• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      生物質(zhì)炭材料在雙電層電容器中的應(yīng)用

      2016-04-05 08:46:36盧穎莉傅冠生喬志軍
      電源技術(shù) 2016年6期
      關(guān)鍵詞:電層微孔電流密度

      盧穎莉,傅冠生,楊 斌,喬志軍

      (寧波南車新能源科技有限公司,浙江寧波315112)

      生物質(zhì)炭材料在雙電層電容器中的應(yīng)用

      盧穎莉,傅冠生,楊 斌,喬志軍

      (寧波南車新能源科技有限公司,浙江寧波315112)

      雙電層電容器電極材料一般由炭材料組成,隨著化石能源的日益枯竭和環(huán)境污染的逐步惡化,傳統(tǒng)炭材料的生產(chǎn)和應(yīng)用受到了挑戰(zhàn)。采用綠色環(huán)保的生物質(zhì)作為碳源,制備雙電層電容器電極材料已成為研究熱點(diǎn)之一。介紹了近幾年來(lái)生物質(zhì)炭材料的制備及其在雙電層電容器中的應(yīng)用進(jìn)展,綜述了生物質(zhì)前驅(qū)體和制備方法對(duì)雙電層電容器電化學(xué)性能的影響。

      雙電層電容器;生物質(zhì)炭材料;多孔炭

      雙電層電容器 (electrochemical double-layer capacitors, EDLC)是依靠靜電作用力在電極上儲(chǔ)存電荷的一種儲(chǔ)能器件,與傳統(tǒng)依賴于電荷轉(zhuǎn)移反應(yīng)的電池不同,EDLC具有高功率密度、長(zhǎng)使用壽命、長(zhǎng)放置時(shí)間、寬使用溫度、高安全性等優(yōu)點(diǎn)。根據(jù)EDLC的儲(chǔ)能機(jī)理,其電容是由電極材料的靜電吸附提供,因此具有大比表面積的多孔炭是EDLC最常見(jiàn)的電極材料。多孔炭通常是從石油焦炭或煤衍生而來(lái),但是隨著礦物日益減少以及這些傳統(tǒng)材料的價(jià)格不斷上升,人們?cè)絹?lái)越多的將目光投向新資源的開(kāi)發(fā)。

      生物質(zhì)具有來(lái)源廣、價(jià)格低廉、可再生和綠色環(huán)保的優(yōu)點(diǎn),它作為碳源制備EDLC電極材料已成為儲(chǔ)能領(lǐng)域研究的熱點(diǎn)。目前以生物質(zhì)為前驅(qū)體,采取不同方法制備多孔炭電極材料是主要發(fā)展方向。根據(jù)不同的制備方法和多孔炭孔道結(jié)構(gòu),這些生物質(zhì)基多孔炭被分為四種:活性炭、介孔炭、分級(jí)多孔炭和炭氣凝膠。本文綜述了目前生物質(zhì)基多孔炭用于EDLC電極材料的研究進(jìn)展。

      1 生物質(zhì)基多孔炭

      1.1 活性炭

      活性炭是生物質(zhì)炭材料的主要衍生產(chǎn)品,目前商業(yè)化的生物質(zhì)活性炭(biomass materials-based activated carbons,BMACs)主要是椰殼基活性炭系列,其商業(yè)化YP17(Kuraray Chemical Corporation)在6mol/L KOH溶液中的比電容僅為158 F/g[1],因此開(kāi)發(fā)具有更高電容的生物質(zhì)活性炭迫在眉睫。近年來(lái),玉米[2]、咖啡豆[3]、甘蔗渣[4]、稻米殼[5]、木頭[6]、竹子[7]、木薯皮[8]等生物質(zhì)作為炭材料被用于活性炭電極材料。采用這些原材料制備的活性炭比電容均高于椰殼基活性炭,例如馬鈴薯淀粉基活性炭在6mol/L KOH溶液中甚至具有335 F/g的比電容(電流密度50 mA/g)[9];麥稈基活性炭在1.2mol/L MeEt3NBF4/ AN有機(jī)電解液中呈現(xiàn)251.1 F/g(2 mV/s掃速)的比電容[10]。雖然在低掃描速度或低電流密度下,生物質(zhì)活性炭具有高的比電容,然而生物質(zhì)活性炭的孔大多數(shù)是由微孔構(gòu)成,例如木頭和竹子的微孔率高達(dá)70%以上(孔徑小于2nm)[6-7]。研究表明在高掃描速度或電流密度下,因電解液離子尺度的問(wèn)題使其遷移內(nèi)阻變大,不能快速進(jìn)入微孔,導(dǎo)致比電容明顯下降,ESR增大,電壓下降明顯(IR drop)[11]。因此具有較多微孔結(jié)構(gòu)的生物質(zhì)活性炭在大電流充放電時(shí),電容特性表現(xiàn)不佳,例如雞羽毛基活性炭的BET比表面積(SSA)和微孔比表面積分別為1 839和1 575 m2/g,其較高的微孔比表面積使其在1 A/g(1mol/L H2SO4電解液)時(shí)具有302 F/g的比電容且壓降為0.12 V,然而當(dāng)電流密度為10 A/g時(shí),比電容為168 A/g且IR降更明顯,其容量保持率為55.6%(從1 A/g到10 A/g),如圖1[12]所示。

      圖1 雞羽毛基活性炭的透射電鏡圖(a)(b)和恒流充放電曲線(c)

      1.2 介孔炭

      生物質(zhì)活性炭的高微孔率使之大電流特性不佳,因此介孔炭(孔徑>2nm)或高中孔率多孔炭成為生物質(zhì)炭材料的另一重要產(chǎn)品。H.L.Lu等[13]以硅為模板,采用葡萄糖和硼酸為前驅(qū)體制備得到孔徑分布在 2~20nm的有序介孔炭(ordered mesoporous carbons,OMCs),雖然OMC-M-6的SSA僅為868.5 m2/g,但是其具有高達(dá)90%的中孔,結(jié)果表明OMC-M-6在30%(質(zhì)量分?jǐn)?shù))KOH電解液中在1 A/g電流密度下表現(xiàn)出202.8 F/g的比電容,在10 A/g下表現(xiàn)出172.5 F/g的比電容,容量保持率為85.1%(從1 A/g到10 A/g)且未出現(xiàn)明顯的壓降。高中孔率多孔炭與介孔炭具有相似的電化學(xué)性能,例如稻米殼基多孔炭[14]和花生殼基多孔炭(mesopore percentage>82%)[15-16]。與BM-ACs相比,生物質(zhì)介孔炭或高中孔率多孔炭的優(yōu)異性能更體現(xiàn)在大電流密度下,但是在小電流密度下,其比電容或能量密度偏低。稻米殼ZnCl活化后,具有1 500 m2/g比表面積的兩種多孔炭,具有較低中孔率(85.2%)的多孔炭比較高中孔率(99.0%)的多孔炭擁有更高的比電容、更穩(wěn)定的循環(huán)性能和更高的容量保持率,表明多孔炭的比電容不僅與中孔有關(guān),而且與微孔有關(guān)。因?yàn)槲⒖资请姾蓛?chǔ)存的主要場(chǎng)所,中孔是離子傳輸?shù)耐ǖ馈?/p>

      1.3 分級(jí)多孔炭

      具有高微孔的活性炭在小電流密度下?lián)碛懈叩谋入娙?,具有一定微孔結(jié)構(gòu)和較高中孔結(jié)構(gòu)的多孔炭在大電流密度下?lián)碛懈叩谋入娙莺腿萘勘3致?,因此多孔炭的孔徑分布合理性是其作為EDLCs電極材料的必備條件。由于分級(jí)多孔炭(hierarchical porous carbons,HPCs)的大孔(>50nm)結(jié)構(gòu)提供電解液儲(chǔ)存場(chǎng)所,中孔(2~50nm)結(jié)構(gòu)提供離子傳輸通道,而微孔提供離子儲(chǔ)存場(chǎng)所,因此目前分級(jí)多孔炭是擁有最合理孔道結(jié)構(gòu)的電極材料。例如淀粉基HPCs[17],香蕉皮基HPCs[18],動(dòng)物骨頭基HPCs[19]和魚(yú)鱗基HPCs[20]。淀粉基HPCs的球形結(jié)構(gòu)、分級(jí)的孔道結(jié)構(gòu)(相互連通的大-中-微孔結(jié)構(gòu))、超高的SSA(3 251 mm2/g)和高中孔率(>75%)使其在6mol/L KOH溶液中表現(xiàn)出良好的電化學(xué)性能,0.05 A/g時(shí)比電容為304 F/g,180 A/g時(shí)比電容為197 F/g,且10 000次循環(huán)后仍能保持98%,如圖2[21]所示。

      1.4 炭氣凝膠

      生物質(zhì)材料可以通過(guò)溶膠-凝膠、超臨界干燥、冷凍干燥、水熱等方法合成生物質(zhì)基水凝膠或炭氣凝膠 (hydrogels or aerogels),例如 β-葡聚糖[22-23]、木質(zhì)纖維素[24-25]、西瓜[26]、纖維素[27]、甲殼素[28-29]、淀粉[30]等。這些炭氣凝膠具有豐富的大-中孔結(jié)構(gòu)和優(yōu)越的導(dǎo)電網(wǎng)絡(luò),因此是EDLCs電極材料的重要選擇之一。西瓜基炭氣凝膠及其電化學(xué)性能如圖3[26]所示。

      圖2 淀粉基HPCs的表觀形貌(a~e)、倍率性能(f)和循環(huán)性能(g)

      圖3 西瓜基炭氣凝膠及其電化學(xué)性能

      2 結(jié)論

      生物質(zhì)炭材料作為前驅(qū)體被廣泛應(yīng)用于生產(chǎn)活性炭、介孔炭、分級(jí)的多孔炭、水凝膠或炭氣凝膠等,減少了化石燃料帶來(lái)的環(huán)境污染。除此之外,生物質(zhì)炭材料來(lái)源廣泛、價(jià)格低廉且具有可再生的特點(diǎn),因此可作為合成電化學(xué)電容器電極材料的重要原材料。然而,就目前生物質(zhì)炭材料做前驅(qū)體而言仍然存在兩個(gè)主要問(wèn)題:(1)灰分較高,前期處理比較繁瑣,例如動(dòng)物骨頭(灰分33%~43%)[19]和魚(yú)鱗(灰分46%)[30];(2)含炭量或有機(jī)炭含量偏低,產(chǎn)率較低,例如杏仁殼(殘?zhí)?5%,多孔炭產(chǎn)率17%)[31]和甘蔗渣(殘?zhí)?9.5%,多孔炭產(chǎn)率34.8%)[4]。因此,尋找一種具有低灰分和高含炭量的生物質(zhì)炭材料是拓展其應(yīng)用的重要課題。

      [1]HUANG W T,ZHANG H,HUANG Y Q,et al.Hierarchical porous carbon obtained from animal bone and evaluation in electric double-layer capacitors[J].Carbon,2011,49:838-843.

      [2]BALATHANIGAIMANI M S,SHIM W G,LEE M J,et al.Highly porous electrodes from novel corn grains-based activated carbons for electrical double layer capacitors[J].Electrochemistry Communications,2008,10:868-871.

      [3]THOMAS E R,HULICOVA-JURCAKOVA D,ZHU Z H,et al.Nanoporous carbon electrode from waste coffee beans for high performance supercapacitors[J].Electrochemistry Communications, 2008,10:1594-1597.

      [4]THOMAS E R,HULICOVA-JURCAKOVA D,KHOSLA K,et al.Microstructure and electrochemical double-layer capacitance of carbon electrodes prepared by zinc chloride activation of sugar cane bagasse[J].Journal of Power Sources,2010,195:912-918.

      [5]GUO Y P,QI J R,JIANG Y Q,et al.Performance of electrical double layer capacitors with porous carbons derived from rice husk [J].Materials Chemistry and Physics,2003,80:704-709.

      [6]WU F C,TSENG R L,HU C C,et al.Physical and electrochemical characterization of activated carbons prepared from firwoods for supercapacitors[J].Journal of Power Sources,2004,138:351-359.

      [7]KIM Y J,LEE B J,SUEZAKI H,et al.Preparation and characterization of bamboo-based activated carbons as electrode materialsfor electric double layer capacitors[J].Carbon,2006,44:1581-1616.

      [8]ISMANTO A E,WANG S T,SOETAREDJO F E,et al.Preparation of capacitor's electrode from cassava peel waste[J].Bioresource Technology,2010,101:3534-3540.

      [9]ZHAO S,WANG C Y,CHEN M M,et al.Potato starch-based activated carbon spheres as electrode material for electrochemical capacitor[J].Journal of Physics and Chemistry of Solids,2009,70(9): 1256-1260.

      [10]LI X,HAN C,CHEN X,et al.Preparation and performance of straw based activated carbon for supercapacitor in non-aqueous electrolytes[J].Microporous and Mesoporous Materials,2010, 131(1):303-309.

      [11]LU W,YUSHIN G.Electrical double layer capacitors with activated sucrose-derived carbon electrodes[J].Carbon,2011,49: 4830-4838.

      [12]WANG Q,CAO Q,WANG X Y,et al.A high-capacity carbon prepared from renewable chicken feather biopolymer for supercapaci tors[J].Journal of Power Sources,2013,225:101-107.

      [13]LU H L,DAI W J,ZHENG M B,et al.Electrochemical capacitive behaviors of ordered mesoporous carbons with controllable pore sizes[J].Journal of Power Sources,2012,209:243-250.

      [14]HE X J,LING P H,YU M X,et al.Rice husk-derived porous carbons with high capacitance by ZnCl2activation for supercapacitors[J].Electrochimica Acta,2013,105:635-641.

      [15]HE X J,LI R C,HAN J F,et al.Facile preparation of mesoporous carbonsforsupercapacitors by one-step microwave-assisted ZnCl2activation[J].Materials Letters,2013,94:158-160.

      [16]HE X J,LING P H,QIU J S,et al.Efficient preparation of biomass-based mesoporous carbons for supercapacitors with both high energy density and high power density[J].Journal of Power Sources,2013,240:109-113.

      [17]DU S H,WANG L Q,FU X T,et al.Hierarchical porous carbon microspheres derived from porous starch for use in high-rate electrochemical double-layer capacitors[J].Bioresour Technol,2013, 139:406-409.

      [18]LV Y K,GAN L H,LIU M X,et al.A self-template synthesis of hierarchical porous carbon foams based on banana peel for supercapacitor electrodes[J].J Power Sources,2012,209:152-157.

      [19]HUANG W T,ZHANG H,HUANG Y Q,et al.Hierarchical porous carbon obtained from animal bone and evaluation in electric double-layer capacitors[J].Carbon,2011,49:838-843.

      [20]CHEN W,ZHANG H,HUANG Y,et al.A fish scale based hierarchical lamellar porous carbon material obtained using a natural template for high performance electrochemical capacitors[J].Mater Chem,2010,20:4773-4775.

      [21]LAUREN M C,FERAL T,SALDA?A M D A.Barley beta-glucan aerogels via supercritical CO2drying[J].Food Research International,2012,l48:442-448.

      [22]LAUREN M C,FERAL T,SALDA?A M D A.Barley β-glucan aerogels as a carrier for flax oil via supercritical CO2[J].Journal of Food Engineering,2012,111:625-631.

      [23]LU Y,SUN Q F,YANG D J,et al.Fabrication of mesoporous lignocellulose aerogels from woodvia cyclic liquid nitrogen freezingthawing in ionic liquid solution[J].Mater Chem,2012,22: 13548-13557.

      [24]JUUSO T K,HIEKKATAIPALE P,MALM J,et al.Inorganic hollow nanotube aerogels by atomic layer depositio nonto native nanocellulose templates[J].ACS Nano,2011,5(3):1967-1974.

      [25]WU X L,WEN T,GUO H L,et al.Biomass-derived sponge-like carbonace ous hydrogels and aerogels for supercapacitors[J].ACS Nano,2013,7(4):3589-3597.

      [26]GRZYB B,HILDENBRAND C,BERTHON-FABRY S,et al.Functionalisation and chemical characterization of cellulose-derived carbon aerogels[J].Carbon,2010,48:2297-2307.

      [27]SINGH J,DUTTA P K,DUTTA J,et al.Preparation and properties of highly soluble chitosanl-glutamic acid aerogel derivative [J].Carbohydrate Polymers,2009,76(2):188-195.

      [28]TSIOPTSIAS C,MICHAILOF C,STAUROPOULOS G,et al.Chitin and carbon aerogels from chitin alcogels[J].Carbohydrate Polymers,2009,76(4):535-540.

      [29]CHANG X H,CHEN D R,JIAO X L.Starchde rived carbon aerogels with high performance for sorption of cationic dyes[J].Polymer,2010,51:3801-3807.

      [30]IKOMA T,KOBAYASHI H,TANAKA J,et al.Microstructure, mechanical,and biomimetic properties of fish scales from Pagrus major[J].J Struct Biol,2003,142:327-333.

      [31]JIANG L,YAN J W,HAO L X,et al.High rate performance activated carbons prepared from ginkgo shells for electrochemical supercapacitors[J].Carbon,2013,56:146-154.

      Application of biomass-based carbon materials for electrochemical double-layer capacitors

      By the consuming of chemical energy and deteriorating of environment, even though the electrode of electrochemical double-layer capacitors(EDLC)always consist of carbon materials,the production and application for traditional carbon materials have been challenged.Therefore,using biomass-based materials as precursor to prepare porous carbon has become a hot topic for EDLCs.The preparation and application progress of the biomass-based carbon materials were introduced.The influence of different raw materials and preparation methods on electrochemical properties was reviewed.

      electrochemical double-layer capacitors;biomass-based carbon materials;porous carbon materials

      TM 53

      A

      1002-087 X(2016)06-1334-03

      2015-12-05

      寧波市重大科技專項(xiàng)(2013B6003)

      盧穎莉(1986—),女,陜西省人,碩士研究生,主要研究方向?yàn)槌?jí)電容器的工程化制備與性能研究。

      喬志軍,男,E-mail:zjqiao@csrcap.com

      猜你喜歡
      電層微孔電流密度
      底部陰極電解槽內(nèi)雙電層影響下的電勢(shì)解析解*
      廣州化工(2023年11期)2023-10-09 03:18:26
      離子雙電層動(dòng)態(tài)輸運(yùn)特性及電場(chǎng)對(duì)液體油膜壓力的影響
      基于WIA-PA 無(wú)線網(wǎng)絡(luò)的鍍鋅電流密度監(jiān)測(cè)系統(tǒng)設(shè)計(jì)
      滾鍍過(guò)程中電流密度在線監(jiān)控系統(tǒng)的設(shè)計(jì)
      電流密度對(duì)鍍錳層結(jié)構(gòu)及性能的影響
      電流密度對(duì)Fe-Cr合金鍍層耐蝕性的影響
      強(qiáng)疏水性PDMS/PVDF微孔膜的制備及其性能研究
      膜蒸餾用PDMS/PVDF/PTFE三元共混微孔膜制備
      微孔發(fā)泡塑料中成核劑的研究
      美國(guó)Rice大學(xué)利用石墨烯等開(kāi)發(fā)出柔性雙電層電容器
      石油化工(2015年9期)2015-08-15 00:43:05
      南阳市| 垣曲县| 贵州省| 漯河市| 雷州市| 青神县| 濮阳县| 锡林郭勒盟| 洪泽县| 沅陵县| 赣州市| 志丹县| 门头沟区| 桐乡市| 姚安县| 军事| 信宜市| 临城县| 平阳县| 天门市| 和静县| 苗栗县| 青神县| 泰宁县| 钦州市| 伽师县| 阿拉善右旗| 门源| 涞源县| 喀喇沁旗| 宜州市| 蓬溪县| 原阳县| 钟祥市| 建始县| 明星| 梁平县| 洞头县| 老河口市| 三都| 开阳县|