宋洪美 何田麗 馬建新蚌埠醫(yī)學(xué)院附屬連云港第二人民醫(yī)院放射治療科,江蘇連云港 222000
自噬在腫瘤放射增敏中的研究進(jìn)展
宋洪美何田麗馬建新
蚌埠醫(yī)學(xué)院附屬連云港第二人民醫(yī)院放射治療科,江蘇連云港222000
細(xì)胞自噬是進(jìn)化上相對保守的過程,在細(xì)胞的生長、分化及維持內(nèi)穩(wěn)態(tài)等方面都扮演著重要角色。研究表明,細(xì)胞自噬與人類腫瘤的發(fā)生、發(fā)展密切相關(guān),并有助于放射中的抗腫瘤作用。在腫瘤治療中放射治療是一個(gè)非常有效的治療方法,然而,大部分腫瘤存在放療抵抗。放療受很多因素的影響,如腫瘤組織的乏氧程度、DNA損傷修復(fù)能力及腫瘤干細(xì)胞的存在等。本研究回顧自噬與放療間的關(guān)系發(fā)現(xiàn),以上三種因素很可能是放療中自噬的潛在分子機(jī)制,并探討了臨床中這些關(guān)系和機(jī)制的治療意義。
自噬;放療敏感性;乏氧;DNA損傷;腫瘤干細(xì)胞
[Abstract]Autophagy is a relatively conservative process,which plays an important role in cell growth,differentiation and maintaining homeostasis.Studies have indicated that autophagy is closely related to the occurrence and development of human cancer,and contributes to the antineoplastic effects of radiation.Radiation is an important strategy in cancer treatment.However,many types of cancer show radioresistance.The effects of radiotherapy are affected by factors,including the degree of tumor tissue hypoxia,the ability to repair DNA damage,and the presence of cancer stem cells.This article reviews the relationships between autophagy and radiotherapy,find that the three factors in cancer radiation maybe the possible underlying molecular mechanisms of autophagy.The therapeutic implications of these relationships and mechanisms in clinical settings are also discussed.
[Key words]Autophagy;Radiosensitivity;Hypoxia;DNA damage;Cancerstemcells
細(xì)胞自噬是由應(yīng)激誘導(dǎo)的高度保守的自我消化和細(xì)胞存活過程,它參與機(jī)體內(nèi)環(huán)境穩(wěn)態(tài)、發(fā)育以及多種生理、病理過程。在該過程中胞質(zhì)中的蛋白質(zhì)和紊亂的細(xì)胞器首先被雙層膜結(jié)構(gòu)包裹,形成自噬體。自噬體是一個(gè)雙層膜的囊泡與細(xì)胞質(zhì)隔離。隨后溶酶體融入自噬體消化其內(nèi)容物,提供一些代謝物,為大分子的合成提供能量來源,然而細(xì)胞的幸存和死亡取決于這一現(xiàn)象的嚴(yán)重程度和持續(xù)時(shí)間[1]。
自噬首先是由Ashford和Porter在1962年提出的,他們用電子顯微鏡觀察到人細(xì)胞中存在“自己吃自己”的現(xiàn)象[2]。自噬分三種:巨自噬(macroautophagy),細(xì)胞通過雙膜結(jié)構(gòu)包裹細(xì)胞質(zhì)中老化或損壞的細(xì)胞器和蛋白質(zhì),并與溶酶體結(jié)合將其降解;微自噬(microautophagy),是待降解物質(zhì)直接被溶酶體吸收并降解的過程;分子伴侶介導(dǎo)的自噬(Chaperone-mediated autophagy,CMA),通過這種方式降解的蛋白質(zhì)通常含有分子伴侶識別序列KFERQ,在細(xì)胞質(zhì)中被分子伴侶蛋白HSC70識別,最終進(jìn)入溶酶體被降解。而巨自噬(簡稱自噬)是細(xì)胞自噬的主要形式,也是本文中重點(diǎn)討論的一種自噬。
自噬首先通過Unc-51-like激酶復(fù)合物ULKAtg13-FIP200激活[3-5]。Unc-51-like自噬激活激酶1(ULK1)被哺乳動(dòng)物雷帕霉素靶蛋白(mTORC)和腺苷酸激活蛋白激酶(AMPK)直接磷酸化,分別引起其活性的下調(diào)和上調(diào)[6]。其次,PIK3C3-Beclin1-Vps15-Atg復(fù)合物與Beclin-1也是自噬體形成所必須的。兩者結(jié)合相互作用,增強(qiáng)了PIK3C3活性,其產(chǎn)物IP3是自噬體形成的關(guān)鍵分子。除此之外,自噬相關(guān)基因(Autophagy-related gene,Atg)也是自噬發(fā)展過程中所必需的。雙膜結(jié)構(gòu)的延伸主要由 Atg3、Atg7、LC3和Atg5-Atg12-Atg16L復(fù)合體相互作用共同完成,任何一個(gè)蛋白缺陷都會(huì)導(dǎo)致自噬過程無法正常進(jìn)行[7-10]。在腫瘤細(xì)胞中LC3有兩種存在形式:LC3-Ⅰ和LC3-Ⅱ。LC3-Ⅱ與自噬體的膜密切相關(guān),被認(rèn)為是檢測自噬的特異性標(biāo)志[11]。因此,可以通過檢測細(xì)胞內(nèi)LC3-Ⅱ的含量,判斷自噬的活性及其細(xì)胞狀態(tài)。
目前大量研究表明,在人類惡性腫瘤細(xì)胞中都存在自噬活性改變,足以說明自噬與腫瘤的發(fā)生、發(fā)展存在一定關(guān)系,且在腫瘤的不同階段發(fā)揮不同的作用。
放射治療是目前控制腫瘤生長的有效治療方法,然而,現(xiàn)在很多腫瘤具有放療抵抗[12]。因此,提高腫瘤的放療敏感性引起了廣大研究者的興趣。研究表明,放療可以誘發(fā)自噬,自噬可以清除放療產(chǎn)生的受損細(xì)胞器及蛋白質(zhì)從而形成一種放射耐受機(jī)制[13]。Kim等[14]在實(shí)驗(yàn)時(shí)發(fā)現(xiàn),卡巴西平(carbamazepine,CBZ)可以誘導(dǎo)細(xì)胞自噬,自噬被誘導(dǎo)后增加了細(xì)胞對放射的抵抗從而起到保護(hù)細(xì)胞的作用。Wu等[15]研究顯示,自噬增強(qiáng)口腔鱗狀細(xì)胞癌放療患者的抗癌作用。與此相反,一些研究有不同的發(fā)現(xiàn),Chang等[16]與Kim等[17]在研究敲除骨橋蛋白基因和PTEN基因的肺癌細(xì)胞時(shí)發(fā)現(xiàn),基因敲出后細(xì)胞自噬活性提高,細(xì)胞對放射敏感性顯著提高。
綜上所述,自噬是一把雙刃劍。一方面是細(xì)胞保護(hù)作用,使放射中的腫瘤細(xì)胞具有放射抵抗作用;另一方面是細(xì)胞毒性作用,對放射中的細(xì)胞有放射增敏作用,加速腫瘤細(xì)胞的凋亡。放療受很多因素的影響,如腫瘤組織的乏氧程度、DNA損傷修復(fù)能力及腫瘤干細(xì)胞的存在等。本文將從這三個(gè)方面討論自噬在受放射腫瘤細(xì)胞中的增敏作用。
2.1自噬與乏氧
Thomlinson等[18]報(bào)道,在惡性實(shí)體腫瘤中PO2是完全不同的,即在惡性腫瘤中存在著一片氧含量不足的區(qū)域,而乏氧就是細(xì)胞暴露在氧含量比較低的條件下。在放療過程中,乏氧的腫瘤細(xì)胞增加放療抵抗,在乏氧條件下自噬起一個(gè)特別的作用[19]。Rouschop等[20]表明,自噬能增加乏氧腫瘤細(xì)胞和異種移植瘤的放射敏感性。Sun等[21]發(fā)現(xiàn),自噬降低了乏氧引起的放療抵抗。這些現(xiàn)象都與惡性腫瘤的放療抵抗相關(guān)。然而,乏氧增加放療抵抗的機(jī)制仍不清楚。
乏氧誘導(dǎo)因子1(hypoxi-inducible-factor 1,HIF l)由HIF 1α和HIF 1β兩個(gè)亞單位構(gòu)成。在常氧下HIF 1被迅速降解,而乏氧導(dǎo)致HIF 1的穩(wěn)定和積累,其下游基因BNIP3表達(dá)的上調(diào)可以增加腫瘤細(xì)胞對乏氧的耐受,抵抗由于線粒體中活性氧簇(Reactive oxygen species,ROS)的積累引起的腫瘤細(xì)胞的死亡[22]。BNIP3通過BH3結(jié)構(gòu)域阻斷Beclin、Bcl-xl和 Bcl-2的抑制關(guān)系,促進(jìn)Beclin-1介導(dǎo)的自噬[23]。此外,在乏氧的腫瘤細(xì)胞中,絲氨酸/蘇氨酸激酶LKB1可以直接磷酸化AMPK,而經(jīng)過活化的AMPK進(jìn)而磷酸化TSC,從而抑制mTOR活性引發(fā)自噬,并獨(dú)立于HIF1-BNIP3通路[24-25]。
HIF1參與腫瘤細(xì)胞的增值、凋亡、侵襲遷移和腫瘤血管的形成,同時(shí)也是細(xì)胞自噬的重要參與者,自噬通過一個(gè)復(fù)雜的蛋白質(zhì)和基因調(diào)控的乏氧反應(yīng)影響放射敏感性。至于哪一條通路在自噬中起主導(dǎo)作用尚不清楚,需要未來更深層次的研究。
2.2自噬與DNA損傷的修復(fù)
DNA是細(xì)胞中的生物輻射靶標(biāo)[26]。放射產(chǎn)生各種DNA損傷,包括堿基損傷、單鏈斷裂、雙鏈斷裂和DNA-DNA或DNA-蛋白交聯(lián)[27]。高劑量的放射可以誘導(dǎo)DNA雙鏈斷裂,被認(rèn)為是最關(guān)鍵的DNA損傷[28-30]。DNA修復(fù)是抵抗放射的主要原因。在檢測到DNA損傷后,修復(fù)通路被激活,阻止細(xì)胞周期進(jìn)程。細(xì)胞周期阻滯后使細(xì)胞有一個(gè)時(shí)間來評估DNA損傷的程度,并嘗試對其進(jìn)行修復(fù)。然而,大部分腫瘤細(xì)胞中細(xì)胞周期核對點(diǎn)嚴(yán)重紊亂,因此DNA損傷/修復(fù)機(jī)制可能不會(huì)在腫瘤細(xì)胞中有效運(yùn)作[31-32]。
最近的研究表明,自噬與DNA修復(fù)有關(guān),并能影響放射敏感性。Mo等[33]表明,Atg5的抑制加劇了在人鼻咽癌細(xì)胞中放射誘導(dǎo)的DNA損傷和凋亡。在另一項(xiàng)研究中,敲低Beclin1或紫外照射抵抗相關(guān)基因(UVRAG)可以提高輻射誘導(dǎo)的雙鏈斷裂,而Beclin1與UVRAG相互作用形成核心復(fù)合物誘導(dǎo)自噬[34]。He等[35]已證明,通過藥物抑制自噬或siRNA干擾Beclin-1有助于減慢DNA雙鏈的修復(fù)并有顯著的放射增敏作用。
核酶聚(ADP-核糖)聚合酶-1(PARP-1)參與核內(nèi)穩(wěn)態(tài)的調(diào)節(jié),它通過與DNA末端結(jié)合或與DNA修復(fù)蛋白相互作用參與DNA雙鏈斷裂和單鏈DNA斷裂。幾項(xiàng)研究證明,放射誘導(dǎo)的DNA損傷導(dǎo)致PAPR的激活和自噬的誘導(dǎo)[36-37]。多重機(jī)制聯(lián)合PARP的激活促進(jìn)自噬的誘導(dǎo),在這些機(jī)制中,AMPK的活化尤其關(guān)鍵[38]。PAPP是AMPK的上游可以激活A(yù)MPK,在腫瘤細(xì)胞中AMPK是上調(diào)自噬的重要調(diào)節(jié)分子[39]。AMPK的激活調(diào)節(jié)TSC1/2的活化,最終mTOR的功能被抑制誘發(fā)自噬[40,41]。因此,PARP-1可能參與調(diào)控自噬通過LKB1-AMPK-mTOR信號通路。盡管許多研究已經(jīng)表明了自噬和PAPR-1之間的關(guān)系,但仍需要進(jìn)一步確定PARP-1抑制劑是否對自噬的調(diào)節(jié)有任何負(fù)面或正面影響??傊?,自噬和DNA損傷之間的復(fù)雜的關(guān)系仍需更深層次的研究。
2.3自噬與干細(xì)胞
腫瘤干細(xì)胞是腫瘤組織中一小部分具有干細(xì)胞特性的細(xì)胞群,具有自我更新和多分化潛能。腫瘤干細(xì)胞比非腫瘤干癌細(xì)胞更能耐受放療抵抗,因此是腫瘤復(fù)發(fā)和治療失敗的主要原因[42]。在腦膠質(zhì)瘤細(xì)胞中CD133是腫瘤干細(xì)胞的標(biāo)志物,而在接受過放射的腦膠質(zhì)瘤細(xì)胞中CD133的表達(dá)水平急劇升高[43]。表明放射增加了腦膠質(zhì)瘤中腫瘤干細(xì)胞的數(shù)量。而腫瘤干細(xì)胞能產(chǎn)生異質(zhì)細(xì)胞群。這種抵抗應(yīng)激的能力與正常干細(xì)胞的保護(hù)機(jī)制有關(guān),包括低水平的ROS、改變細(xì)胞周期核對點(diǎn)、DNA修復(fù)機(jī)制等[44]。
腫瘤干細(xì)胞通過抑制自噬增加放療敏感性主要與ROS增加和自噬促進(jìn)分化的功能相關(guān)。Lomonaco等[45]表明,相比CD133陰性細(xì)胞,CD133陽性細(xì)胞表達(dá)更高水平的自噬相關(guān)蛋白,如Atg5、Atg12和LC3。自噬誘導(dǎo)顯著增加CD133陽性的腫瘤干細(xì)胞的放療抵抗。在腫瘤細(xì)胞中放射可誘導(dǎo)ROS積累,其導(dǎo)致DNA損傷和干性損傷,而自噬可以減少ROS積累和相關(guān)的DNA損傷而保留細(xì)胞干性。抑制自噬會(huì)增加ROS的積累,DNA損傷增強(qiáng),這導(dǎo)致細(xì)胞干性損失。腫瘤間質(zhì)細(xì)胞自噬增加了腫瘤細(xì)胞干性。通過腫瘤間質(zhì)細(xì)胞自噬產(chǎn)生乳酸、酮體,增加乙酰輔酶A的轉(zhuǎn)錄表達(dá)誘導(dǎo)干細(xì)胞干性,這導(dǎo)致組蛋白乙?;黾?,并與“干性”相關(guān),包括胚胎干細(xì)胞的基因表達(dá)[46]。自噬可以起重要的細(xì)胞重塑功能,調(diào)節(jié)發(fā)育。自噬相關(guān)基因的研究發(fā)現(xiàn),自噬相關(guān)基因的缺失會(huì)導(dǎo)致發(fā)育缺陷[8]。這一結(jié)果表明自噬功能的分化。
總之,自噬在腫瘤干細(xì)胞中起保護(hù)作用,降低ROS水平,維持干細(xì)胞的干性。因此,腫瘤干細(xì)胞靶向細(xì)胞自噬抑制劑與腫瘤細(xì)胞放射治療相結(jié)合是根除原發(fā)腫瘤和防止復(fù)發(fā)的一種有效方法。近年來,關(guān)于腫瘤干細(xì)胞的生物學(xué)特性研究在放射生物學(xué)和放射治療學(xué)上具有重要的影響。最近的研究突出了探索干細(xì)胞易感性、重要性和必要性,目的在于將現(xiàn)在的治療方法結(jié)合關(guān)鍵通路的中斷來控制放療抵抗。然而,需要進(jìn)一步的研究來闡明腫瘤中腫瘤干細(xì)胞的作用來設(shè)計(jì)一個(gè)有效的和特異性的抗腫瘤干細(xì)胞治療。
細(xì)胞自噬是一種普遍且十分重要的生物學(xué)現(xiàn)象,參與機(jī)體內(nèi)環(huán)境穩(wěn)態(tài)、發(fā)育以及多種生理、病理過程。自噬在腫瘤細(xì)胞中起著放射耐受與放射增敏雙重作用,說明自噬在腫瘤的發(fā)生、發(fā)展等過程中發(fā)揮了重要作用。然而,自噬與腫瘤的這種復(fù)雜關(guān)系的具體機(jī)制仍然不清楚,還需要進(jìn)一步研究。隨著對自噬的深入研究,其有可能成為腫瘤治療的新途徑。
[1]Dalby KN,Tekedereli I,Lopez-Berestein G,et al.Targeting the prodeath and prosurvival functions of autophagy as novel therapeutic strategies in cancer[J].Autophagy,2010,6(3):322-329.
[2]Ashford TP,Porter KR.Cytoplasmic components in hepatic cell lysosomes[J].J Cell Biol,1962,12(12):198-202.
[3]Chen S,Wang C,Yeo S,et al.Distinct roles of autophagydependent and-independent functions of FIP200 revealed by generation and analysis of a mutant knock-in mouse model[J].Genes Dev,2016,30(7):856-869.
[4]Baena M,Sangüesa G,Hutter N,et al.Fructose supplementation impairs rat liver autophagy through mTORC activation without inducing endoplasmic reticulum stress[J]. Biochim Biophys Acta,2015,1851(2):107-116.
[5]Qi S,Kim do J,Stjepanovic G,et al.Structure of the Human Atg13-Atg101 HORMA Heterodimer:an Interaction Hub within the ULK1 Complex[J].Structure,2015,23(10):1848-1857.
[6]Egan DF,Shackelford DB,Mihaylova MM,et al.Phosphorylation of Ulk1(hATG1)by AMP activated protein kinase connects energy sensing to mitophagy[J].Science,2011,331(6016):456-461.
[7]Fujita N,Itoh T,Omori H,et al.The Atg16Lcomplex specifies the site of LC3 lipidation for membrane biogenesis in autophagy[J].Mol Biol Cell,2008,19(5):2092-2100.
[8]Nakatogawa H,Ohbayashi S,Sakoh-Nakatogawa M,et al. The autophagy-related protein kinase Atg1 interacts with the ubiquitin-like protein Atg8 via the Atg8 family interacting motif to facilitate autophagosome formation[J].J Biol Chem,2012,287(34):28503-28507.
[9]Tindwa H,Jo YH,Patnaik BB,et al.Depletion of autophagy-related genes ATG3 and ATG5 in Tenebrio molitor leads to decreased survivability against an intracellular pathogen,Listeria monocytogenes[J].Arch Insect Biochem Physiol,2015,88(1):85-99.
[10]Haller M,Hock AK,Giampazolias E,et al.Ubiquitination and proteasomal degradation of ATG12 regulates its proapoptotic activity[J].Autophagy,2014,10(12):2269-2278.
[11]Aparicio IM,Martin Mu?oz P,Salido GM,et al.The autophagy-related protein LC3 is processed in stallion spermatozoa during short-and long-term storage and the related stressful conditions[J].Animal,2016,10(7):1182-1191.
[12]Kim JJ,Tannock IF.Repopulation of cancer cells during therapy:an important cause of treatment failure[J].Nat Rev Cancer,2005,5(7):516-525.
[13]Chatterjee S,Willis N,Locks SM,et al.Dosimetric and radiobiological comparison of helical tomotherapy,forward planned intensity-modulated radiotherapy and twophase conformal plans for radical radiotherapy treatment of head and neck squamous cell carcinomas[J].Br J Radiol,2011,84(1008):1083-1090.
[14]Kim H,Bernard ME,F(xiàn)lickinger J,et a1.The autophagyinducing drug carbamazepine is a radiation protector and mitigator[J].Int J Radiat Biol,2011,87(10):1052-1060.
[15]Wu SY,Liu YW,Wang YK,et al.Lonizing radiation in duces autophagy in human oral squamous cell carcinoma[J]. J BUON,2014,19(1):137-144.
[16]Chang SH,Minai-Tehrani A,Shin JY,et al.Beclinl——induced autophagy abrogates radioresistance of lung cancer ceils by suppressing osteopontin[J].J Radiat Res,2012,53(3):422-432.
[17]Kim EJ,Jeong JH,Bae S,et al.mTOR inhibitors radiosensitize PTEN-deficient non-small-cell lung cauccr cells harboring an EGFR activating mutation by inducing autophagy[J].J Cell Biochem,2013,114(6):1248-1256.
[18]Thomlinson RH,Gray LH.The histological structure of some human lung cancers and the possible implications for radiotherapy[J].Br J Cancer,1955,9(4):539-549.
[19]Wijsman R,Kaanders JH,Oyen WJ,et al.Hypoxia and tumor metabolism in radiation oncology:targets visualized by positron emission tomography[J].Q J Nucl Med Mol Imaging,2013,57(3):244-256.
[20]Rouschop KM,Vanden Beucken T,Dubois L,et al.The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5[J].J Clin Invest,2010,120(1):127-141.
[21]Sun Y,Xing X,Liu Q,et al.Hypoxia induced autophagy reduces radiosensitivity by the HIF-1alpha/miR-210/ Bcl-2 pathway in colon cancer cells[J].Int J Oncol,2015,46(2):750-756.
[22]王向東,張江虹,邵春林.自噬在腫瘤細(xì)胞乏氧耐受和輻射抵抗中的作用[J].中華放射醫(yī)學(xué)與防護(hù)雜志,2014,34(2):155-158.
[23]Pattingre S,Tassa A,Qu X,et al.Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy[J].Cell,2005,122(6):927-939.
[24]Li GH,Lin XL,Zhang H,et al.Ox-Lp(a)transiently induces HUVEC autophagy via an ROS-dependent PAPR-1-LKB1-AMPK-mTOR pathway[J].Atherosclerosis,2015,243(1):223-235.
[25]Hsu JL,Liu SP,Lee CC,et al.A unique amidoanthraquinone derivative displays antiproliferative activity against human hormone-refractory metastatic prostate cancers through activation of LKB1-AMPK-mTOR signalingpathway[J].NaunynSchmiedebergsArchPharmacol,2014,387(10):979-990.
[26]Baskar R,Lee KA,Yeo R,et al.Cancer and radiation therapy:current advances and future directions[J].Int J Med Sci,2012,9(3):193-199.
[27]Prise KM,Schettino G,F(xiàn)olkard M,et al.New insights on cell death from radiation exposure[J].Lancet Oncol,2005,6(7):520-528.
[28]楊永華,包勇,姜小筱,等.自噬與腫瘤防治新策略 [J].中國藥理與毒理學(xué)雜志,2015,29(2):179-190.
[29]曹建平,夏大靜.自噬與腫瘤關(guān)系研究新進(jìn)展 [J].浙江大學(xué)學(xué)報(bào):醫(yī)學(xué)版,2015(2):204-210.
[30]Selzer E,Hebar A.Basic principles of molecular effects of irradiation[J].Wien Med Wochenschr,2012,162(3-4):47-54.
[31]Hakem R.DNA-damage repair:the good,the bad,and the ugly[J].EMBO J,2008,27(4):589-605.
[32]Lindahl T,Wood RD.Quality control by DNA repair[J]. Science,1999,286(5446):1897-1905.
[33]Mo N,Lu YK,Xie WM,et al.Inhibition of autophagy enhances the radiosensitivity of nasopharyngeal carcinoma by reducing Rad51 expression[J].Oncol Rep,2014,32(5):1905-1912.
[34]Park JM,Tougeron D,Huang S,et al.Beclin 1 and UVRAG confer protection from radiation-induced DNA damage and maintain centrosome stability in colorectal cancer cells[J].PLoS One,2014,9(6):e100819.
[35]He WS,Dai XF,Jin M,et al.Hypoxia-induced autophagy confers resistance of breast cancer cells to ionizing radiation[J].Oncol Res,2012,20(5-6):251-258.
[36]Albert JM,Cao C,Kim KW,et al.Inhibition of poly(adp-ribose)polymerase enhances cell death and improves tumor growth delay in irradiated lung cancer models[J].Clin Cancer Res,2007,13(10):3033-3042.
[37]Munoz-Gamez JA,Rodriguez-Vargas JM,Quiles-Perez R,et al.Parp-1 is involved in autophagy induced by DNA damage[J].Autophagy,2009,5(1):61-74.
[38]EthierC,TardifM,ArulL,etal.Parp-1modulation of mTORsignaling in response to a DNA alkylating agent[J].PLoS One,2012,7(10):e47978.
[39]Chaachouay H,F(xiàn)ehrenbacher B,Toulany M,et al.AMPK-independent autophagy promotes radioresistance of human tumor cells under clinical relevant hypoxia in vitro[J]. Radiother Oncol,2015,116(3):409-416.
[40]Corradetti MN,Guan KL.Upstream of the mammalian target of rapamycin:doall roads pass through mTOR[J]. Oncogene,2006,25(48):6347-6360.
[41]Zheng Q,Zhao K,Han X,et al.Inhibition of AMPK accentuates prolonged caloric restriction-induced change in cardiac contractile function through disruption of compensatory autophagy[J].Biochim Biophys Acta,2015,1852(2):332-342.
[42]Baek SJ,Ishii H,Tamari K,et al.Cancer stem cells:The potential of carbon ion beam radiation and new radiosensitizers(Review)[J].Oncol Rep,2015,34(5):2233-2237.
[43]Singh SK,Hawkins C,Clarke ID,et al.Identification of human brain tumour initiating cells[J].Nature,2004,432(7015):396-401.
[44]Huynh TT,Lin CM,Lee WH,et al.Pterostilbene suppressed irradiation-resistant glioma stem cells by modulating GRP78/miR-205 axis[J].J Nutr Biochem,2015,26(5):466-475.
[45]Lomonaco SL,F(xiàn)inniss S,Xiang C,et al.The induction of autophagy by gammaradiation contributes to the radioresistance of glioma stem cells[J].Int J Cancer,2009,125(3):717-722.
[46]Martinez-Outschoorn UE,Prisco M,Ertel A,et al.Ketones and lactate increase cancer cell Bstemness,driving recurrence,metastasisandpoorclinicaloutcomein breastcancer:achievingpersonalizedmedicinevia metabolo-genomics[J].Cell Cycle,2011,10(8):1271-1286.
Research progress of autophagy in radiosensitivity
SONG HongmeiHE TianliMA Jianxin
Department of Radiation Oncology,Lianyungang no.2 People′s Hospital Affiliated to Bengbu Medical College,Jiangsu Province,Lianyungang222000,China
R730.5
A
1674-4721(2016)08(b)-0057-05
2016-04-21本文編輯:程銘)
馬建新(1968.9-),男,教授,蚌埠醫(yī)學(xué)院附屬連云港醫(yī)院腫瘤放療科主任;研究方向:腫瘤放射敏感性的個(gè)體化研究。