黃 羿,陳國平
(吉首大學(xué)數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,湖南 吉首 416000)
?
分?jǐn)?shù)階脈沖微分方程邊值問題解的存在性
黃羿,陳國平
(吉首大學(xué)數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,湖南 吉首 416000)
摘要:運(yùn)用臨界點(diǎn)理論中的山路引理,研究一類具有狄利克雷邊值問題的分?jǐn)?shù)階脈沖微分方程解的存在性,證明了解的存在性結(jié)果.
關(guān)鍵詞:脈沖;分?jǐn)?shù)階;微分方程;狄利克雷邊值條件;臨界點(diǎn)理論
作為整數(shù)階微分方程的推廣,分?jǐn)?shù)階微分方程用來描述復(fù)雜物理和動(dòng)力學(xué)問題時(shí),可以更加準(zhǔn)確地描述非線性非保守的動(dòng)力學(xué)行為.同時(shí),分?jǐn)?shù)階微積分的全局相關(guān)性可以更優(yōu)美地刻畫現(xiàn)實(shí)世界中的現(xiàn)象和規(guī)律[1-4].因而,近幾十年來,分?jǐn)?shù)階微積分被廣泛地應(yīng)用于生物、物理、電子、工程及控制論等領(lǐng)域[5-9].目前,關(guān)于分?jǐn)?shù)階微分方程的研究包括解的存在性和唯一性、解的穩(wěn)定性、邊值問題等解的動(dòng)力學(xué)性質(zhì)[10-14],主要研究方法包括不動(dòng)點(diǎn)定理、拓?fù)涠壤碚?延拓定理和重合度理論)、比較方法(上下解方法和單調(diào)迭代方法)和臨界點(diǎn)理論[5,11,15-21].脈沖微分方程能夠充分考慮到瞬時(shí)突變現(xiàn)象對(duì)狀態(tài)的影響,更深刻、精確地反映事物的變化規(guī)律,具有很強(qiáng)的現(xiàn)實(shí)意義[22-23],在醫(yī)學(xué)、生物、控制論及航天運(yùn)動(dòng)模型中廣泛存在[24-27].
2012年,文獻(xiàn)[16]首先使用臨界點(diǎn)理論研究分?jǐn)?shù)階微分方程解的存在性,事實(shí)證明這種方法對(duì)于解決帶左右分?jǐn)?shù)階導(dǎo)數(shù)算子的物理模型非常有效.據(jù)了解,運(yùn)用臨界點(diǎn)理論解決分?jǐn)?shù)階脈沖微分方程邊值問題解的存在性的文獻(xiàn)鮮少出現(xiàn).筆者嘗試使用臨界點(diǎn)理論中的一般山路引理,研究下列分?jǐn)?shù)階脈沖微分方程方程邊值問題解的存在性:
(1)
1預(yù)備知識(shí)
定義1[1]設(shè)函數(shù)f∈ACn([a,b],RN),當(dāng)n-1≤α 函數(shù)的α階Riemann-Liouville右導(dǎo)數(shù)為 定義2[1]設(shè)函數(shù)f∈ACn([a,b],RN),當(dāng)n-1≤α 為了使用方便,引入分?jǐn)?shù)階導(dǎo)數(shù)的幾點(diǎn)性質(zhì),其中f(t)和g(t)為函數(shù),α和μ為常數(shù)[2]. 性質(zhì)1Dαμ(f(t)+g(t))=Dαμf(t)+Dαμg(t). 定義3[5]設(shè)E是一個(gè)實(shí)Banach空間,F是E上具有連續(xù)Frechet微分的泛函,即F∈C1(E,R).如果對(duì)于?{un}?E,{F(un)}有界且F′(un)→0(n→∞),蘊(yùn)含{un}在E中存在收斂的子序列,那么稱泛函F在E上滿足Palais-Smale條件(簡稱為PS條件). 定義范數(shù) (2) (3) 聯(lián)立(2),(3)式,得 (4) 其中 (5) 則泛函φ可導(dǎo).由性質(zhì)1和性質(zhì)2知 (6) 從而函數(shù)u是分?jǐn)?shù)階脈沖邊值問題(1)的一個(gè)弱解. 2主要結(jié)果及證明 定理2假設(shè)以下條件成立: (H1)F∈C([0,T]×RN,R),存在μ∈[0,1/2),M>0,使得對(duì)?x∈RN,當(dāng)|x|≥M,M>0,t∈[0,T]時(shí),有0 (H2)[23]f是次線性的,即存在常數(shù)a>0,b>0和γ∈[0,1),使得對(duì)?(t,x)∈[0,T]×R有|f(t,x)|≤a+b|x|r. (H3)[23]脈沖函數(shù)次線性增長,即存在常數(shù)aj>0,bj>0和γj∈[0,1),使得對(duì)?x∈R,有|Ij(x)|≤aj+bj|x|γj(j=1,2,…,p). 當(dāng)α∈(1/2,1]時(shí),分?jǐn)?shù)階脈沖邊值問題(1)至少有1個(gè)解. 首先引入幾個(gè)重要的引理: 引理4[28]假設(shè)條件(H1)成立,對(duì)?t∈[0,T],下列結(jié)論成立: 然后考慮α∈(1/2,1]時(shí),分?jǐn)?shù)階脈沖邊值問題(1)解的存在性. 第1步:驗(yàn)證φ(uk)滿足(PS)條件. 從而知φ(uk)滿足(PS)條件. 第2步:用臨界點(diǎn)理論證明脈沖邊值問題(1)的弱解存在. 由引理4知, 參考文獻(xiàn): [1]KILBASAA,RIVASTAVAM,TRUJILLOJJ.TheoryandApplicationsofFractionalDifferentialEquations[M].Amsterdam:ElsevierScienceLtd.,2006. [2]IGORPODLUBNY.FractionalDifferentialEquations[M].NewYork:AcademicPress,1999. [3] 周燕.分?jǐn)?shù)階Pfaff-Birkhoff變分問題及其對(duì)稱性[D].蘇州:蘇州科技學(xué)院,2013. [4] 王小東.Riemann-Liouvlle分?jǐn)?shù)階微積分及其性質(zhì)證明[D].太原:太原理工大學(xué),2008. [5]RABINOWITZPH.MinimaxMethodsinCriticalPointTheorywithApplicationtoDifferentialEquations[M].American:AmericanMathematicalSociety,1986. [6]MAGINRL.FractionalCalculusinBioengineering[M].Redding,CT:BegellHouseInc.,2006. [7]VASILLYETARASOV.分?jǐn)?shù)維動(dòng)力學(xué):分?jǐn)?shù)階積分在粒子,場及介質(zhì)動(dòng)力學(xué)中的應(yīng)用[M].北京:高等教育出版社,2010. [8] 孫文,孫宏廣,李西成.力學(xué)與工程問題的分?jǐn)?shù)階導(dǎo)數(shù)建模[M].北京:科學(xué)出版社,2010. [9] 汪紀(jì)峰.分?jǐn)?shù)階系統(tǒng)控制性能分析[M].北京:電子工業(yè)出版社,2010. [10]RAVIPAGARWAL,BASHIRAHMAD.ExistenceTheoryforAnti-PeriodicBoundaryValueProblemsofFractionalDifferentialEquationsandInclusions[J].ComputersandMathematicswithApplications,2011,62(3):1 200-1 214. [12]GUOTianliang,JIANGWei.ImpulsiveProblemsforFractionalDifferentialEquationswithBoundaryValueConditions[J].ComputersandMathematicswithApplications,2012,64(10):3 281-3 291. [13]CHENYi,TANGXianhua.SolvabilityofSequentialFractionalOrderMulti-PointBoundaryValueProblemsatResonance[J].AppliedMathematicsandComputation,2012,218(14):7 638-7 648. [14]MUJEEBURREHMAN,PAULWELOE.ExistenceandUniquenessofSolutionsforImpulsiveFractionalDifferentialEquations[J].AppliedMathematicsandComputation,2013,224(1):422-431. [15]LIJianli,LUOZhiguo,YANGXuxin,etal.MaximumPrinciplesforthePeriodicBoundaryValueProblemforImpulsiveIntegro-DifferentialEquations[J].NonlinearAnalysis,2010,72(9/10):3 837-3 841. [16]JIAOFeng,ZHOUYong.ExistenceofSolutionsforaClassofFractionalBoundaryValueProblemsviaCriticalPointTheory[J].ComputersandMathematicswithApplications,2011,62(3):1 181-1 199. [17]JIAOFeng,ZHOUYong.ExistenceResultsforFractionalBoundaryValueProblemviaCriticalPointTheory[J].InternationalJournalBifurcationandChaos,2012,22(4):1 250 086-1 250 103. [18]SUNHongrui,ZHANGQuanguo.ExistenceofSolutionsforaFractionalBoundaryValueProblemviatheMountainPassMethodandanIterativeTechnique[J].ComputersandMathematicswithApplications,2012,64(10):3 436-3 443. [19]CHENFulai.CoincidenceDegreeandFractionalBoundaryValueProblemswithImpulses[J].ComputersandMathematicswithApplications,2012,64(10):3 444-3 455. [20]HUChaozhu,LIUBin,XIESongfa.MonotoneIterativeSolutionsforNonlinearBoundaryValueProblemsofFractionalDifferentialEquationwithDeviatingArguments[J].AppliedMathematicsandComputation,2013,222(1):72-81. [21]JIAMei,LIUXiping.MultiplicityofSolutionsforIntegralBoundaryValueProblemsofFractionalDifferentialEquationswithUpperandLowerSolutions[J].AppliedMathematicsandComputation,2014,232(1):313-323. [22]JUANJNIETO,DONALO’REGAN.VariationalApproachtoImpulsiveDifferentialEquations[J].NonlinearAnalysis:RealWorldApplications,2009,10(2):680-690. [23] 白亮.基于臨界點(diǎn)理論的脈沖邊值問題解答存在性及多解性[D].長沙:中南大學(xué),2012. [24]AKHMETOVMU,ZAFERA.ControllabilityoftheVallee-PoussinProblemforImpulsiveDifferentialSystems[J].JournalofOptimizationTheoryandApplication,1999,10(2):263-276. [25]PEIYongzhen,LIChangguo,WANGChunhua.ComplexDynamicsofOne-PreyMulti-PredatorSystemwithDefensiveAbilityofPreyandImpulsiveBiologicalControlonPredators[J].AdvancesinComplexSystems,2005,8(4):483-495. [26]PRADOAFBA.Bi-ImpulsiveControltoBuildaSatelliteConstellation[J].NonlinearDyn.Syst.Theory,2005,5:169-175. [27]DAIBinxiang,SUHua,HUDianwang.PeriodieSolutionofaDelayedRatio-DependentPredator-PreyModelwithMonotonieFunctionalResponseandImpulse[J].NonlinearAnalysisTMA,2009,70(1):126-134. [28]ZHANGZiheng,YUANRong.AnApplicationofVariationalMethodstoDirichletBoundaryValueProblemwithImpulses[J].NonlinearAnalysis:RealWorldApplications,2010,11:155-162. (責(zé)任編輯向陽潔) Existence of Solutions for Boundary Value Problems of Impulsive Fractional Differential Equations via Critical Point Theory HUANG Yi,CHEN Guoping (College of Mathematics and Statistics,Jishou University,Jishou 416000,Hunan China) Abstract:In this paper,we investigate existence results of Dirichlet boundary problems for a class of impulsive fractional differential equations.The arguments are based upon the mountain pass theorem of critical point theory. Key words:impulsive;fractional;differential equations;Dirichlet boundary conditions;critical point theory 作者簡介:黃羿(1982—),女,湖南岳陽人,吉首大學(xué)數(shù)學(xué)與統(tǒng)計(jì)學(xué)院講師,碩士生,主要從事微分方程與動(dòng)力系統(tǒng)研究;陳國平(1964—),男,湖南邵陽人,吉首大學(xué)數(shù)學(xué)與統(tǒng)計(jì)學(xué)院教授,博士,主要從事微分方程與動(dòng)力系統(tǒng)研究. 基金項(xiàng)目:湖南省教育廳科學(xué)研究項(xiàng)目(14C0940) 收稿日期:2014-10-18 中圖分類號(hào):O175.8 文獻(xiàn)標(biāo)志碼:A DOI:10.3969/j.issn.1007-2985.2015.02.003 文章編號(hào):1007-2985(2015)02-0011-05