王首江,邢柏
(海南省農(nóng)墾總醫(yī)院東湖分院急診科,海南 ???570203)
機(jī)體免疫功能與膿毒癥關(guān)系的研究進(jìn)展
王首江,邢柏
(海南省農(nóng)墾總醫(yī)院東湖分院急診科,海南 ???570203)
膿毒癥是感染因素引起的全身炎性反應(yīng),可導(dǎo)致器官功能障礙和死亡。膿毒癥時(shí)發(fā)生免疫狀態(tài)紊亂,天然免疫組分損害自身細(xì)胞組織,密切影響著膿毒癥的轉(zhuǎn)歸。近年來有關(guān)膿毒癥免疫狀態(tài)紊亂的研究主要集中在免疫機(jī)制的各個(gè)環(huán)節(jié)。本文就目前機(jī)體免疫功能與膿毒癥的研究進(jìn)展做一綜述。
膿毒癥;免疫功能;固有免疫;適應(yīng)性免疫
膿毒癥是機(jī)體內(nèi)諸多炎性細(xì)胞影響免疫功能的一種感染性疾病[1],機(jī)體的免疫功能紊亂是膿毒癥發(fā)生發(fā)展的重要原因之一。在膿毒血癥演進(jìn)過程中,一旦患者的免疫系統(tǒng)平衡狀態(tài)受損,即是促炎反應(yīng)和抗炎反應(yīng)動(dòng)態(tài)失衡,疾病隨即進(jìn)入更為嚴(yán)重的階段,出現(xiàn)嚴(yán)重膿毒癥、膿毒性休克和多器官功能不全。從整體上來說膿毒癥是機(jī)體天然免疫系統(tǒng)-獲得性免疫系統(tǒng)、促炎反應(yīng)-抗炎反應(yīng)的失平衡。近年來,有關(guān)膿毒血癥患者免疫功能紊亂的臨床研究日益增多,對(duì)其發(fā)病機(jī)制的理解也更加深入[2]。本文就膿毒癥發(fā)生發(fā)展過程中機(jī)體的免疫狀態(tài)做一綜述。
固有免疫系統(tǒng)是一種先天的、健全的,且作用廣泛的防御系統(tǒng),保護(hù)真核生物免受病原微生物侵入[3-4],同時(shí)也是機(jī)體防御病原菌入侵的第一道防御系統(tǒng),受吞噬細(xì)胞調(diào)節(jié)包括巨噬細(xì)胞和樹突狀細(xì)胞(Dendritic cell,DC)。
巨噬細(xì)胞是機(jī)體免疫系統(tǒng)的重要細(xì)胞成分,它在抗感染、抗腫瘤和免疫調(diào)節(jié)中起著非常的重要作用。巨噬細(xì)胞能表達(dá)數(shù)十種受體,可產(chǎn)生數(shù)十種酶并能分泌近百種生物活性產(chǎn)物。巨噬細(xì)胞承擔(dān)著吞噬、消除細(xì)胞內(nèi)寄生蟲、真菌和消除衰老的自身細(xì)胞的功能,它在特異性體液免疫和細(xì)胞免疫中都有重要作用,所以巨噬細(xì)胞的吞噬消化功能在一定程度上可作為衡量機(jī)體免疫系統(tǒng)功能狀態(tài)的一個(gè)重要指標(biāo)[5]。
近年來,生物醫(yī)學(xué)研究的重點(diǎn)之一是對(duì)DC的研究,淋巴細(xì)胞亞群及免疫球蛋白、細(xì)胞因子活性等均與DC的活性有關(guān)。目前D C的研究多集中在變態(tài)反應(yīng)性疾病、腫瘤、移植等領(lǐng)域,感染性疾病方面的研究相對(duì)較少[6]。DC是抗原遞呈功能最強(qiáng)的抗原遞呈細(xì)胞,是目前發(fā)現(xiàn)的唯一能激活初始型T細(xì)胞的抗原遞呈細(xì)胞,這些都使DC成為細(xì)胞內(nèi)抗原加工遞呈、抗原遞呈細(xì)胞-T細(xì)胞間相互作用的橋梁和焦點(diǎn)。DC的最大特點(diǎn)是能夠顯著刺激初始型免疫反應(yīng),在機(jī)體的細(xì)胞免疫和體液免疫中起重要的調(diào)控作用。T細(xì)胞和B細(xì)胞的活化調(diào)節(jié)需DC發(fā)揮作用,外源性抗原主要是由DC加工并傳遞給CD8,而內(nèi)源性抗原主要由DC加工并在細(xì)胞膜表面結(jié)合及粘附素的協(xié)同下傳遞給CD4。從這個(gè)角度來看DC活性能更直接地反映機(jī)體的免疫功能狀態(tài)[6]。
模式識(shí)別受體(PRRs)是固有免疫系統(tǒng)的重要組成部分,能夠識(shí)別危險(xiǎn)信號(hào)(比如入侵機(jī)體的細(xì)菌)并啟動(dòng)免疫應(yīng)答[7-8]。PRRs能夠識(shí)別微生物的特定成分,即病原體相關(guān)性分子模式(PAMPs),如脂多糖(LPS)、肽聚糖、脂肽(許多病原體的一個(gè)組成部分)、脂磷壁酸(革蘭氏陽性菌的細(xì)胞壁組成部分)、鞭毛蛋白和細(xì)菌DNA[8-10]。PRRs還可以識(shí)別內(nèi)源性危險(xiǎn)信號(hào),稱為警報(bào)素或危險(xiǎn)相關(guān)性分子模式(DAMPs),這些由炎癥性應(yīng)激反應(yīng)釋放(如燒傷、創(chuàng)傷和組織壞死),從而觸發(fā)宿主的免疫系統(tǒng)以應(yīng)對(duì)即將來臨的危險(xiǎn)[11-12]。生物的這種特性被嚴(yán)格保存于相應(yīng)的物種中。
Toll樣受體(Toll-like receptors,TLRs)家族是一類通過識(shí)別病原體上特異性分子介導(dǎo)固有免疫的跨膜信號(hào)傳遞受體,屬于模式識(shí)別受體(Pattern recognition receptors,PRRs)的一類,識(shí)別與宿主不同的病原體分子,即病原相關(guān)分子模式(Pathogen-associated molecular patterns,PAMPs)[13-14]。TLRs是固有免疫家族中一個(gè)極其重要的家族,在固有免疫中發(fā)揮著重要作用。到目前為止,至少已在哺乳動(dòng)物中發(fā)現(xiàn)了13個(gè)TLR受體,即TLR1-13,而在人中發(fā)現(xiàn)10種,即TLR1-10、TLR1-9也在鼠中表達(dá),而TLR11只在鼠中表達(dá),其中TLR4是第一個(gè)被發(fā)現(xiàn)的受體。每個(gè)TLR可檢測(cè)出不同病原體(病毒、細(xì)菌、分枝桿菌、真菌、寄生蟲)的特定PAMPs成分,這些成分包括脂蛋白(TLR1、TLR2和TLR6)、雙鏈RNA(TLR3)、脂多糖[LPS(TLR4)]、鞭毛蛋白(TLR5)、單鏈RNA(TLR7和TLR8)和DNA(TLR9)。一旦識(shí)別出各類特定的PAMPs,TLR受體將募集一類特定的銜接分子配置于TIR(Toll-IL-1 receptor)結(jié)構(gòu)域,如髓樣細(xì)胞分化蛋白(MyD88)和TRIF,并啟動(dòng)下游信號(hào)途徑,促使炎性細(xì)胞因子、I型干擾素、趨化因子和抗菌肽的分泌[15]。在膿毒癥早期,這些反應(yīng)募集中性粒細(xì)胞、激活巨噬細(xì)胞及誘導(dǎo)干擾素刺激基因,從而清除侵入機(jī)體的病原菌,但隨著病情進(jìn)展,可能會(huì)導(dǎo)致過度炎癥反應(yīng)[16]。若TLR及其傳導(dǎo)途徑過度異?;罨?,激活的單核巨噬細(xì)胞、樹突狀細(xì)胞及自然殺傷細(xì)胞等分泌大量炎癥介質(zhì),包括細(xì)胞因子[最重要的是腫瘤壞死因子(TNF)-α、白介素(IL)1和IL-6)、趨化因子(如引發(fā))、前列腺素、組胺]。這些介質(zhì)作用于血管內(nèi)皮細(xì)胞導(dǎo)致一氧化氮介導(dǎo)的血管舒張,增加血管通透性,募集中性粒細(xì)胞到組織,同時(shí)激活的中性粒細(xì)胞、一氧化氮對(duì)機(jī)體組織的影響和細(xì)胞因子誘導(dǎo)的新陳代謝改變將促使氧自由基的產(chǎn)生。伴隨著初始高炎癥反應(yīng),機(jī)體幾乎同時(shí)產(chǎn)生抗炎細(xì)胞因子,包括IL-10、TGF-β及IL-4,其有助于平衡炎性狀態(tài)。隨著病情發(fā)展,經(jīng)歷過初始高炎癥反應(yīng)階段的患者逐漸進(jìn)入后期的免疫抑制階段[17]。在膿毒癥的免疫抑制階段,細(xì)胞因子如IL-4和IL-10等,抑制巨噬細(xì)胞細(xì)胞因子分泌和降低巨噬細(xì)胞和中性粒細(xì)胞活性。此階段,機(jī)體對(duì)感染的易感性增加,極易出現(xiàn)獲得性感染。這些變化的累積效應(yīng)增加膿毒癥的嚴(yán)重程度,多個(gè)器官功能障礙并增加死亡率。
適應(yīng)性免疫系統(tǒng)能夠清除成功逃避過固有免疫的病原體,該免疫系統(tǒng)的組成成分正常情況下處于靜息狀態(tài),然而一旦被病原體激活,其可通過增殖、分化及建立強(qiáng)有力的機(jī)制以消除微生物。適應(yīng)性免疫系統(tǒng)分為兩種類型:體液免疫,由B淋巴細(xì)胞產(chǎn)生的抗體介導(dǎo);細(xì)胞免疫,由T淋巴細(xì)胞介導(dǎo)。與固有免疫反應(yīng)相反,適應(yīng)性免疫系統(tǒng)具有高度特異性,并且形成持久的免疫,適應(yīng)性強(qiáng)自特異性抗原的結(jié)果是一個(gè)復(fù)雜的免疫細(xì)胞的成熟和發(fā)展,它的這種抗原特異性是免疫細(xì)胞發(fā)展的結(jié)果。適應(yīng)性免疫反應(yīng)的關(guān)鍵細(xì)胞是CD4+T淋巴細(xì)胞。通常適應(yīng)性免疫系統(tǒng)的各個(gè)組成部分相互之間配合,以及與固有免疫系統(tǒng)的分子細(xì)胞協(xié)作以形成有效的免疫應(yīng)答,從而消除入侵的病原體。T細(xì)胞可被激活和分化成Th1、Th2或Th17細(xì)胞。這是一個(gè)重要過程,因有助于特定病原體的清除,特別是Th1細(xì)胞是清除細(xì)胞內(nèi)病原體必不可少的成分,Th2細(xì)胞預(yù)防寄生蟲感染和調(diào)解的過敏反應(yīng)和Th17可能有助于細(xì)胞外細(xì)菌和真菌的清除[18-19]。然而,失調(diào)的T淋巴細(xì)胞與非正?;罨腡淋巴細(xì)胞亞群的異常反應(yīng)可導(dǎo)致炎癥的發(fā)作,釋放過量的細(xì)胞因子和趨化因子,對(duì)適應(yīng)性免疫系統(tǒng)和固有免疫系統(tǒng)的各個(gè)分支組成部分產(chǎn)生多重致病作用。
抗炎細(xì)胞因子IL-10在膿毒癥患者疾病早期的血清中即可檢測(cè)到,IL-10與TNF-α的高比例與患者的死亡率呈正相關(guān)[20-21]??寡准?xì)胞因子IL-10是treg和Th2型細(xì)胞生成的,并且抑制Th1(CD8+T細(xì)胞)響應(yīng)進(jìn)一步增效抗炎的環(huán)境[22-23],這種抑制的環(huán)境明顯減少促炎細(xì)胞因子TNF-α、IL-1β和IL-6的產(chǎn)生[24-27]。這種代償性抗炎反應(yīng)綜合征或是免疫麻痹,主要由Th2反應(yīng)介導(dǎo),增加調(diào)節(jié)性T細(xì)胞數(shù)量,促使淋巴細(xì)胞凋亡,同時(shí)減少單核細(xì)胞/巨噬細(xì)胞系統(tǒng)中MHC類II (HLA-DR)的分子數(shù)量[28-30]。有研究提示,分別來源膿毒癥死亡患者脾臟和膿毒癥發(fā)病后7 d的患者外周血單核細(xì)胞的免疫效應(yīng)細(xì)胞阻礙促炎和抗炎細(xì)胞因子的分泌(TNF-αIFN-γ、IL-6、IL-10)[31-32]。此外,膿毒癥患者在受到抗-CD3/抗-CD28(T細(xì)胞激活劑)刺激后細(xì)胞因子分泌的缺陷亦表示適應(yīng)性免疫系統(tǒng)被抑制。
在膿毒癥的后期階段,大量的T細(xì)胞被消耗,這是發(fā)生免疫抑制的主要病因。T細(xì)胞消耗最早在慢性病毒感染動(dòng)物模型中發(fā)現(xiàn),被認(rèn)為是由于持續(xù)暴露于高濃度的抗原[33]。膿毒癥患者通常有一個(gè)原發(fā)性和繼發(fā)感染的過程,這可能包含有持續(xù)高循環(huán)抗原從而促進(jìn)T細(xì)胞消耗[30-32]。最近一項(xiàng)來自死于膿毒癥患者的脾臟和肺臟的研究[33]所顯示的結(jié)果與T細(xì)胞耗竭高度一致,研究結(jié)果發(fā)現(xiàn)膿毒癥患者的脾細(xì)胞因子的產(chǎn)生被嚴(yán)重抑制,降低T細(xì)胞IL-7受體(CD127)的表達(dá),并增加PD-1與PD-L1對(duì)T細(xì)胞和巨噬細(xì)胞的表達(dá)。該研究還發(fā)現(xiàn)PD-L1高度表達(dá)于組織實(shí)質(zhì)細(xì)胞,即脾血管內(nèi)皮細(xì)胞、支氣管上皮細(xì)胞,從而為PD-1的活化提供了機(jī)會(huì)。Guignant等[34]記錄到膿毒癥患者的免疫細(xì)胞PD-1的表達(dá)和降低的T細(xì)胞的增殖能力之間的相關(guān)性,并增加了院內(nèi)感染和死亡率。最近Singh等[35]發(fā)表一項(xiàng)重要的研究結(jié)果也表明在體外阻斷PD-1能改善T細(xì)胞IFN-γ的生產(chǎn)和降低結(jié)核病患者的T細(xì)胞凋亡,因?yàn)榛顒?dòng)性肺結(jié)核與膿毒癥之間的相似性,這項(xiàng)研究結(jié)果將對(duì)膿毒癥廣泛的領(lǐng)域產(chǎn)生重大影響。
綜上所述,在膿毒癥的發(fā)生與發(fā)展過程中機(jī)體的免疫狀態(tài)隨之改變,即由早期的免疫激活狀態(tài)逐漸進(jìn)入后期的免疫抑制狀態(tài),也可能自始至終機(jī)體就處于免疫紊亂狀態(tài)。因此,調(diào)控機(jī)體的炎性反應(yīng),及時(shí)、有效的阻斷這一途徑,是成功治療膿毒癥的關(guān)鍵所在[36]。闡明引起膿毒癥免疫功能障礙的詳細(xì)發(fā)病機(jī)制,明確機(jī)體所處的免疫狀態(tài),可能為膿毒癥的早期診斷和合理防治提供新思路,改善預(yù)后,提高生存率。
[1]唐紀(jì)文,林秀娟,陳國勝,等.血必凈注射液治療膿毒癥急性腎損傷的療效及對(duì)患者血清IL-6,TNF-α水平的影響[J].海南醫(yī)學(xué), 2014,25(15):2237-2239.
[2]吳宗盛,盧中秋,姚詠明.膿毒癥免疫細(xì)胞凋亡研究進(jìn)展[J].中華老年多器官疾病雜志,2012,11(12):956-959.
[3]Kawai T,Akira S.Toll-like receptors and their crosstalk with other innate receptors in infection and immunity[J].Immunity,2011,34 (5):637-650.
[4]Fernández-Real JM,Pickup JC.Innate immunity,insulin resistance and type 2 diabetes[J].Diabetologia,2012,55(2):274-277.
[5]張淑莉,李素芬.小鼠腹腔巨噬細(xì)胞的分離培養(yǎng)與鑒定[J].海南醫(yī)學(xué),2014,25(19):2814-2815.
[6]馮戰(zhàn)桂,張國英.反復(fù)呼吸道感染患兒樹突狀細(xì)胞水平和免疫功能的研究[J].海南醫(yī)學(xué),2013,24(12):1772-1774.
[7]Schroder K,Tschopp J.The inflammasomes[J].Cell,2010,140(6): 821-832.
[8]Kawai T,Akira S.The role of pattern-recognition receptors in innate immunity:update on Toll-like receptors[J].Nat Immunol,2010,11 (5):373-384.
[9]Kumar H,Bot A.Innate immune recognition mechanisms and translational opportunities[J].International Reviews of Immunology,2013, 32(2):113-115.
[10]Kawai T,Akira S.The role of pattern-recognition receptors in innate immunity:update on Toll-like receptors[J].Nat Immunol,2010,11 (3):373-384.
[11]Chan JK,Roth J,Oppenheim JJ,et al.Alarmins:awaiting a clinical response[J].J Clin Invest,2012,122:2711-2719.
[12]Chen GY,Nu?ez G.Sterile inflammation:sensing and reacting to damage[J].Nat Rev Immunol,2010,10(12):826-837.
[13]Zheng WW,Zheng XX,Liu S,et al.TNFα and IL-1β are mediated by both TLR4 and Nod1 pathways in the cultured HAPI cells stimulated by LPS[J].Biochem Biophys Res Commun,2012,420(4): 762-774.
[14]陽紅艷,胡興國,曾因明.脊髓Toll樣受體4與神經(jīng)病理性疼痛[J].實(shí)用疼痛學(xué)雜志,2012,8(1):55-60.
[15]Kawai T,Akira S.Regulation of innate immune signalling pathways by the tripartite motif(TRIM)family proteins[J].EMBO Molecular Medicine,2011,3(9):513-527.
[16]van der Poll T,Opal SM.Host-pathogen interactions in sepsis[J]. Lancet Infect Dis,2008,8(1):32-43.
[17]Rittirsch D,Michael A.Peter A.Ward.Harmful molecular mechanisms in sepsis[J].Nat Rev Immunol,2008,8(10):776-787.
[18]Bergmann-Leitner ES,Leitner WW.Adjuvants in the Driver′s Seat: How magnitude,type,fine specificity and longevity of immune responses are driven by distinct classes of immune potentiators[J].Vaccines,2014,2(2):252-258.
[19]Zhu J,Paul WE.Heterogeneity and plasticity of T helper cells[J]. Cell Research,2010,20(1):4-12.
[20]Chuang TY,Chang HT,Chung KP,et al.High levels of serum macrophage migration inhibitory factor and interleukin 10 are associated with a rapidly fatal outcome in patients with severe sepsis[J].International Journal of Infectious Disease,2014,20:13-17.
[21]Cao W,Zhang W,Liu J.Paeoniflorin improves survival in LPS-challenged mice through the suppression of TNF-α and IL-1β release and augmentation of IL-10 production[J].International Immunopharmacology,2011,11(2):176-178.
[22]Chaudhry A,Samstein RM.Interleukin-10 signaling in regulatory T cells is required for suppression of Th17 cell-mediated inflammation [J].Immunity,2011,34(4):566-570.
[23]Littman DR,Rudensky AY.Th17 and regulatory T cells in mediating and restraining inflammation[J].Cell,2010,140(6):845-858.
[24]Mosaffa F,Kalalinia F.Pro-inflammatory cytokines interleukin-1 beta,interleukin 6,and tumor necrosis factor-alpha alter the expression and function of ABCG2 in cervix and gastric cancer cells[J].Molecular and Cellular Biochemistry,2012,363(2):385-390.
[25]Gunjaca I,Zunic J,Gunjaca M.Circulating cytokine levels in acute pancreatitis-model of SIRS/CARS can help in the clinical assessment of disease severity[J].Inflammation,2012,35(2):758-763.
[26]Weighardt H,Heidecke CD,Emmanuilidis K,et al.Sepsis after major visceral surgery is associated with sustained and interferon-gamma-resistant defects of monocyte cytokine production[J].Surgery, 2000,127(3):309-315.
[27]Opal SM.Immunologic alterations and the pathogenesis of organ failure in the ICU[J].Semin Respir Crit Care Med,2011,32(5): 569-580.
[28]Frazier WJ,Hall MW.Immunoparalysis and adverse outcomes from critical illness[J].Pediatr Clin NorthAm,2008,55(3):647-648.
[29]Boomer JS,Shuherk-Shaffer J,Hotchkiss RS,et al.A prospective analysis of lymphocyte phenotype and function over the course of acute sepsis[J].Crit Care,2012,16(3):R112.
[30]Boomer JS,To K,Chang KC,et al.Immunosuppression in patients who die of sepsis and multiple organ failure[J].JAMA,2011,306 (23):2594-2598.
[31]Otto GP,Sossdorf M,Claus RA,et al.The late phase of sepsis is characterized by an increased microbiological burden and death rate [J].Crit Care,2011,15(4):R183.
[32]Aziz M,Yang WL,Matsuo S,et al.Upregulation of GRAIL is associated with impaired CD4 T cell proliferation in sepsis[J].J Immunol, 2014,192(5):2305-2309.
[33]Wherry EJ.T cell exhaustion[J].Nat Immunol,2011,12:492-499.
[34]Guignant C,Lepape A,Huang X,et al.Programmed death-1 levels correlate with increased mortality,nosocomial infection and immune dysfunctions in septic shock patients[J].Crit Care,2011,15(2):R99.
[35]Singh A,Mohan A,Dey AB,et al.Inhibiting the programmed death 1 pathway rescues Mycobacterium tuberculosis-specific interferon γ-producing T cells from apoptosisinpatients with pulmonary tuberculosis[J].Infectious Dis,2013,208(4):603-615.
[36]宋維,歐陽艷紅,劉元稅,等.烏司他丁對(duì)急診膿毒癥患者的器官保護(hù)作用[J].海南醫(yī)學(xué),2011,22(23):72-74.
Advances in study on immune function and sepsis.
WANG Shou-jiang,XING Bo.Emergency Department,Donghu Branch,Hainan Provincial Nongken General Hospital,Haikou 570203,Hainan,CHINA
Sepsis is the systemic inflammatory response syndrome induced by inflammatory factors,which could lead to multiple organ failure and even death.Immune state disorder appears during sepsis,and innate immune components damage own cellular tissues,affecting the prognosis of sepsis intimately.In recent years,studies of immune state disorder in sepsis mainly focus on different aspects in immunologic mechanisms.This paper reviews the advances in study on immune function and sepsis.
Sepsis;Immune function;Innate immunity;Adaptive immunity
R631
A
1003—6350(2016)07—1129—03
10.3969/j.issn.1003-6350.2016.07.034
2015-08-14)
海南省衛(wèi)生廳科研立項(xiàng)課題(編號(hào):瓊衛(wèi)2013資助-025)
邢柏。E-mail:xb36370887@163.com