡和腦萎縮,引起嚴(yán)重癡呆[5]。
AD的轉(zhuǎn)基因動物實(shí)驗(yàn)中證實(shí)了星形膠質(zhì)細(xì)胞的萎縮早于Aβ的形成,還觀察到星形膠質(zhì)細(xì)胞的體積、表面積、形態(tài)學(xué)復(fù)雜性較正常動物模型均減少[25],說明AD中星形膠質(zhì)細(xì)胞的結(jié)構(gòu)發(fā)生了變化。
分子影像的不斷發(fā)展使星形膠質(zhì)細(xì)胞的體內(nèi)檢測成為現(xiàn)實(shí)。B型單胺氧化酶(monoamine oxidase-B,MAO-B)主要表達(dá)于星形膠質(zhì)細(xì)胞的線粒體外膜上[26],PET示蹤劑11C-deuterium-L-deprenyl(11C-DED)能與MAO-B特異性結(jié)合[27],這一特性已被用于星形膠質(zhì)細(xì)胞的檢測中。Rodriguez-Vieitez等[28]利用11C-DED作為星形膠質(zhì)細(xì)胞的示蹤劑證實(shí)反應(yīng)性的星形膠質(zhì)細(xì)胞增生發(fā)生于Aβ的沉積以前。
正常星形膠質(zhì)細(xì)胞可清除Aβ,而病態(tài)星形膠質(zhì)細(xì)胞可生成Aβ,促進(jìn)AD病理的形成[28]。有報道稱,星形膠質(zhì)細(xì)胞還有調(diào)節(jié)小膠質(zhì)細(xì)胞對Aβ的吞噬作用,這種調(diào)節(jié)作用依賴于定位在星形膠質(zhì)細(xì)胞中的載脂蛋白E4(apolipoprotein E4,ApoE4)和肝X受體[29]。另外,鈣離子信號失調(diào)是AD的一個重要組成部分,轉(zhuǎn)基因AD動物中,與老年斑有關(guān)的反應(yīng)性星形膠質(zhì)細(xì)胞中可見鈣離子濃度頻繁地異常波動[30]。
星形膠質(zhì)細(xì)胞參與人腦能量代謝,在AD的病理生理機(jī)制中起重要作用[31]。星形膠質(zhì)細(xì)胞是人腦中糖原處理的第一場所,腦代謝成像顯示AD早期患者葡萄糖利用率逐漸下降[32]。AD早期,在Aβ沉積出現(xiàn)之前已有葡萄糖代謝減低[31],這是因?yàn)椋阂环矫嬗捎谌四X中葡萄糖代謝主要發(fā)生在星形膠質(zhì)細(xì)胞,而AD早期星形膠質(zhì)細(xì)胞已出現(xiàn)萎縮,因此糖代謝減低;另一方面,去甲腎上腺素能神經(jīng)核團(tuán)、藍(lán)斑區(qū)具有促進(jìn)星形膠質(zhì)細(xì)胞葡萄糖代謝的作用,由于AD早期去甲腎上腺素能神經(jīng)核團(tuán)、藍(lán)斑區(qū)遭到破壞,因此糖代謝減低。Aβ寡聚體影響膽堿能神經(jīng)元信號轉(zhuǎn)導(dǎo),通過破壞星形膠質(zhì)細(xì)胞葡萄糖代謝來降低突觸功能,從而影響認(rèn)知功能。
星形膠質(zhì)細(xì)胞在AD中的病理學(xué)改變使其成為有希望的治療靶點(diǎn)。首先,可選擇將靶點(diǎn)定位于星形膠質(zhì)細(xì)胞特定的分子中,比如膠質(zhì)纖維酸性蛋白(glial fibrillary acidic protein,GFAP)[5],減少GFAP的表達(dá)可增加突觸的可塑性;其次,可選擇星形膠質(zhì)細(xì)胞穩(wěn)態(tài)級聯(lián)反應(yīng)作為特定靶點(diǎn),尤其是通過控制星形膠質(zhì)細(xì)胞攝取谷氨酰胺來降低興奮毒性[33],增加星形膠質(zhì)細(xì)胞谷氨酸轉(zhuǎn)運(yùn),使神經(jīng)傳遞正?;?。利魯唑或β?內(nèi)酰胺類抗生素即通過增加星形膠質(zhì)細(xì)胞谷氨酸轉(zhuǎn)運(yùn)體的表達(dá)這一機(jī)制起到神經(jīng)保護(hù)作用[33,34]。然而,更有前景的治療方案[5]則傾向于通過調(diào)節(jié)細(xì)胞的增殖與分化來調(diào)節(jié)星形膠質(zhì)細(xì)胞的功能。
目前尚無治愈AD的方法,現(xiàn)有的治療方案只是對癥治療。已有多種治療方案以Aβ為治療靶點(diǎn),但并沒有改善認(rèn)知功能或延緩疾病進(jìn)程[35],提示在AD的復(fù)雜病理機(jī)制中,Aβ的沉積或許只是其中一個環(huán)節(jié),可能還有更多因素參與。星形膠質(zhì)細(xì)胞可能在AD發(fā)病機(jī)制中起到重要作用,使其有希望成為AD新的治療靶點(diǎn)。
[1] Hedden T, Gabrieli JD. Insights into the ageing mind: a view from cognitive neuroscience[J]. Nat Rev Neurosci, 2004, 5(2): 87?96.
[2] Fabricius K, Jacobsen JS, Pakkenberg B. Effect of age on neocortical brain cells in 90+year old human females—a cell counting study[J]. Neurobiol Aging, 2013, 34(1): 91?99.
[3] Geinisman Y, Ganeshina O, Yoshida R,. Aging, spatial learning, and total synapse number in the rat CA1 stratum radiatum[J]. Neurobiol Aging, 2004, 25(3): 407?416.
[4] Phatnani H, Maniatis T. Astrocytes in neurodegenerative diseases[J]. Cold Spring Harb Perspect Biol, 2015, 7(6): a020628.
[5] Verkhratsky A, Olabarria M, Noristani HN,. Astrocytes in Alzheimer’s disease[J]. Neurotherapeutics, 2010, 7(4): 399?412.
[6] Giaume C, Kirchhoff F, Matute C,. Glia: the fulcrum of brain diseases[J]. Cell Death Differ, 2007, 14(7): 1324?1335.
[7] Nedergaard M, Ransom B, Goldman SA. New roles for astrocytes: redefining the functional architecture of the brain[J]. Trends Neurosci, 2003, 26(10): 523?530.
[8] Verkhratsky A, Marutle A, Rodriguez-Arellano JJ,. Glial asthenia and functional paralysis: a new perspective on neurodegeneration and Alzheimer’s disease[J]. Neuroscientist, 2014, Aug 14. pii: 1073858414547132. [Epub ahead of print]
[9] Iliff JJ, Nedergaard M. Is there a cerebral lymphatic system[J]? Stroke, 2013, 44(6 Suppl 1): S93?S95.
[10] Martineau M, Parpura V, Mothet JP. Cell-type specific mechanisms of D-serine uptake and release in the brain[J]. Front Synaptic Neurosci, 2014, 6: 12.
[11] Pekny M, Wilhelmsson U, Pekna M. The dual role of astrocyte activation and reactive gliosis[J]. Neurosci Lett, 2014, 565: 30?38.
[12] Verkhratsky A, Sofroniew MV, Messing A,. Neurological diseases as primary gliopathies: a reassessment of neurocentrism[J]. ASN Neuro, 2012, 4(3): e00082.
[13] Rajkowska G, Stockmeier CA. Astrocyte pathology in major depressive disorder: insights from human postmortem brain tissue[J]. Curr Drug Targets, 2013, 14(11): 1225?1236.
[14] Grosche A, Grosche J, Tackenberg M,. Versatile and simple approach to determine astrocyte territories in mouse neocortex and hippocampus[J]. PLoS One, 2013, 8(7): e69143.
[15] Rodriguez JJ, Yeh CY, Terzieva S,. Complex and region-specific changes in astroglial markers in the aging brain[J]. Neurobiol Aging, 2014, 35(1): 15?23.
[16] Jiang T, Cadenas E. Astrocytic metabolic and inflammatory changes as a function of age[J]. Aging Cell, 2014, 13(6): 1059?1067.
[17] Sampedro-Piquero P, De Bartolo P, Petrosini L,. Astrocytic plasticity as a possible mediator of the cognitive improvements after environmental enrichment in aged rats[J]. Neurobiol Learn Mem, 2014, 114: 16?25.
[18] Lalo U, Palygin O, North RA,. Age-dependent remodelling of ionotropic signalling in cortical astroglia[J]. Aging Cell, 2011, 10(3): 392?402.
[19] Palygin O, Lalo U, Verkhratsky A,. Ionotropic NMDA and P2X1/5 receptors mediate synaptically induced Ca2+signalling in cortical astrocytes[J]. Cell Calcium, 2010, 48(4): 225?231.
[20] Kress BT, Iliff JJ, Xia M,. Impairment of paravascular clearance pathways in the aging brain[J]. Ann Neurol, 2014, 76(6): 845?861.
[21] Xie L, Kang H, Xu Q,. Sleep drives metabolite clearance from the adult brain[J]. Science, 2013, 342(6156): 373?377.
[22] Cipriani G, Dolciotti C, Picchi L,. Alzheimer and his disease: a brief history[J]. Neurol Sci, 2011, 32(2): 275?279.
[23] Orre M, Kamphuis W, Osborn LM,. Isolation of glia from Alzheimer’s mice reveals inflammation and dysfunction[J]. Neurobiol Aging, 2014, 35(12): 2746?2760.
[24] Yan LJ, Xiao M, Chen R,. Metabolic dysfunction of astrocyte: an initiating factor in beta-amyloid pathology[J]? Aging Neurodegener, 2013, 1(1): 7?14.
[25] Beauquis J, Pavia P, Pomilio C,. Environmental enrichment prevents astroglial pathological changes in the hippocampus of APP transgenic mice, model of Alzheimer’s disease[J]. Exp Neurol, 2013, 239: 28?37.
[26] Fowler JS, Logan J, Volkow ND,. Translational neuroimaging: positron emission tomography studies of monoamine oxidase[J]. Mol Imaging Biol, 2005, 7(6): 377?387.
[27] Carter SF, Scholl M, Almkvist O,. Evidence for astrocytosis in prodromal Alzheimer’s disease provided by11C-deuterium-L-deprenyl: a multitracer PET paradigm combining11C-Pittsburgh compound B and18F-FDG[J]. J Nucl Med, 2012, 53(1): 37?46.
[28] Rodriguez-Vieitez E, Ni R, Gulyás B,. Astrocytosis precedes amyloid plaque deposition in Alzheimer APPswe transgenic mouse brain: a correlative positron emission tomography andimaging study[J]. Eur J Nucl Med Mol Imaging, 2015, 42(7): 1119?1132.
[29] Terwel D, Steffensen KR, Verghese PB,. Critical role of astroglial apolipoprotein E and liver X receptor-α expression for microglial Aβ phagocytosis[J]. J Neurosci, 2011, 31(19): 7049?7059.
[30] Kuchibhotla KV, Lattarulo CR, Hyman BT,. Synchronous hyperactivity and intercellular calcium waves in astrocytes in Alzheimer mice[J]. Science, 2009, 323(5918): 1211?1215.
[31] Hertz L, Chen Y, Waagepetersen HS. Effects of ketone bodies in Alzheimer’s disease in relation to neural hypometabolism, β-amyloid toxicity, and astrocyte function[J]. J Neurochem, 2015, 134(1): 7?20.
[32] Mosconi L, Pupi A, De Leon MJ. Brain glucose hypometabolism and oxidative stress in preclinical Alzheimer’s disease[J]. Ann N Y Acad Sci, 2008, 1147: 180?195.
[33] Frizzo ME, Dall’Onder LP, Dalcin KB,. Riluzole enhances glutamate uptake in rat astrocyte cultures[J]. Cell Mol Neurobiol, 2004, 24(1): 123?128.
[34] Ji HF, Shen L, Zhang HY. Beta-lactam antibiotics are multipotent agents to combat neurological diseases[J]. Biochem Biophys Res Commun, 2005, 333(3): 661?663.
[35] Biran Y, Masters CL, Barnham KJ,. Pharmacotherapeutic targets in Alzheimer’s disease[J]. J Cell Mol Med, 2009, 13(1): 61?86.
(編輯: 周宇紅)
Role of astrocytes in pathogenesis of Alzheimer’s disease
LIU Yan-Qiu, SHENG Shu-Li, ZHANG Xin-Qing*
(Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China)
Astrocytes are fundamental for homoeostasis, defence and regeneration of the central nervous system. Loss of astroglial function and decrease of astroglial reactivity lead to the physical aging of brain and incidence of neurodegenerative diseases. Astrocytes play an important role in cerebral aging and in the pathophysiogenesis of Alzheimer’s disease (AD), and also take part in the energy metabolism in the brain. Medication can regulate the morphology and functions of astrocytes, suggesting that astrocytes can be regarded as a target for the treatment of AD. In this article, we reviewed the roles of astrocytes in the physiological aging and the pathogenesis of AD.
astrocyte; physiological aging; Alzheimer’s disease
R592;R741
A
10.11915/j.issn.1671-5403.2016.02.037
2015?08?06;
2015?08?28
張新卿,E-mail: xinqingzhang@263.net