李 勇,張維維,袁佳慧,黃漫麗,朱 亮,倪利曉,吳云海(1.河海大學(xué)淺水湖泊綜合治理與資源開發(fā)教育部重點(diǎn)實(shí)驗(yàn)室,江蘇南京 10098;.河海大學(xué)環(huán)境學(xué)院,江蘇南京 10098)
?
潛流帶水流特性及氮素運(yùn)移轉(zhuǎn)化研究進(jìn)展
李勇1,2,張維維2,袁佳慧2,黃漫麗2,朱亮1,2,倪利曉1,2,吳云海1,2
(1.河海大學(xué)淺水湖泊綜合治理與資源開發(fā)教育部重點(diǎn)實(shí)驗(yàn)室,江蘇南京210098;2.河海大學(xué)環(huán)境學(xué)院,江蘇南京210098)
摘要:為進(jìn)一步探明潛流帶表層沉積物對(duì)地表水體的“源匯”關(guān)系及季節(jié)性轉(zhuǎn)化規(guī)律,綜合闡述了當(dāng)前國(guó)內(nèi)外在河道和湖泊潛流帶方面的研究進(jìn)展,包括不同區(qū)域潛流帶內(nèi)水流形態(tài)及其對(duì)氮素運(yùn)移轉(zhuǎn)化的影響機(jī)制、潛流帶內(nèi)部環(huán)境變化梯度和溫度分布季節(jié)性變化對(duì)潛流帶好氧-厭氧區(qū)分布范圍及氮素硝化反硝化過程的影響、潛流帶中氮素與地表水體的交換特征及季節(jié)變化規(guī)律,并結(jié)合當(dāng)前的研究動(dòng)態(tài)提出了潛流帶水流特性及氮素運(yùn)移轉(zhuǎn)換研究中存在的問題并對(duì)研究進(jìn)行展望。
關(guān)鍵詞:潛流帶;水流特性;表層沉積物;氮素運(yùn)移轉(zhuǎn)化;內(nèi)部環(huán)境梯度;“源匯”關(guān)系;交換通量;綜述
潛流帶(hyporheic zone),作為地表水和地下水動(dòng)態(tài)交互混合的重要過渡區(qū)域,其物理特性及生物地球化學(xué)環(huán)境共同承載著水流、物質(zhì)和能量交換的變化過程。自Clements[1]于1905年提出潛流帶的概念后,國(guó)際上涌現(xiàn)了大量關(guān)于潛流帶的研究成果(特別是20世紀(jì)末期以來)。隨后Triska等[2]通過設(shè)定地下水和河水的混合比例對(duì)潛流帶的定義進(jìn)行了量化(即地表水含量大于10%但小于98%為相互作用的潛流帶),逐漸演變?yōu)榈乇硭?地下水動(dòng)態(tài)變化的交錯(cuò)混合區(qū)域,并在不同學(xué)科賦予了不同的涵義[3]。潛流帶是河流/湖泊等地表水體和地下水體連續(xù)統(tǒng)的重要組成部分,其伸展面積往往是地表水體的數(shù)倍甚至數(shù)百倍;它有效鏈接著陸地、地表水體和地下水體的水流、物質(zhì)和能量的傳遞,其自然形成的物理化學(xué)和微生物梯度是各種生物地球化學(xué)過程變化的重要驅(qū)動(dòng)[3-4]。袁興中等[3]從潛流帶的概念、結(jié)構(gòu)和功能出發(fā),闡明溪流潛流帶在地表水-地下水之間的重要聯(lián)系,并揭示潛流帶的生態(tài)學(xué)意義。夏繼紅等[5]綜合闡述了河道潛流帶的水動(dòng)力、溶解氧濃度及溶質(zhì)循環(huán)等動(dòng)態(tài)過程,并提出河岸帶整治及生態(tài)修復(fù)的適宜策略。當(dāng)前越來越多的研究興趣集中于潛流帶與地表水體的水流和污染物質(zhì)交換,其中潛流帶內(nèi)復(fù)雜多變的水流被認(rèn)為是地表水和地下水之間物質(zhì)和能量交換的關(guān)鍵載體[6-8]。
潛流帶水流形態(tài)復(fù)雜,受地表水和地下水水位差及潛流帶自身特征的影響,主要分為垂直流(upwelling flow和downwelling flow)和水平流(parafluvial flow和floodplain flow),在垂直流和水平流之間亦存在相對(duì)靜止的靜滯流。由于河床局部地形地貌的變化,且受到河道底部流速的影響,在潛流帶中的水平流沿深度方向的流速呈遞減分布[9-10]。Ward等[11]對(duì)山區(qū)性河道潛流帶水流路徑和駐留時(shí)間進(jìn)行研究,發(fā)現(xiàn)潛流帶中水流運(yùn)動(dòng)具有明顯的時(shí)空分布差異性,其水流運(yùn)動(dòng)雖以對(duì)流占主導(dǎo),但易受到擴(kuò)散作用和可動(dòng)水體與不可動(dòng)水體之間交換等因素的綜合影響。林俊強(qiáng)等[12]通過模擬試驗(yàn)研究了河岸彎曲形態(tài)引起的側(cè)向潛流交換,發(fā)現(xiàn)側(cè)向潛流交換存在對(duì)流、擴(kuò)散和微循環(huán)3種形式,河道彎曲程度及其水動(dòng)力條件是影響潛流交換特征的重要因素。
湖泊潛流帶與河道潛流帶存在較大差異。大多數(shù)湖泊都處于流域的低洼地,周邊地下水容易通過湖岸或湖底潛流帶進(jìn)入湖泊水體[13]。同時(shí),湖泊水體流動(dòng)性相對(duì)較差,底部流速接近于零,其潛流帶中水流以垂直流或傾斜流為主[14],這主要依賴于潛流帶上下邊界的壓力差和能量差進(jìn)行緩速傳遞,底棲動(dòng)物及風(fēng)生流的擾動(dòng)也引起潛流帶局部水流的運(yùn)動(dòng)[15-16]。由于湖泊水位和地下水水位的季節(jié)性變化并不完全同步,導(dǎo)致潛流帶上下壓力差的季節(jié)性變化,同樣造成潛流帶內(nèi)水流流向和流速隨之變化。以太湖為例,在枯水期初期周邊地下水主要沿近岸區(qū)排泄至太湖水體[13,17],在枯水期后期則局部地區(qū)出現(xiàn)湖泊水流補(bǔ)給地下水現(xiàn)象;在豐水期由于太湖水位上漲但維持一定的水位,而地下水位則隨著降水補(bǔ)給逐漸上升,特別是作物生長(zhǎng)期大量灌溉水下滲,抬升了湖泊周邊地下水位,加大了潛流帶中水流的流速,改變了局部潛流帶的流向。同時(shí),湖泊潛流帶中水流流速和流向隨著距離岸線的距離增大而發(fā)生變化[13,17],形成了潛流帶中水流形態(tài)的空間差異性[18]。Cranswick等[18]發(fā)現(xiàn)在離岸較近區(qū)域潛流帶中存在上行流,而在離岸較遠(yuǎn)區(qū)域存在下行流,由此造成不同區(qū)域潛流帶中水流駐留時(shí)間的分布差異。潛流帶中營(yíng)養(yǎng)物質(zhì)的轉(zhuǎn)換與駐留時(shí)間(水流路徑長(zhǎng)短)等密切相關(guān)[18-19],主要取決于潛流帶的水力梯度和滲透性能,駐留時(shí)間變化范圍甚至達(dá)到幾個(gè)數(shù)量級(jí)[20]。駐留時(shí)間嚴(yán)重影響著氮素等營(yíng)養(yǎng)物質(zhì)在潛流帶中的硝化反硝化反應(yīng)過程[21]。另?yè)?jù)資料[22]顯示,太湖湖底86%以黃泥層覆蓋,其滲透性明顯較低,而岸邊帶則存在滲透性較大的沖積層,也造就了其潛流帶水流特性的空間分布差異性。潛流帶的滲透性能(路徑、時(shí)間)是影響營(yíng)養(yǎng)物質(zhì)運(yùn)移轉(zhuǎn)化的重要因素[23]。
2.1水流形態(tài)的影響
潛流帶水流形態(tài)對(duì)營(yíng)養(yǎng)物質(zhì)產(chǎn)生、分布和傳輸以及生物分布發(fā)揮了重要影響,也是相連的地表水體中生物地球化學(xué)循環(huán)的重要驅(qū)動(dòng)因素[24-25]。潛流帶靠近地表水體部分的水流形態(tài)和生物地球化學(xué)環(huán)境變化劇烈,且隨著深度發(fā)生變化[26]。地表水剛剛滲入潛流帶后其生物活性被認(rèn)為是最大的,隨著深度增加,溶質(zhì)的反應(yīng)速率呈指數(shù)形式遞減[27]。潛流帶中的下行流(downwelling flow)是攜帶富氧地表水體及其污染物質(zhì)進(jìn)入潛流帶和地下水的重要機(jī)制[14,28],為潛流帶中的微生物提供了豐富的溶解氧和有機(jī)質(zhì)[29]。潛流帶上行流(upwelling flow)則將含有低氧還原性物質(zhì)的地下水和孔隙水重新釋放進(jìn)入地表水體[10,30-31],給地表水體中微生物補(bǔ)充了營(yíng)養(yǎng)鹽(如),但溶解氧含量低。潛流帶水流交換控制了地表水與地下水的混合比例和在潛流帶中的可反應(yīng)時(shí)間長(zhǎng)短,進(jìn)而影響潛流帶中有氧和厭氧環(huán)境及溫度的分布[30-32]。
Storey等[33]通過對(duì)安大略南部Speed河流的研究,分析了氮的遷移轉(zhuǎn)化隨河流深度以及在上行流和下行流區(qū)域的變化,結(jié)果表明,在電子供體相對(duì)于電子受體較為豐富的地區(qū),還原成氨作用可能比硝化作用更加強(qiáng)烈;而在含有較多硝態(tài)氮以及較少溶解氧的下行流區(qū)域,厭氧過程反硝化作用更易發(fā)生。Holmes等[34]研究了在潛流帶下行流中氮的轉(zhuǎn)化規(guī)律,如果河流中的硝態(tài)氮和有機(jī)質(zhì)能夠?yàn)榉聪趸饔锰峁┗|(zhì),則在下行流中以反硝化作用為主,而上行流中以硝化作用為主。Gómez-Alday等[35]對(duì)西班牙中部的一個(gè)咸水湖泊-地下水系統(tǒng)進(jìn)行研究,發(fā)現(xiàn)不同區(qū)域潛流帶發(fā)生的上行流和下行流明顯影響硝態(tài)氮反硝化發(fā)生的途徑,同時(shí)不同深度的有機(jī)碳含量制約著反硝化過程。Stelzer等[36]對(duì)70cm深度范圍內(nèi)的潛流帶進(jìn)行研究,發(fā)現(xiàn)較深層的地下水含溶解氧較高(質(zhì)量濃度達(dá)6.9 mg/L),但在上行流過程中由于有機(jī)碳豐富,溶解氧濃度下降明顯(質(zhì)量濃度僅為0.8mg/L),硝態(tài)氮濃度也明顯降低,表明上行流中發(fā)生了明顯的反硝化作用。由此可見,潛流帶中水流形態(tài)對(duì)其內(nèi)部環(huán)境梯度,特別是溶解氧的垂向分布具有重要影響,進(jìn)而影響氮素的運(yùn)移轉(zhuǎn)化過程。
2.2內(nèi)部環(huán)境對(duì)氮素運(yùn)移轉(zhuǎn)化的影響
潛流帶作為地表水體與地下水體交換的核心紐帶區(qū)域,其內(nèi)部環(huán)境梯度對(duì)營(yíng)養(yǎng)物質(zhì)運(yùn)移轉(zhuǎn)化產(chǎn)生了綜合影響。Storey等[33]、Mermillod-Blondin等[37]通過室內(nèi)模擬試驗(yàn)和野外調(diào)查,研究了潛流帶的生物地球化學(xué)過程,證明潛流帶淺層的微生物承擔(dān)了大部分的氧氣消耗,硝化作用主要產(chǎn)生在潛流帶淺層,反硝化作用隨深度增加而增強(qiáng)。Zhang等[38]對(duì)我國(guó)洱海沉積物進(jìn)行研究,發(fā)現(xiàn)厭氧狀態(tài)(ρ(DO)<1 mg/L)和pH=6時(shí),氨氮容易釋放進(jìn)入地表水體;而好氧狀態(tài)(ρ(DO)<8~10mg/L)和pH=10時(shí),硝態(tài)氮容易從沉積物釋放到地表水體。在淡水生態(tài)系統(tǒng)沉積物厭氧環(huán)境中,硝態(tài)氮往往充當(dāng)有機(jī)碳氧化的終極電子受體,大部分硝態(tài)氮以N2而非N2O(僅少量且不穩(wěn)定)的形式去除,同化作用僅占少部分[25]。Duff等[39]研究了溶解氧濃度對(duì)氮轉(zhuǎn)化的重要影響,明確了潛流帶的氮循環(huán)主要是基于生物作用的氧化還原過程。Hou等[40]對(duì)柱狀潛流帶進(jìn)行研究,發(fā)現(xiàn)不同深度的硝態(tài)氮轉(zhuǎn)化速率與其中有機(jī)質(zhì)、鐵和硫含量具有明顯的相關(guān)性?;谒餍螒B(tài)、溶質(zhì)反應(yīng)和能量之間的相互作用,越來越多的研究趨向于耦合研究潛流帶中水、熱、氮、鐵、硫和砷等的生物地球化學(xué)循環(huán)過程[41-44]。
潛流帶中生物活性還受到周邊溫度的強(qiáng)烈影響,溫度分布的變化對(duì)氮素的硝化反硝化速率產(chǎn)生重要影響。Holmroos等[45]在淺水富營(yíng)養(yǎng)化Kirkkoj?rvi湖泊(芬蘭)底泥懸浮試驗(yàn)中發(fā)現(xiàn)夏季高溫時(shí)表層沉積物反硝化脫氮明顯增強(qiáng),甚至改變了湖泊水體中TN∶TP的關(guān)系。Zhang等[46]對(duì)我國(guó)洱海研究顯示,夏季高溫對(duì)潛流帶表層酶活性影響較大,酶活性隨深度增加而降低,進(jìn)而影響潛流帶中氮素的硝化反硝化和有機(jī)質(zhì)的腐解和再礦化作用。Burke等[47]對(duì)德國(guó)Wannsee湖岸坡滲濾系統(tǒng)進(jìn)行原狀柱試驗(yàn)研究時(shí)發(fā)現(xiàn),當(dāng)溫度為6.5℃時(shí),沿著滲流路徑溶解氧質(zhì)量濃度急劇下降(從11.6mg/L降到1.9mg/L),的質(zhì)量濃度也有所降低(從7.8mg/L降到5.5mg/L);當(dāng)溫度為19.7℃時(shí),潛流帶上層6cm內(nèi)溶解氧質(zhì)量濃度從8.0mg/L急劇下降到1.5mg/L,NO3-的質(zhì)量濃度則略有上升(可能是礦化作用導(dǎo)致),隨著深度增大,溶解氧濃度消耗殆盡;低氧區(qū)一直延伸至24cm深度,其中Mn2+的質(zhì)量濃度上升較大,而的質(zhì)量濃度維持穩(wěn)定在3.0mg/L左右;同時(shí)發(fā)現(xiàn),在低溫狀況下,DOC的消耗量明顯比高溫下更大;所有污染物質(zhì)在土柱頂端部分的消耗明顯高于底部,在底部的污染物質(zhì)衰減非常緩慢或者保持穩(wěn)定。陳佳等[48]對(duì)渭河陜西段潛流帶進(jìn)行研究,發(fā)現(xiàn)沉積物中TP、TN在夏季的平均含量明顯高于冬季(接近3倍),沉積物、間隙水和河水TP、TN含量之間存在“源匯”的關(guān)系及間隙水TP、TN具有向河水釋放的趨勢(shì)。
3.1表層沉積物“源匯”關(guān)系
潛流帶中水流形態(tài)主導(dǎo)了河湖水體表層沉積物的“源匯”角色和交換通量。相對(duì)于地表水體來說,潛流帶中上行流發(fā)生的區(qū)域(或點(diǎn)位)表現(xiàn)為“源”,下行流發(fā)生的區(qū)域則表現(xiàn)為“匯”,這兩者在界面的物質(zhì)能量傳遞主要依賴于對(duì)流傳輸;而在靜滯流占主導(dǎo)的區(qū)域,界面的物質(zhì)能量交換主要取決于物質(zhì)濃度和能量的梯度并依賴于擴(kuò)散作用進(jìn)行,其“源匯”特征并不明顯。這些水流特征交替出現(xiàn),具有明顯的時(shí)空分布特征,水流方向的變化則相應(yīng)轉(zhuǎn)換了其相對(duì)于地表水體的“源匯”關(guān)系[29,44]。有研究[29]顯示,潛流帶上行流攜帶的營(yíng)養(yǎng)物質(zhì)促進(jìn)了其表層底棲藻類生物團(tuán)的形成,并為大型水生植物提供營(yíng)養(yǎng)。高增文等[49]通過無風(fēng)和有風(fēng)條件下2組沉積物鹽分釋放試驗(yàn),研究海灣水庫(kù)砂質(zhì)沉積物-水界面擴(kuò)散邊界層的形成情況,結(jié)果表明:在穩(wěn)定風(fēng)場(chǎng)條件下,沉積物-水界面處存在厚度約3.5 cm的擴(kuò)散邊界層;有風(fēng)條件下的界面鹽分交換通量略大于無風(fēng)時(shí)的通量;分子擴(kuò)散是邊界層內(nèi)鹽分運(yùn)移的主要機(jī)制,擴(kuò)散邊界層對(duì)沉積物鹽分釋放具有阻滯作用,并且邊界層越厚,阻滯效應(yīng)越顯著;由于擴(kuò)散邊界層的存在,限制了水動(dòng)力對(duì)沉積物與上覆水之間物質(zhì)交換的增強(qiáng)作用。
湖泊、河流等水體沉積物中營(yíng)養(yǎng)物質(zhì)含量隨季節(jié)變化,也隨沉積物深度發(fā)生變化[48,50]。不同地區(qū)湖泊甚至是同一湖泊的不同區(qū)域,表層沉積物特性不同,無機(jī)氮中有的以銨態(tài)氮為主、有的則以硝態(tài)氮為主,同時(shí)這種主導(dǎo)性及氮素含量隨著季節(jié)發(fā)生變化[51-52]。主要原因大多解釋為河湖水體中的污染物質(zhì)濃度變化導(dǎo)致了沉積物表層相應(yīng)污染物含量的變化,這在很多情況下確實(shí)存在較好的相關(guān)性。當(dāng)湖泊周邊地下水位高于湖泊水位時(shí),地下水?dāng)y硝態(tài)氮等營(yíng)養(yǎng)物質(zhì)沿潛流帶滲入(上行流)湖泊水體,表現(xiàn)為“源”,其滲透流速隨著離岸距離的增加而呈指數(shù)型遞減,逐漸過渡到靜滯流;而當(dāng)?shù)叵滤坏陀诤此粫r(shí),湖泊水?dāng)y氧等滲入(下行流)到淺層地下水,其滲透流量也隨離岸距離增加而遞減,并逐漸過渡到靜滯流[13,53]。同時(shí)潛流帶中這些水流形態(tài)還受地表水和地下水位波動(dòng)(如豐、枯水期過渡階段)的影響,隨著季節(jié)發(fā)生局部切換。而水流形態(tài)的變換將對(duì)潛流帶中駐留時(shí)間、好氧-厭氧區(qū)和元素的重新分布和運(yùn)移轉(zhuǎn)化產(chǎn)生重要影響[44]。Keery等[54]認(rèn)為潛流帶的水動(dòng)力交互關(guān)系及潛流帶內(nèi)部環(huán)境的變化能更好地闡釋表層沉積物中污染物是“源”或“匯”及其時(shí)空變異性。
3.2表層沉積物“源匯”轉(zhuǎn)換原理
目前,對(duì)于潛流帶表層沉積物的“源匯”關(guān)系解釋的原理主要分為擴(kuò)散原理、擾動(dòng)釋放原理和“草”“藻”型湖泊原理。擴(kuò)散原理主要是因?yàn)楸韺映练e物與上覆水體中物質(zhì)含量梯度引起的跨界面物質(zhì)遷移,是一個(gè)緩慢的過程;擾動(dòng)釋放原理則認(rèn)為地表水體的流速、流向發(fā)生劇烈變化時(shí)(如風(fēng)生流、船舶行駛等)擾動(dòng)了表層(或更深層)沉積物內(nèi)的污染物質(zhì),使其向上覆水體遷移,這種釋放是局部的和暫時(shí)的;“草”“藻”型湖泊原理則認(rèn)為大型水生植物抑制了表層沉積物中污染物的釋放,而藻型湖泊則有利于污染物的釋放。
然而有的情況下卻不能解釋即使在同一河段上或在同一湖泊內(nèi),有的監(jiān)測(cè)點(diǎn)位的沉積物表現(xiàn)為“源”,而有的卻表現(xiàn)為“匯”,甚至“源匯”關(guān)系也發(fā)生季節(jié)性轉(zhuǎn)換[7,50,55]。這些氮、磷營(yíng)養(yǎng)元素的變化特征并不能僅以地表水體的水質(zhì)變化來加以解釋[44,50]。太湖表層沉積物的研究也顯示,受死亡殘?bào)w沉降和分解影響明顯的“草”“藻”型湖區(qū),氮的年釋放通量較大;太湖表層沉積物對(duì)于太湖水體來說“源匯”關(guān)系分布差異性較大且發(fā)生季節(jié)性轉(zhuǎn)換[55-56],大部分表層沉積物在一年中至少經(jīng)過了一次的“源”—“匯”轉(zhuǎn)換過程[55]。另外有研究[57]顯示,水生植物生長(zhǎng)的區(qū)域更有利于反硝化作用進(jìn)行,比對(duì)照區(qū)(無水生植物區(qū)域)高出30%左右(主要是根系區(qū)作用),因此即使該區(qū)域潛流帶中氮素是“源”,也很可能由于水生植物的存在使得局部水體中硝態(tài)氮濃度顯著偏低。
沉積物中營(yíng)養(yǎng)元素對(duì)于地表水體來說是“源”還是“匯”無法用以上3種原理完全加以解釋。Zarnetske等[44]研究發(fā)現(xiàn),潛流帶中硝態(tài)氮對(duì)于地表水體來說是“源”還是“匯”取決于其在潛流帶中的對(duì)流擴(kuò)散過程和駐留時(shí)間長(zhǎng)短以及溶解氧分布。這些現(xiàn)象表明,以潛流帶作為整體來進(jìn)行研究并揭示其水流形態(tài)變化及其引起的污染物質(zhì)釋放規(guī)律顯得越來越重要[8]。
地表水與地下水之間潛流帶中的水流形態(tài)和氮素運(yùn)移轉(zhuǎn)化研究一直是國(guó)際上研究的熱點(diǎn)問題[25]。目前國(guó)內(nèi)外對(duì)河道潛流帶的研究頗多,而對(duì)相對(duì)靜止的水體——湖泊的潛流帶研究則相對(duì)偏少。我國(guó)也在逐步加強(qiáng)對(duì)潛流帶的相關(guān)研究,但同樣主要側(cè)重于研究河道潛流帶的水流和溶質(zhì)運(yùn)移轉(zhuǎn)化[5,12,15,48,58]。我國(guó)在湖泊沉積物的研究方面則側(cè)重于其表層與上覆水體之間的動(dòng)態(tài)交換,而以潛流帶作為整體研究對(duì)象的相對(duì)偏少。然而相對(duì)于河道來講,湖泊水體流動(dòng)相對(duì)緩慢,其潛流帶由數(shù)年或數(shù)十年沉降物堆積而成,分層特征明顯,腐殖質(zhì)含量較高,各種生物地球化學(xué)元素豐富,對(duì)水流形態(tài)和氮素的運(yùn)移轉(zhuǎn)化會(huì)產(chǎn)生有別于河道潛流帶的作用和影響。掌握潛流帶內(nèi)水流形態(tài)是揭示其內(nèi)部環(huán)境變化及氮素運(yùn)移轉(zhuǎn)化的關(guān)鍵和首要步驟,結(jié)合水流形態(tài)及其轉(zhuǎn)換規(guī)律是闡釋湖泊表層沉積物作為“源”或“匯”的重要理論和機(jī)制。
由于潛流帶受到眾多因素的綜合影響,目前國(guó)內(nèi)外都趨于采用數(shù)值模型的模擬結(jié)果闡釋其中發(fā)生的水流運(yùn)動(dòng)和生物地球化學(xué)過程的機(jī)理機(jī)制[44,59]。數(shù)值模擬的方法是現(xiàn)場(chǎng)監(jiān)測(cè)和室內(nèi)試驗(yàn)的重要補(bǔ)充和綜合,有利于進(jìn)一步掌握潛流帶中水流形態(tài)的驅(qū)動(dòng)因素及對(duì)氮素運(yùn)移轉(zhuǎn)化的影響。Marzadri等[10]采用數(shù)值模型模擬了河道潛流帶垂向二維的水流形態(tài)和溶質(zhì)運(yùn)移過程,進(jìn)一步揭示了微地貌(局部上凸和下凹)潛流帶與地表水和地下水的交換細(xì)節(jié)和驅(qū)動(dòng)因素,彌補(bǔ)了現(xiàn)場(chǎng)監(jiān)測(cè)資料無法解釋的過程。魯程鵬等[58]采用MODFLOW模型模擬研究了河床地形對(duì)潛流帶水流形態(tài)的影響,所得結(jié)果表明河床地形起伏是引起潛流帶滲透系數(shù)非均質(zhì)現(xiàn)象的重要原因之一。
基于潛流帶在地表水和地下水動(dòng)態(tài)交互中的樞紐作用,潛流帶復(fù)雜的水流形態(tài)、內(nèi)部環(huán)境梯度及其對(duì)溶質(zhì)運(yùn)移轉(zhuǎn)化的影響,從地表水和地下水交互變化引起的潛流帶內(nèi)水流形態(tài)轉(zhuǎn)變及其季節(jié)性變化可更科學(xué)地闡釋不同河流、湖泊甚至是同一水體不同區(qū)域的潛流帶中氮素等營(yíng)養(yǎng)物質(zhì)與地表水體的交換特征,從而更科學(xué)地界定其“源匯”關(guān)系和闡釋其時(shí)空變化差異性。
筆者認(rèn)為需進(jìn)一步加強(qiáng)研究的內(nèi)容主要包括以下4個(gè)方面:(a)將潛流帶作為整體研究對(duì)象,進(jìn)行潛流帶內(nèi)部環(huán)境變量垂向分布的基礎(chǔ)研究;(b)針對(duì)不同季節(jié)(熱傳遞效應(yīng)下)地表水體不同點(diǎn)位潛流帶內(nèi)水流形態(tài)及其對(duì)氮素硝化反硝化的影響機(jī)制進(jìn)行研究;(c)揭示地表水-地下水交互作用對(duì)潛流帶氮素與地表水體交換通量分布規(guī)律并總結(jié)季節(jié)轉(zhuǎn)換特征;(d)測(cè)算大型地表水體潛流帶反硝化作用釋放進(jìn)入地表水體的氣態(tài)氮通量,進(jìn)一步掌握潛流帶在氮素循環(huán)中發(fā)揮的銜接樞紐作用。這些研究將有利于闡釋地表水體不同區(qū)域潛流帶表層沉積物“源匯”關(guān)系及其季節(jié)性轉(zhuǎn)換規(guī)律,為大型水生植物種植區(qū)的選擇提供理論參考,亦為我國(guó)河湖水體的綜合治理提供科學(xué)依據(jù)。
參考文獻(xiàn):
[1]CLEMENTS F E.Research methods in Ecology[M].Lincoln,NB:University of Nebraska Publishing Company,1905:334.
[2]TRISKA F J,KENNEDY V C,AVANZINO R J.Retention and transport of nutrients in a third order stream in northwestern California:hyporheic processes[J].Ecology,1989,70:1894-1905.
[3]袁興中,羅固源.溪流生態(tài)系統(tǒng)潛流帶生態(tài)學(xué)研究概述[J].生態(tài)學(xué)報(bào),2003,23(5):956-964.(YUAN Xingzhong,LUO Guyuan.A brief review for ecological studies on hyporheic zone of stream ecosystem[J].Acta Ecologica Sinica,2003,23(5):956-964.(in Chinese))
[4]BARDINI L,BOANO F,CARDENAS M B,et al.Nutrient cycling in bedform induced hyporheic zones[J].Geochimica et Cosmochimica Acta,2012,84:47-61.
[5]夏繼紅,陳永明,王為木,等.河岸帶潛流層動(dòng)態(tài)過程與生態(tài)修復(fù)[J].水科學(xué)進(jìn)展,2013,24(4):589-597.(XIA Jihong,CHEN Yongming,WANG Weimu,et al.Dynamic processes and ecological restoration of hyporheic layer in riparian zone[J].Advances in Water Science,2013,24(4):589-597.(in Chinese))
[6]BARDINI L,BOANO F,CARDENAS M B,et al.Nutrient cycling in bedform induced hyporheic zones[J].Geochimica et Cosmochimica Acta,2012,84:47-61.
[7]XIE Xianjun,JOHNSON T M,WANG Yanxin,et al.Pathways of arsenic from sediments to groundwater in the hyporheic zone:evidence from an iron isotope study[J].Journal of Hydrology,2014,511:509-517.
[8]SIERGIEIEV D,WIDERLUND A,INGRI J,et al.Flow regulation effects on the hydrogeochemistry of the hyporheic zone in boreal rivers[J].Science of The Total Environment,2014,499:424-436.
[9]KIM H,LEE K,LEE J.Numerical verification of hyporheic zone depth estimation using streambed temperature[J].Journal of Hydrology,2014,511:861-869.
[10]MARZADRI A,TONINA D,MCKEAN J A,et al.Multi-scale streambed topographic and discharge effects on hyporheic exchange at the stream network scale in confined streams[J].Journal of Hydrology,2014,519:1997-2011.
[11]WARD A S,GOOSEFF M N,F(xiàn)ITZGERALD M,et al.Spatially distributed characterization of hyporheic solute transport during baseflow recession in a headwater mountain stream using electrical geophysical imaging[J].Journal of Hydrology,2014,517:362-377.
[12]林俊強(qiáng),嚴(yán)忠民,夏繼紅.彎曲河岸側(cè)向潛流交換試驗(yàn)[J].水科學(xué)進(jìn)展,2013,24(1):119-125.(LIN Junqiang,YAN Zhongmin,XIA Jihong.Laboratory experiments on lateral hyporheic exchange in riverbanks with curved bank morphology[J].Advances In Water Science,2013,24(1):119-125.(in Chinese))
[13]LI Yong,WANG Chao.Theoretical estimation of groundwater discharge and associated nutrient loading to a lake with gentle slope bottom[J].Journal of Hydrodynamics:Ser.B,2007,19(1):30-35.
[14]TONINA D,BUFFINGTON J M.Hyporheic exchange in mountain rivers I:mechanics and environmental effects[J].Geography Compass,2009,3(3):1063-1086.
[15]宋進(jìn)喜,任朝亮,李夢(mèng)潔,等.河流潛流帶顫蚓生物擾動(dòng)對(duì)沉積物滲透性的影響研究[J].環(huán)境科學(xué)學(xué)報(bào),2014,34(8):2062-2069.(SONG Jinxi,REN Chaoliang,LI Mengjie,et al.Effects of Tubificid bioturbations on vertical hydraulic conductivityof the hyporheic streambed sediments[J].Acta Scientiae Circumstantiae,2014,34(8):2062-2069.(in Chinese))
[16]ZHANG Lei,SHEN Qiushi,HU Haiyan,et al.Impacts of corbicula fluminea on oxygen uptake and nutrient fluxes across the sediment-water interface[J].Water,Air&Soil Pollution,2011,220(1/2/3/4):399-411.
[17]LI Yong,WANG Chao,YANG Linzhang,et al.Influence of seepage face obliquity on discharge of groundwater and its pollutant into lake from a typical unconfined aquifer[J].Journal of Hydrodynamics:Ser.B,2007,19(6):756-761.
[18]CRANSWICK R H,COOK P G,LAMONTAGNE S.Hyporheic zone exchange fluxes and residence times inferred from riverbed temperature and radon data[J].Journal of Hydrology,2014,519:1870-1881.
[19]BRIGGS M A,LAUTZ L K,HARE D K.Residence time control on hot moments of net nitrate production and uptake in the hyporheic zone[J].Hydrological Processes,2014,28:3741-3751.
[20]GARTNER J D,RENSHAW C E,DADE W B,et al.Time and depth scales of fine sediment delivery into gravel stream beds:constraints from fallout radionuclides on fine sediment residence time and delivery[J].Geomorphology,2012,151-152:39-49.
[21]CLARET C,BOULTON A J.Integrating hydraulic conductivity with biogeochemical gradients and microbial activity along rivergroundwater exchange zones in a subtropical stream[J].Hydrogeology Journal,2009,17(1):151-160.
[22]黃漪平.太湖水環(huán)境及其污染控制[M].北京:中國(guó)科學(xué)出版社,2001.
[23]CHEN Xunhong,MI Haicun,HE Hongman,et al.Hydraulic conductivity variation within and between layers of a high floodplain profile[J].Journal of Hydrology,2014,515:147-155.
[24]BOURKE S A,COOK P G,SHANAFIELD M,et al.Characterisation of hyporheic exchange in a losing stream using radon-222[J].Journal of Hydrology,2014,519:94-105.
[25]BURGIN A J,HAMILTON S K.Have we overemphasized the role of denitrification in aquatic ecosystems?A review of nitrate removal pathways[J].Frontiers in Ecology and the Environment,2007,5(2):89-96.
[26]HEBERER T,MASSMANN G,F(xiàn)ANCK B,et al.Behaviour and redox sensitivity of antimicrobial residues during bank filtration[J].Chemosphere,2008,73(4):451-460.
[27]STUYFZAND P J.Hydrogeochemical processes during riverbank filtration and artificial recharge of polluted surface waters:zonation,identification,and quantification[M].Netherlands:Springer,2011:97-128.
[28]TONINA D,BUFFINGTON J M.Hyporheic exchange in gravel bed rivers with pool-riffle morphology:laboratory experiments and three-dimensional modeling[J].Water Resources Research,2007,43(1):1-16.
[29]BOULTON A J,DATRY T,KASAHARA T,et al.Ecology and management of the hyporheic zone:stream-groundwater interactions of running waters and their floodplains[J].Journal of the North American Benthological Society,2010,29(1):26-40.
[30]MARZADRI A,TONINA D,BELLIN A.Quantifying the importance of daily stream water temperature fluctuations on the hyporheic thermal regime:Implication for dissolved oxygen dynamics[J].Journal of Hydrology,2013,507:241-248.
[31]ZARNETSKE J P,HAGGERTY R,WONDZELL S M,et al.Labile dissolved organic carbon supply limits hyporheic denitrification[J].Journal of Geophysical Research:Biogeosciences,2011,116(4):4036-4048.
[32]STONEDAHL S H,HARVEY J W,PACKMAN A I.Interactions between hyporheic flow produced by stream meanders,bars,and dunes[J].Water Resources Research,2013,49(9):25-36.
[33]STOREY R G,WILLIAMS D D,F(xiàn)ULTHORPE R R.Nitrogen processing in the hyporheic zone of a pastoral stream[J].Biogeochemistry,2004,69(3):285-313.
[34]HOLMES R M,JONES J B,F(xiàn)ISHER S G,et al.Denitrification in a nitrogen limited stream ecosystem[J].Biogeochemistry,1996,33:125-146.
[35]GOMEZ-ALDAY J J,CARREY R,VALIENTE N,et al.Denitrification in a hypersaline lake-aquifer system(Pétrola Basin,Central Spain):the role of recent organic matter and Cretaceous organic rich sediments[J].Science of the Total Environment,2014,497-498:594-606.
[36]STELZER R S,BARTSCH L A,RICHARDSON W B,et al.The dark side of the hyporheic zone:depth profiles of nitrogen and its processing in stream sediments[J].Freshwater Biology,2011,56:2021-2033.
[37]MERMILLOD-BLONDIN F,MAUCLAIRE L,MONTUELLE B.Use of slow filtration columns to assess oxygen respiration,consumption of dissolved organic carbon,nitrogen transformations,and microbial parameters in hyporheic sediments[J].Water Research,2005,39(9):1687-1698.
[38]ZHANG Li,WANG Shengrui,WU Zhihao.Coupling effect of pH and dissolved oxygen in water column on nitrogen release at wateresediment interface of Erhai Lake,China[J].Estuarine,Coastal and Shelf Science,2014,149:178-186.
[39]DUFF J H,TRISKA F J.Denitrifications in sediments from the hyporheic zone adjacent to a small forested stream[J].CanadianJournal of Fisheries and Aquatic Sciences,2011,47(6):1140-1147.
[40]HOU Lijun,LIU Min,CARINI S A,et al.Transformation and fate of nitrate near the sediment—water interface of Copano Bay[J].Continental Shelf Research,2012,35:86-94.
[41]XIE Xianjun,WANG Yanxin,LI Junxia,et al.Effect of irrigation on Fe(Ⅲ)-SO24-redox cycling and arsenic mobilization in shallow groundwater from the Datong basin,China:evidence from hydrochemical monitoring and modeling[J].Journal of Hydrology,2015,523:128-138.
[42]余倩.潛流帶砷遷移水動(dòng)力-水化學(xué)過程監(jiān)測(cè)與耦合模擬研究[D].武漢:中國(guó)地質(zhì)大學(xué),2014.
[43]WANG Yanxin,XIE Xianjun,JOHNSON T M,et al.Coupled iron,sulfur and carbon isotope evidences for arsenic enrichment in groundwater[J].Journal of Hydrology,2014,519:414-422.
[44]ZARNETSKE J P,HAGGERTY R,WONDZELL S M,et al.Coupled transport and reaction kinetics control the nitrate sourcesink function of hyporheic zones[J].Water Resources Research,2012,48(11):1-15.
[45]HOLMROOS H,HIETANEN S,NIEMISTO J,et al.Sediment resuspension and denitrification affect the nitrogen to phosphorus ratio of shallow lake waters[J].Fundam Appl Limnol,2012,180(3):193-205.
[46]ZHANG Li,WANG Shengrui,IMAI A.Spatial and temporal variations in sediment enzyme activities and their relationship with the trophic status of Erhai Lake[J].Ecological Engineering,2015,75:365-369.
[47]BURKE V,GRESKOWIAK J,ASMUβ T,et al.Temperature dependent redox zonation and attenuation of wastewater-derived organic micropollutants in the hyporheic zone[J].Science of the Total Environment,2014,482-483:53-61.
[48]陳佳,宋進(jìn)喜,楊小剛,等.渭河陜西段潛流帶污染特征及其對(duì)河水的影響[J].干旱區(qū)研究,2015,32(1):140-148.(CHEN Jia,SONG Jinxi,YANG Xiaogang,et al.Water pollution in underflow Zone along the Shaanxi section of the Weihe river[J].Arid Zone Research,2015,32(1):140-148.(in Chinese))
[49]高增文,鄭西來,趙全升.擴(kuò)散邊界層對(duì)沉積物鹽分釋放的阻滯影響[J].水科學(xué)進(jìn)展,2010,21(2):255-260.(GAO Zengwen,ZHENG Xilai,ZHAO Quansheng.Diffusive boundary layer and its resistance on salt release from deposited sediments in a polder reservoir[J].Advances In Water Science,2010,21(2):255-260.(in Chinese))
[50]金相燦,姜霞,徐玉慧,等.太湖東北部沉積物可溶性氮、磷的季節(jié)性變化[J].中國(guó)環(huán)境科學(xué),2006,26(4):409-413.(JIN Xiangcan,JIANG Xia,XU Yuhui,et al.Seasonal changes in Taihu sediments in northeast part of soluble nitrogen,phosphorus[J].China Environmental Science,2006,26(4):409-413.(in Chinese))
[51]劉清學(xué).我國(guó)不同分區(qū)湖泊表層沉積物中氮形態(tài)及DOM光譜特性研究[D].青島:青島科技大學(xué),2011.
[52]ZHANG Lu,ZHU Guangwei,LUO Liangcong,et al.Wind-wave affected phosphate loading variations and their relationship to redox condition in Lake Taihu[J].Science in China:Series D,2006,49(1):154-161.
[53]LI Yong,SIMUNEK J,ZHANG Zhentin,et al.Water flow and nitrate transport through a lakeshore with different revetment materials[J].Journal of Hydrology,2015,520:123-133.
[54]KEERY J,BINLEY A,CROOK N,et al.Temporal and spatial variability of groundwater—surface water fluxes:development and application of an analytical method using temperature time series[J].Journal of Hydrology,2007,336(1/2):1-16.
[55]范成新,張路,包先明,等.太湖沉積物-水界面生源要素遷移機(jī)制及定量化:2.磷釋放的熱力學(xué)機(jī)制及源—匯轉(zhuǎn)換[J].湖泊科學(xué),2006,18(3):207-217.(FAN Chengxin,ZHANG Lu,BAO Xianming,et al.Migration mechanism of biogenic elements and their quantification on the sediment-water interface of Lake Taihu:Ⅱ.chemical thermodynamic mechanism of phosphorus release and its source-sink transition[J].Lakes Science,2006,18(3):207-217.(in Chinese))
[56]范成新,張路,秦伯強(qiáng),等.太湖沉積物-水界面生源要素遷移機(jī)制及定量化:1.銨態(tài)氮釋放速率的空間差異及源—匯通量[J].湖泊科學(xué),2004,16(1):10-20.(FAN Chengxin,ZHANG Lu,QIN Boqiang,et al.Migration mechanism of biogenic elements and their quantification on the sediment-water interface of lake Taihu:Ⅰ.spatial variation of the ammonium release rates and its source and sink fluxes[J].Lakes Science,2004,16(1):10-20.(in Chinese))
[57]NIZZOLI D,WELSH D T,LONGHI D,et al.Influence of Potamogeton pectinatus and microphytobenthos on benthic metabolism,nutrient fluxes and denitrification in a freshwater littoral sediment in an agricultural landscape:N assimilation versus N removal[J].Hydrobiologia,2014,737:183-200.
[58]魯程鵬,束龍倉(cāng),陳洵洪.河床地形影響潛流交換作用的數(shù)值分析[J].水科學(xué)進(jìn)展,2012,23(6):789-795.(LU Chengpeng,SHU Longcang,CHEN Xunhong.Numerical analysis of the impacts of bedform on hyporheic exchange[J].Advances In Water Science,2012,23(6):789-795.(in Chinese))
[59]EVRARD V,GLUD R N,COOK P L M.The kinetics of denitrification in permeable sediments[J].Biogeochemistry,2013,113:563-572.
Research advances in flow patterns and nitrogen transformation in hyporheic zones
LI Yong1,2,ZHANG Weiwei2,YUAN Jiahui2,HUANG Manli2,ZHU Liang1,2,NI Lixiao1,2,WU Yunhai1,2
(1.Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes,Ministry of Education,Hohai University,Nanjing 210098,China;2.College of Environment,Hohai University,Nanjing 210098,China)
Abstract:To better illuminate the relationship of surface sediment in hyporheic zones as a source or sink for surface water and its seasonal conversion rule,this review focuses on research advances in hyporheic zones of rivers and lakes in China and other countries.The main aspects of the review include the water regimes of hyporheic zones and their influence on the transport and transformation of nitrogen;the influence of interior environmental gradients and seasonal variation of the temperature distribution in hyporheic zones on the distributions of aerobic and anaerobic zones and the processes of nitrification and denitrification;and the exchange characteristics and seasonal variation patterns of nitrogen in hyporheic zones with surface water.Some research prospects are proposed based on present research trends and deficiencies in hyporheic zones.
Key words:hyporheic zone;flow pattern;surface sediment;nitrogen transformation;interior environmental gradient;source-sink relationship;exchange flux;review
作者簡(jiǎn)介:李勇(1974—),男,江西萍鄉(xiāng)人,副教授,主要從事水體和土壤溶質(zhì)運(yùn)移研究。E-mail:liyonghh@163.com
基金項(xiàng)目:國(guó)家自然科學(xué)基金(51579074,51079048);“十二五”國(guó)家科技支撐計(jì)劃(2015BAB07B02);江蘇省水利科技項(xiàng)目(2013071);江蘇高校優(yōu)勢(shì)學(xué)科建設(shè)工程項(xiàng)目(PAPD)。
收稿日期:2015-06-18
DOI:10.3876/j.issn.1000-1980.2016.01.001
中圖分類號(hào):X52
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1000-1980(2016)01-0001-07