?
Wnt/β-catenin通路在動(dòng)脈粥樣硬化發(fā)生發(fā)展中的作用*
馬守原1,姚樹桐2,朱平1△,秦樹存2△
(1中國人民解放軍總醫(yī)院南樓心血管內(nèi)科,北京 100853;2泰山醫(yī)學(xué)院動(dòng)脈粥樣硬化研究所,山東省高校動(dòng)脈粥樣硬化重點(diǎn)實(shí)驗(yàn)室,山東 泰安 271000)
動(dòng)脈粥樣硬化(atherosclerosis,AS)作為心血管疾病(cardiovascular disease,CVD)的主要病理基礎(chǔ),嚴(yán)重危害人們的健康[1]。AS是多因素、多發(fā)病環(huán)節(jié)參與的慢性炎癥性疾病,內(nèi)皮損傷和功能減退是其發(fā)生的啟動(dòng)環(huán)節(jié)[2],炎癥細(xì)胞浸潤和炎癥介質(zhì)釋放、氧化應(yīng)激反應(yīng)、血管平滑肌細(xì)胞增殖以及泡沫細(xì)胞形成和死亡是AS發(fā)生發(fā)展的關(guān)鍵機(jī)制[3]。Wnt通路是機(jī)體發(fā)育過程中高度保守的信號(hào)途徑,在細(xì)胞增殖、分化 、極性、存活、黏附和運(yùn)動(dòng)等生理過程中發(fā)揮重要作用[4]。Wnt/β-catenin通路是經(jīng)典的Wnt 通路,該通路的失調(diào)參與眾多疾病發(fā)生、發(fā)展,如營養(yǎng)性疾病、炎癥性疾病、纖維化疾病、內(nèi)分泌功能紊亂和骨代謝疾病等,尤其是該通路的過度激活與乳腺癌、甲狀腺癌、結(jié)腸癌、肺癌等多種癌癥的發(fā)生、發(fā)展相關(guān)[5-6]。隨著研究不斷深入,Wnt/β-catenin信號(hào)通路與CVD如AS的關(guān)系成為研究熱點(diǎn)。本文從AS發(fā)生、發(fā)展的機(jī)制方面綜述Wnt/β-catenin信號(hào)通路在AS進(jìn)展中的作用。
1Wnt/β-catenin信號(hào)通路簡介
Wnt蛋白屬于分泌型生長因子,其介導(dǎo)的Wnt通路在胚胎發(fā)育過程中調(diào)控細(xì)胞增殖和細(xì)胞極性,影響細(xì)胞命運(yùn),是機(jī)體發(fā)育過程中高度保守的信號(hào)途徑。Wnt信號(hào)通路主要有以下分支:(1)經(jīng)典Wnt信號(hào)通路,又稱為Wnt/β-catenin通路;(2)平行細(xì)胞(planer細(xì)胞)極性途徑;(3)Wnt/Ca2+通路;(4)調(diào)節(jié)紡錘體定向和不對(duì)稱細(xì)胞分裂的通路。
目前研究最為深入的是Wnt/β-catenin信號(hào)通路,該通路主要由Wnt配體與7次跨膜受體卷曲蛋白(frizzled,F(xiàn)ZD)結(jié)合,在輔助受體低密度脂蛋白受體相關(guān)蛋白5/6(low-density lipoprotein-related protein,LRP5/6)協(xié)同作用下,調(diào)控β-catenin信號(hào)級(jí)聯(lián)反應(yīng)[7]。沒有Wnt信號(hào)時(shí),胞質(zhì)內(nèi)的β-catenin大部分與胞膜上的鈣黏蛋白(E-cadherin)結(jié)合,少部分與腺瘤性結(jié)腸息肉病基因蛋白(adenomatous polyposis coli,APC)、軸蛋白(axin)、糖原合酶激酶-3β (glycogen synthase kinase-3β,GSK-3β)、酪蛋白激酶-1(casein kinase 1,CK1)形成巨大復(fù)合物,成為“降解復(fù)合體”。GSK-3β和CK1使β-catenin磷酸化,磷酸化的β-catenin與泛素連接酶β-轉(zhuǎn)導(dǎo)重復(fù)相容蛋白結(jié)合,最終被E3泛素連接酶降解,因而胞質(zhì)內(nèi)游離β-catenin水平極低。當(dāng)Wnt配體與FZD、LRP5/6結(jié)合后,胞質(zhì)中的散亂蛋白(dishevelled,DVL)被磷酸化激活,防止GSK-3β和CK1磷酸化β-catenin,使其不能被降解,大量游離的β-catenin在胞質(zhì)中積聚,進(jìn)而進(jìn)入細(xì)胞核,與轉(zhuǎn)錄因子T細(xì)胞特異性轉(zhuǎn)錄因子(T cell-specific transcription factor ,TCF)/淋巴增強(qiáng)結(jié)合因子(lymphoid enhancer-binding factor,LEF)相互作用,調(diào)控下游基因表達(dá)[8]。
2Wnt/β-catenin信號(hào)通路與動(dòng)脈粥樣硬化
AS發(fā)生、發(fā)展的第一步是血管內(nèi)皮暴露在致病因素如高血糖、高血壓、修飾脂蛋白等條件下,造成內(nèi)皮細(xì)胞損傷和功能障礙。功能紊亂后的內(nèi)皮通透性增大,氧化低密度脂蛋白(oxidized low density lipoprotein,ox-LDL)等修飾脂蛋白大量滲透,誘導(dǎo)單核/巨噬細(xì)胞浸潤,增強(qiáng)炎癥反應(yīng),成為氧化修飾和酶促反應(yīng)的靶點(diǎn)。巨噬細(xì)胞無限制地?cái)z取ox-LDL,成為泡沫細(xì)胞,釋放生長因子和細(xì)胞因子,刺激平滑肌細(xì)胞從中膜遷移至內(nèi)膜,產(chǎn)生細(xì)胞外基質(zhì)成分從而促進(jìn)纖維帽形成。滿載被修飾脂質(zhì)的巨噬細(xì)胞在AS發(fā)展早期被M2型巨噬細(xì)胞吞噬,大量吞噬凋亡細(xì)胞的巨噬細(xì)胞誘導(dǎo)內(nèi)質(zhì)網(wǎng)應(yīng)激,導(dǎo)致胞葬作用減弱,巨噬細(xì)胞死亡,促炎、促血栓因子如組織因子、基質(zhì)金屬蛋白酶(matrix metalloproteinases,MMPs)等釋放,進(jìn)而導(dǎo)致易損斑塊的形成和破裂??傊?,AS的發(fā)生、發(fā)展涉及內(nèi)皮損傷和功能紊亂、炎癥反應(yīng)、氧化應(yīng)激、細(xì)胞增殖以及血管重塑等方面。
近年來研究提示,Wnt/β-catenin信號(hào)通路參與AS的發(fā)生、發(fā)展。Gelfand等[9]的研究表明小鼠主動(dòng)脈內(nèi)皮中β-catenin/TCF信號(hào)通路被激活:在AS發(fā)展過程中,ApoE-/-小鼠主動(dòng)脈內(nèi)皮AS易損區(qū)域胞質(zhì)內(nèi)β-catenin水平升高,AS保護(hù)區(qū)域的β-catenin被阻擋在細(xì)胞核外,而在晚期斑塊中,核內(nèi)β-catenin水平也升高,AS易損環(huán)境促進(jìn)β-catenin/TCF通路的激活。此外,Wnt/β-catenin信號(hào)通路激活的相關(guān)分子在人類AS病變中的高表達(dá)也得以證實(shí)。Bedel等[10]分析人類頸動(dòng)脈AS斑塊后發(fā)現(xiàn),Wnt/β-catenin信號(hào)通路的關(guān)鍵因子β-catenin在破裂斑塊中的水平高于穩(wěn)定斑塊,認(rèn)為該通路在AS斑塊發(fā)展過程中發(fā)揮重要作用;同樣在頸動(dòng)脈AS斑塊中,Wnt/β-catenin信號(hào)通路下游靶基因產(chǎn)物Dickkopf相關(guān)蛋白1(DKK1)的表達(dá)是增高的[11],且有文獻(xiàn)提出,DKK1是冠狀動(dòng)脈AS的新型生物標(biāo)記物[12]。因此本文從前述內(nèi)皮損傷和功能障礙等5個(gè)方面綜述Wnt/β-catenin信號(hào)通路在AS發(fā)生、發(fā)展中的作用。
2.1內(nèi)皮損傷和功能障礙血管內(nèi)皮損傷和功能障礙是AS發(fā)生的始動(dòng)環(huán)節(jié),并可上調(diào)黏附分子表達(dá),釋放大量細(xì)胞因子如腫瘤壞死因子-α(tumor necrosis factor-α,TNF-α)、 干擾素-γ(interferon-γ,IFN-γ)等,誘導(dǎo)單核/巨噬細(xì)胞浸潤,促進(jìn)炎癥反應(yīng),增強(qiáng)血小板活化聚集。
內(nèi)皮細(xì)胞可表達(dá)大量Wnt配體、受體和調(diào)控分子[13],表明Wnt/β-catenin通路調(diào)節(jié)內(nèi)皮細(xì)胞的生命活動(dòng),并參與內(nèi)皮功能障礙及其介導(dǎo)的炎癥反應(yīng)[2]。Wnt/β-catenin通路激活劑氯化鋰預(yù)處理內(nèi)皮細(xì)胞后,該通路活化,單核細(xì)胞對(duì)血管內(nèi)皮的黏附性增強(qiáng),而內(nèi)皮細(xì)胞黏附分子表達(dá)并無變化[14],這可能與β-catenin在主動(dòng)脈內(nèi)皮動(dòng)脈粥樣硬化易損區(qū)域的核內(nèi)定位相關(guān),也表明Wnt/β-catenin通路促進(jìn)內(nèi)皮功能障礙,進(jìn)而導(dǎo)致斑塊形成[9]。此外有研究發(fā)現(xiàn),缺氧和高糖能上調(diào)視網(wǎng)膜內(nèi)皮細(xì)胞β-catenin的表達(dá),并使β-catenin轉(zhuǎn)入核內(nèi),是糖尿病Wnt/β-catenin通路激活的誘因;該通路抑制劑DKK1預(yù)處理后,視網(wǎng)膜炎癥減輕,也阻斷了高糖誘導(dǎo)的活性氧簇(reactive oxygen species,ROS)的生成[15]。
2.2炎癥反應(yīng)炎癥機(jī)制貫穿于AS所有發(fā)展階段,從內(nèi)皮功能障礙、脂紋形成,到斑塊的不穩(wěn)定性和由于易損斑塊破裂導(dǎo)致的急性冠脈事件,炎癥均發(fā)揮關(guān)鍵作用。
Wnt/β-catenin通路與胚胎發(fā)育和機(jī)體生長密切相關(guān),可調(diào)控大約400多種參與細(xì)胞生長、分化、凋亡和免疫的基因[16]。研究表明,Wnt/β-catenin通路與炎癥反應(yīng)密切相關(guān),主要體現(xiàn)在一系列重要的炎癥因子上。TNF-α、IFN-γ和一氧化氮(nitric oxide,NO)等促炎因子可增加Wnt/β-catenin通路活化[17],白細(xì)胞介素-6(interleukin-6,IL-6)和TNF-α可維持和增強(qiáng) Wnt/β-catenin通路信號(hào)轉(zhuǎn)導(dǎo);經(jīng)Wnt1(Wnt/β-catenin信號(hào)通路的激活劑之一)處理3T3-L1前成脂肪細(xì)胞后發(fā)現(xiàn),Wnt/β-catenin通路具有促炎作用[18];Wnt3a可激活Wnt/β-catenin通路,進(jìn)而導(dǎo)致促炎細(xì)胞因子IL-6、IL-12和IFN-γ的表達(dá)釋放[19],也明顯上調(diào)血管內(nèi)皮生長因子(vessel endothelial growth factor,VEGF)、TNF-α和核因子-κB(nuclear factor-κB,NF-κB)的水平[20],表明Wnt/β-catenin通路通過上調(diào)眾多促炎因子的表達(dá),在炎癥反應(yīng)中發(fā)揮重要作用。
2.3氧化應(yīng)激越來越多的證據(jù)表明,氧化應(yīng)激可氧化修飾脂蛋白、損傷血管內(nèi)皮,參與單核/巨噬細(xì)胞、T細(xì)胞以及血小板的活化,誘導(dǎo)血管炎癥反應(yīng),刺激血管平滑肌細(xì)胞增殖,在AS發(fā)展過程中發(fā)揮核心作用[21-22]。
β-catenin是Wnt/β-catenin通路的關(guān)鍵分子,進(jìn)入細(xì)胞核與轉(zhuǎn)錄因子TCF/LEF結(jié)合后調(diào)控下游靶基因的表達(dá)和下游生理活動(dòng),氧化應(yīng)激就是其中之一[23]。AS后期,粥樣斑塊和纖維帽形成,血管平滑肌細(xì)胞的高比例凋亡能增加斑塊破裂,而這種凋亡易受β-catenin 激活的氧化應(yīng)激的影響[24]。Wnt/β-catenin通路的激活能誘導(dǎo)視網(wǎng)膜炎癥和氧化應(yīng)激,在老年性黃斑變性和糖尿病視網(wǎng)膜病變中起到致病作用[20]。Wnt/β-catenin通路的靶基因DKK1的高表達(dá)能增加氧化應(yīng)激產(chǎn)生的ROS水平[25]。癌細(xì)胞中的ROS水平直接影響β-catenin的轉(zhuǎn)錄活性,氧化應(yīng)激刺激β-catenin與叉頭框O轉(zhuǎn)錄因子結(jié)合,誘導(dǎo)細(xì)胞周期停止,影響細(xì)胞存活。事實(shí)上,在多種類型的細(xì)胞中,氧化應(yīng)激能在通路上游DVL水平激活Wnt/β-catenin信號(hào)途徑,從而改變癌細(xì)胞的轉(zhuǎn)錄[25]。有研究報(bào)道,糖尿病中的氧化應(yīng)激是Wnt/β-catenin信號(hào)通路激活的直接原因。此外,經(jīng)H2O2誘導(dǎo)的氧化應(yīng)激可激活Wnt/β-catenin通路中的重要分子DVL,導(dǎo)致β-catenin/TCF活化,調(diào)控靶基因的表達(dá)[26];同時(shí),氧化應(yīng)激能增強(qiáng)Wnt/β-catenin通路,促進(jìn)血管鈣化,而抑制通路則可阻斷ROS的產(chǎn)生[27]。
2.4細(xì)胞增殖AS斑塊以內(nèi)皮細(xì)胞、平滑肌細(xì)胞、單核/巨噬細(xì)胞等炎癥細(xì)胞克隆增殖和損傷為特征。內(nèi)皮細(xì)胞活化及其介導(dǎo)的炎癥反應(yīng)在AS發(fā)生、發(fā)展過程中發(fā)揮重要作用。血管成形術(shù)或支架植入術(shù)后冠脈再狹窄的研究證實(shí)了血管壁內(nèi)膜肌細(xì)胞的克隆增殖能力。血管內(nèi)膜中的平滑肌細(xì)胞增殖能力強(qiáng),可合成細(xì)胞外基質(zhì)或細(xì)胞因子等,從而促進(jìn)AS發(fā)生。內(nèi)膜中巨噬細(xì)胞的增殖明顯促進(jìn)AS早期斑塊形成[28],巨噬細(xì)胞攝取脂質(zhì)轉(zhuǎn)化為泡沫細(xì)胞,是粥樣斑塊中細(xì)胞成分的主要部分,其分泌的細(xì)胞因子能改變局部環(huán)境,影響斑塊的穩(wěn)定[29]。
Wnt/β-catenin通路調(diào)控細(xì)胞增殖、分化 、存活、黏附和運(yùn)動(dòng)等生命過程。Masckauchán等[30]的實(shí)驗(yàn)表明,人內(nèi)皮細(xì)胞中可表達(dá)Wnt/β-catenin通路活化的關(guān)鍵蛋白Wnt受體和轉(zhuǎn)錄效應(yīng)器,包括frizzled-4、-5、-6和 β-catenin相關(guān)轉(zhuǎn)錄因子TCF-1、LEF-1等,Wnt-1和β-catenin能促進(jìn)內(nèi)皮細(xì)胞增殖。單核細(xì)胞黏附內(nèi)皮是AS發(fā)展的早期階段,Wnt/β-catenin通路的激活能加強(qiáng)單核細(xì)胞的這一活動(dòng)[31]。Wnt/β-catenin通路參與調(diào)節(jié)血管平滑肌細(xì)胞增殖和遷移,影響內(nèi)膜增厚,其下游的轉(zhuǎn)錄結(jié)合分子β-catenin/ TCF能抑制血管平滑肌細(xì)胞凋亡,促進(jìn)細(xì)胞擴(kuò)增,在血管重塑中發(fā)揮重要作用[31];此外,微量元素鎂能通過抑制Wnt/β-catenin通路逆轉(zhuǎn)平滑肌細(xì)胞的鈣化[32]。該通路也參與調(diào)控炎癥細(xì)胞浸潤和泡沫細(xì)胞的形成、病理性血管新生及血管鈣化[33],在斑塊形成和穩(wěn)定過程中起到關(guān)鍵作用[10]。此外,Wnt配體的輔助受體LRP5是Wnt/β-catenin通路的重要分子,可在炎癥性巨噬細(xì)胞中表達(dá),并且能夠促進(jìn)脂質(zhì)攝取、泡沫細(xì)胞形成和遷移,低密度脂蛋白(low density lipoprotein,LDL)的累聚可上調(diào)LRP5的表達(dá)[34]。
2.5血管新生血管新生及其在AS斑塊破裂中的作用是AS一個(gè)特征性的研究領(lǐng)域。斑塊破裂或出血是AS引起嚴(yán)重急性心血管事件或其它并發(fā)癥的重要原因,斑塊穩(wěn)定性與病變內(nèi)新生血管密度密切相關(guān)[35-36]。VEGF是促血管新生的重要因子,其表達(dá)水平與頸動(dòng)脈斑塊的不穩(wěn)定呈明顯正相關(guān)[37]。從AS病理分型Ⅰ~Ⅵ型,AS的嚴(yán)重程度增加,病變內(nèi)膜新生血管的發(fā)生率也從31%增至100%,部分新生血管結(jié)構(gòu)不穩(wěn)定,缺乏完整的基底膜和血管周細(xì)胞,因此導(dǎo)致了斑塊的不穩(wěn)定性[38]。重組人血管內(nèi)皮抑素可有效抑制高脂飼喂的球囊損傷家兔AS斑塊內(nèi)新生微血管的形成,減少AS斑塊的面積,延緩AS 進(jìn)展[39]。還有研究發(fā)現(xiàn),中、重度炎癥的斑塊中的新生血管數(shù)量顯著增多,破裂斑塊內(nèi)的新血管形成程度最高,表明新生血管與斑塊內(nèi)炎癥密切相關(guān)。
血管新生的早期包括內(nèi)皮分化等病理生理活動(dòng),Wnt是分泌型信號(hào)蛋白,能控制多種細(xì)胞生命活動(dòng)如細(xì)胞分化、細(xì)胞增殖等。血管系統(tǒng)中能夠檢測到Wnt/β-catenin通路的活性,功能性研究表明該通路是血管新生所必須的[40],阻斷Wnt/β-catenin通路將抑制血管新生[15]。眼科方面的研究提示:Wnt/β-catenin通路能夠促進(jìn)視網(wǎng)膜血管化,新的血管化過程伴隨β-catenin在核內(nèi)信號(hào)的增強(qiáng)[41]。Wnt的靶基因可編碼促血管新生因子VEGF,調(diào)控內(nèi)皮細(xì)胞和血管新生過程,進(jìn)一步驗(yàn)證了該通路在血管系統(tǒng)中的作用。除靶基因外,Wnt/β-catenin通路的上游分子Wnt1也與血管新生密切相關(guān)。Wnt1 可在發(fā)展中的內(nèi)皮細(xì)胞里表達(dá),是一種新型的促血管新生蛋白,應(yīng)用于缺血組織能增加血流,促進(jìn)血管新生[42]。
3總結(jié)與展望
Wnt/β-catenin通路在胚胎發(fā)育過程中調(diào)控細(xì)胞增殖和細(xì)胞極性,決定細(xì)胞命運(yùn),是機(jī)體發(fā)育過程中高度保守的信號(hào)途徑。除Wnt/β-catenin通路異?;罨c癌癥之間關(guān)系的研究較深入外,越來越多的研究聚焦于CVD。本文從與AS發(fā)生、發(fā)展最為密切的內(nèi)皮損傷和功能障礙、炎癥反應(yīng)、氧化應(yīng)激、細(xì)胞增殖和血管新生等角度綜述了Wnt/β-catenin通路在其中的作用。雖然有關(guān)Wnt/β-catenin通路和AS之間關(guān)系的研究已經(jīng)取得一定進(jìn)展,但是該通路參與調(diào)控AS的具體機(jī)制并不透徹,是否參與AS的關(guān)鍵因子ox-LDL所導(dǎo)致內(nèi)皮損傷過程并不清楚,是否可作為一個(gè)新的治療靶點(diǎn)用于AS的防治需要進(jìn)一步闡明。因此,在把握Wnt/β-catenin通路的基礎(chǔ)上,從多角度、多途徑、多水平研究Wnt/β-catenin通路在AS發(fā)生發(fā)展中的作用很有必要。隨著研究的不斷深入, Wnt/β-catenin通路調(diào)控AS的關(guān)系網(wǎng)絡(luò)將更加清晰,也將為AS的防治提供新思路。
[參考文獻(xiàn)]
[1]Go AS, Mozaffarian D, Roger VL, et al. Heart disease and stroke statistics -2014 update: a report from the American Heart Association[J]. Circulation,2014, 129(3):e28-e292.
[2]Tsaousi A, Mill C, George SJ. The Wnt pathways in vascular disease: lessons from vascular development [J]. Curr Opin Lipidol, 2011, 22(5):350-357.
[3]Ding L, Biswas S, Morton RE, et al. Akt3 deficiency in macrophages promotes foam cell formation and atherosclerosis in mice[J]. Cell Metab, 2012, 15(6):861-872.
[4]Kerr GE, Young JC, Horvay K, et al. Regulated Wnt/beta-catenin signaling sustains adult spermatogenesis in mice[J]. Biol Reprod, 2014, 90(1):3.
[5]Clevers H, Nusse R.Wnt/β-catenin signaling and disease[J]. Cell, 2012, 149(6): 1192-1205.
[6]Polakis P. Drugging Wnt signalling in cancer[J]. EMBO J, 2012, 31(12):2737- 2746.
[7]Zhang X, Hao J. Development of anticancer agents targeting the Wnt/β-catenin signaling[J]. Am J Cancer Res, 2015, 5(8):2344-2360.
[8]Nusse R. Wnt signaling[J]. Cold Spring Harb Perspect Biol, 2012, 4(5). pii: a011163.
[9]Gelfand BD, Meller J, Pryor AW, et al. Hemodynamic activation of beta-catenin and T-cell-specific transcription factor signaling in vascular endothelium regulates fibronectin expression[J]. Arterioscler Thromb Vasc Biol, 2011, 31(7):1625-1633.
[10]Bedel A, Nègre-Salvayre A, Heeneman S, et al. E-cadherin/beta-catenin/T-cell factor pathway is involved in smooth muscle cell proliferation elicited by oxidized low-density lipoprotein[J]. Circ Res, 2008, 103(7):694-701.
[11]Ueland T, Otterdal K, Lekva T, et al. Dickkopf-1 enhances inflammatory interaction between platelets and endothelial cells and shows increased expression in atherosclerosis[J]. Arterioscler Thromb Vasc Biol, 2009, 29(8):1228-1234.
[12]Kim KI, Park KU, Chun EJ, et al. A novel biomarker of coronary atherosclerosis: serum DKK1 concentration correlates with coronary artery calcification and atherosclerotic plaques[J]. J Korean Med Sci, 2011, 26(9):1178-1784.
[13]Franco CA, Liebner S, Gerhardt H. Vascular morphogenesis: a Wnt for every vessel? [J].Curr Opin Genet Dev,2009 ,19(5):476-483.
[14]Lee DK, Nathan Grantham R, Trachte AL, et al. Activation of the canonical Wnt/beta-catenin pathway enhances monocyte adhesion to endothelial cells[J]. Biochem Biophys Res Commun, 2006, 347(1):109-116.
[15]Chen Y, Hu Y, Zhou T, et al. Activation of the Wnt pathway plays a pathogenic role in diabetic retinopathy in humans and animal models[J]. Am J Pathol, 2009, 175(6):2676-2685.
[16]Hu J, Dong A, Fernandez-Ruiz V, et al. Blockade of Wnt signaling inhibits angiogenesis and tumor growth in hepatocellular carcinoma[J]. Cancer Res, 2009, 69(17):6951-6959.
[17]Silva-García O, Valdez-Alarcón JJ, Baizabal-Aguirre VM. The Wnt/β-catenin signaling pathway controls the inflammatory response in infections caused by pathogenic bacteria[J]. Mediators Inflamm, 2014, 2014:310183.
[18]Gustafson B, Smith U. Cytokines promote Wnt signaling and inflammation and impair the normal differentiation and lipid accumulation in 3T3-L1 preadipocytes[J]. J Biol Chem, 2006, 281(14):9507-9516.
[19]Halleskog C, Mulder J, Dahlstr?m J, et al.WNT signaling in activated microglia is proinflammatory[J]. Glia, 2011, 59(1):119-131.
[20]Zhou T, Hu Y, Chen Y, et al. The pathogenic role of the canonical Wnt pathway in age-related macular degeneration[J]. Invest Ophthalmol Vis Sci, 2010, 51(9):4371-4379.
[21]Yamagishi S, Nakamura K, Matsui T. Role of oxidative stress in the development of vascular injury and its therapeutic intervention by nifedipine[J]. Curr Med Chem, 2008, 15(2):172-177.
[22]Yamagishi S, Nakamura K, Matsui T, et al. Agents that block advanced glycation end product (AGE)-RAGE (receptor for AGEs)-oxidative stress system: a novel therapeutic strategy for diabetic vascular complications[J]. Expert Opin Investig Drugs, 2008, 17(7):983-996.
[23]Le NH, Franken P, Fodde R. Tumour-stroma interactions in colorectal cancer: converging on β-catenin activation and cancer stemness[J]. Br J Cancer, 2008, 98(12):1886-1893.
[24]Mill C, Monk BA, Williams H, et al. Wnt5a-induced Wnt1-inducible secreted protein-1 suppresses vascular smooth muscle cell apoptosis induced by oxidative stress[J]. Arterioscler Thromb Vasc Biol, 2014, 34(11):2449-2456.
[25]Sherwood V. WNT signaling: an emerging mediator of cancer cell metabolism? [J]. Mol Cell Biol, 2015, 35(1):2-10.
[26]Funato Y, Michiue T, Asashima M, et al. The thioredoxin-related redox-regulating protein nucleoredoxin inhibits Wnt-beta-catenin signalling through dishevelled[J]. Nat Cell Biol, 2006, 8(5):501-508.
[27]Shao JS, Al ZA, Lai CF, et al. Vascular Bmp-Msx2-Wnt signalling and oxidative stress in arterial calcification[J]. Ann N Y Acad Sci, 2007, 1117(1): 40-50.
[28]Zhu SN, Chen M, Jongstra-Bilen J, et al. GM-CSF regulates intimal cell proliferation in nascent atherosclerotic lesions[J]. J Exp Med, 2009, 206(10):2141-2149.
[29]Williams HJ, Fisher EA, Greaves DR. Macrophage differentiation and function in atherosclerosis: opportunities for therapeutic intervention?[J]. J Innate Immun, 2012, 4(5-6):498-508.
[30]Masckauchán TN, Shawber CJ, Funahashi Y, et al. Wnt/β-catenin signaling induces proliferation,survival and interleukin-8 in human endothelial cells[J]. Angiogenesis, 2005, 8(1):43-51.
[31]Marinou K, Christodoulides C, Antoniades C, et al. Wnt signaling in cardiovascular physiology[J]. Trends Endocrin Met, 2012, 23(12):628-636.
[32]Montes de Oca A, Guerrero F, Martinez-Moreno JM, et al. Magnesium inhibits Wnt/β-catenin activity and reverses the osteogenic transformation of vascular smooth muscle cells[J]. PLoS One, 2014, 9(2):e89525.
[33]Rong S, Zhao X, Jin X, et al. Vascular calcification in chronic kidney disease is induced by bone morphogenetic protein-2 via a mechanism involving the Wnt/β-catenin pathway[J]. Cell Physiol Biochem, 2014, 34(6):2049-2060.
[34]Borrell-Pagès M, Romero JC, Juan-Babot O, et al. Wnt pathway activation,cell migration,and lipid uptake is regulated by low-density lipoprotein receptor-related protein 5 in human macrophages[J]. Eur Heart J, 2011, 32(22):2841-2850.
[35]Hellings WE, Peeters W , Moll FL, et al.Composition of carotid atherosclerotic plaque is associated with cardiovascular outcome:a prognostic study[J]. Circulation, 2010, 121(17):1941-1950.
[36]Derksen WJ, Peeters W, Tersteeg C, et al. Age and coumarin-type anticoagulation are associated with the occurrence of intraplaque hemorrhage,while statins are associated less with intraplaque hemorrhage: a large histopathological study in carotid and femoral plaques[J]. Atherosclerosis, 2011, 214(1):139-143.
[37]Dunmore BJ, McCarthy MJ, Naylor AR, et al. Carotid plaque instability and ischemic symptoms are linked to immaturity of microvessels within plaques[J]. J Vasc Surg, 2007, 45(1):155-159.
[38]Pedersen SF, Thrys?e SA, Paaske WP, et al. CMR assessment of endothelial damage and angiogenesis in porcine cornory arteries using gadofosveset[J]. J Cardiovasc Magn Reson, 2011, 26(1):10-13.
[39]Mao W, Kong J, Dai J, et al.Evaluation of recombinant endostatin in the treatment of atherosclerotic plaques and neovascularization in rabbits[J]. J Zhejiang Univ Sci B, 2010, 11(8):599-607.
[40]Zerlin M, Julius MA, Kitajewski J. Wnt/Frizzled signaling in angiogenesis[J]. Angiogenesis, 2008, 11(1):63-69.
[41]Dejana E. The role of wnt signaling in physiological and pathological angiogenesis[J]. Circ Res, 2010, 107(8):943-952.
[42]Gherghe CM, Duan J, Gong J, et al.Wnt1 is a proangiogenic molecule, enhances human endothelial progenitor function and increases blood flow to ischemic limbs in a HGF-dependent manner[J]. FASEB J, 2011, 25(6): 1836-1843.
(責(zé)任編輯:林白霜, 余小慧)
Role of Wnt/β-catenin signaling pathway in atherosclerosis
MA Shou-yuan1, YAO Shu-tong2, ZHU Ping1, QIN Shu-cun2
(1DepartmentofCardiovascularMedicineinSouthBuilding,ChinesePLAGeneralHospital,Beijing100853,China;2InstituteofAtherosclerosis,KeyLaboratoryofAtherosclerosisinUniversitiesofShandong,TaishanMedicalUniversity,Taian271000,China.E-mail:zhuping301@139.com; 13583815481@163.com)
[ABSTRACT]Atherosclerosis is a multifactorial process associated with endothelial cell injury and dysfunction, inflammation, oxidative stress, cell proliferation, angiogenesis and so on, all of which play a crucial role in atherosclerosis. Wnt/β-catenin signaling pathway is highly conservative in the development of body, abnormal activation of which is related to types of diseases including cancer. Accumulating studies have shown that Wnt/β-catenin signaling pathway is involved in inflammation, oxidative stress and so on. This article would make a review about the role of Wnt/β-catenin signaling pathway in atherosclerosis based on the pathogenic mechanisms underlying atherosclerosis as mentioned above.
[關(guān)鍵詞]Wnt/β-catenin信號(hào)通路; 動(dòng)脈粥樣硬化
[KEY WORDS]Wnt/β-catenin signaling pathway; Atherosclerosis
doi:10.3969/j.issn.1000- 4718.2016.03.030
[中圖分類號(hào)]R363
[文獻(xiàn)標(biāo)志碼]A
通訊作者△朱平 Tel: 010-66876221; E-mail: zhuping301@139.com;秦樹存 Tel: 0538-6237252; E-mail: 13583815481@163.com
*[基金項(xiàng)目]國家自然科學(xué)基金資助項(xiàng)目(No. 81370381; No. 91539114; No. 81570410);山東省泰山學(xué)者崗專項(xiàng)基金資助項(xiàng)目(No. 200811)
[收稿日期]2015- 10- 08[修回日期] 2015- 11- 27
[文章編號(hào)]1000- 4718(2016)03- 0564- 05
雜志網(wǎng)址: http://www.cjpp.net