宿 娟
(成都師范學院 數(shù)學系,四川 成都 610044)
?
Hopfield神經(jīng)網(wǎng)絡模型全局穩(wěn)定的弱條件
宿娟
(成都師范學院 數(shù)學系,四川 成都610044)
摘要:研究了Hopfield神經(jīng)網(wǎng)絡模型全局漸近穩(wěn)定的弱條件.模型中的激活函數(shù)沒有有界和可微的限制,并且右上Dini導數(shù)可在多點取得最大值.首先構造Lyapunov函數(shù),并利用可分析方法,證明了系數(shù)矩陣半負定是全局漸近穩(wěn)定的弱條件.然后,通過例子和數(shù)值模擬說明了結論的有效性,改進了已有文獻的結論.
關鍵詞:神經(jīng)網(wǎng)絡;全局漸近穩(wěn)定;半負定;平衡點
近年來神經(jīng)網(wǎng)絡在優(yōu)化控制、模式識別等領域發(fā)揮了重要作用而備受關注[1-2].在眾多的神經(jīng)網(wǎng)絡模型中,文[3]提出的Hopfield神經(jīng)網(wǎng)絡模型是目前研究和應用最為廣泛的神經(jīng)網(wǎng)絡模型之一,用非線性微分方程描述如下:
(1)
其中u:=(u1,…,un)T,uj表示第j個神經(jīng)元的狀態(tài)變量,T代表向量或矩陣的轉置;D:=diag(d1,…,dn),對j=1,…,n,有dj>0,它表示網(wǎng)絡在不連通且無外部附加電壓差的情況下,第j個神經(jīng)元恢復孤立靜息狀態(tài)的速率;A:=(aij)n×n是實對稱方陣,aij表示第j個神經(jīng)元對第i個神經(jīng)元的影響強度;gj,j=1,…,n,是R上的連續(xù)函數(shù),表示神經(jīng)元的輸出函數(shù),也稱為激活函數(shù),而g(u):=(g1(u1),…,gn(un))T;I:=(I1,…,In)T,Ij∈R,j=1,…,n,表示外部輸入.
受文[7-9]的啟發(fā),本文將進一步削弱激活函數(shù)的要求至0 2結論和證明 假設u*是系統(tǒng)(1)的平衡點,令v=u-u*,則系統(tǒng)(1)改寫成 (2) 文章假設激活函數(shù)gj,j=1,…,n,滿足下列條件: H10 引理1若條件H1,H2成立,對j=1,…,n,有 定義 (3) 從條件H1,H2得到 (4) 由(3),(4)式有 (5) 再根據(jù)Fj的定義和(5)式有 引理1得證. ? 定理1設系統(tǒng)(1)存在平衡點且條件H1,H2成立,若-DG-1+A半負定,其中G:=diag(G1,…,Gn),則系統(tǒng)(1)的平衡點唯一且全局漸近穩(wěn)定. 證明下面將證明分成三步完成. 步驟1構造Lyapunov函數(shù),證明其導數(shù)非正,從而得到平衡點的穩(wěn)定性. 構造Lyapunov函數(shù) 由引理1(i),(ii)易知L(t)正定,即L(t)≥0且L(t)=0當且僅當v(t)=0. 計算L(t)沿系統(tǒng)(2)的解曲線的導數(shù)有 (6) 由引理1(ii),(iii)有 (7) 將(7)式代入(6)式,并由-DG-1+A半負定可得 (8) (9) 則L≥0. 步驟2,3將利用反證法證明極限L=0,由此說明v(t)=0的全局吸引性. 步驟2假設極限L≠0時估計v(t)的某個分量在t充分大時取值的范圍. 假設L≠0,即 L>0. (10) 下面尋找v(t)的某個分量在t充分大時的取值范圍.由(8)-(10)式可得,存在t1滿足 L(t)≥L,t≥t1. (11) 利用引理1(ii),(iii)將L(t)放大有 (12) ‖v(t)‖≥δ,t≥t1. (13) (13)式說明對每個固定的t≥t1,存在與t相關的某個j0∈{1,…,n}.滿足: (14) (14)式說明了對每個固定的t>t1,存在某個分量|Vj0(t)|,其下界為正.下面進一步尋找其上界.事實上存在常數(shù)M>0滿足 |vj(t)|≤M,t≥t1,j=1,…,n. (15) 若(15)式不成立,則存在序列{ξi}滿足:(i)ξ1≥t1且{ξi}嚴格單增趨于+∞;(ii)存在v(t)的某一分量,設為vj*(t),滿足vj*(ξi)→+∞或vj*(ξi)→-∞,i→∞.不妨設vj*(ξi)→+∞,則存在l∈N+滿足vj*(ξi)>0,i≥l.由L(t)的定義和引理1有 與(9)式矛盾,因此(15)式成立.同理可證若vj*(ξi)→-∞時(15)式成立. 根據(jù)(14),(15)式我們得出,對任意固定的t≥t1,存在某個j0滿足 (16) 步驟3利用步驟2的結果來估計L(t)的取值,得出與L(t)正定的矛盾. (17) 于是對固定的t≥t1,對(17)式中j≠j0的項利用引理1(iii)有 (18) (19) (16)式還進一步說明了 (20) 從而對固定的t≥t1,根據(jù)(16),(18)和(19)式,我們得到 (21) (22) 對(22)式兩端在t1到t上積分有: L(t)≤L(t1)-Ω(t-t1),t≥t1. (23) 根據(jù)(23)式容易得到 L(t)<0,t→+∞, 即u*唯一且全局漸近穩(wěn)定.定理得證. ? 3數(shù)值模擬 本節(jié)將通過一個例子來驗證所得結論. 例1考慮如下Hopfield神經(jīng)網(wǎng)絡模型, 其中激活函數(shù) 圖1 初值為(-5,3)時的軌道收斂到(-2,-2) 圖2 4條軌道皆收斂到(-2,-2) 注1例1中激活函數(shù)gi,i=1,2,其右上Dini導數(shù)D+gi(s)在s∈(-1,1)時均取得最大值1,用文[9]的結論不能判斷該平衡點的全局穩(wěn)定. 參考文獻: [1]ANTSAKLISP.Neuralnetworksincontrolsystem[J]. IEEE Control System Mag, 1990,10(3):3-5. [2]CHEN Y H, FANG S C. Neurocomputing with time delay anlysis for solving convex quadratic programming problems[J]. IEEE Trans Neural Networks, 2000,11(1):230-240. [3]HOPFIELD J J. Neurons with graded response have collective computational properties like those of two-stage neurons[J]. Proc Nat Acad Sci, 1984,81(10):3088-3092. [4]PAJARES G, GUIJARRO M, RIBEIRO A. A hopfield neural network for combining classifiers applied to textured images[J]. Neural Networks, 2010,23:144-153. [5]GHATEE M, NIKSIRAT M. A hopfield neural network applied to the fuzzy maximum cut problem under credibillty measure[J]. Information Sciences, 2013,229:77-93. [6]CHENG Changyuan, LIN Kuanhui, SHIH Chihwen. Multistability and convergence in delayed neural networks[J]. Physica D, 2007,225:61-74. [7]FORTI M. On global asymptotic stability of a class of nonlinear systems arising in neural network theory[J]. Journal of Differential Equations, 1994,113:246-264. [8]LIU Xiwu, CHEN Tianping. A new result on the global convergence of Hopfield neural networks[J]. IEEE Trans Circuits Syst I, 2002,49(10):1514-1516. [9]ZHANG Weinian. A weak condition of globally asymptotic stability for neural networks[J]. Applied Mathematics Letters, 2006,19:1210-1215. [10]ZOU Lan, TANG Huajing, TAN K C, et al. Analysis of continuous attrractors for 2-D linear threshold neural networks[J]. IEEE Trans Neural Networks, 2009,20(1):175-180. A Weak Condition for the Hopfield Neural Networks SU Juan (Department of Mathematics, Chengdu Normal University, Chengdu 610044, China) Abstract:This paper studies the weak condition for the Hopfield neural networks whose activation functions may not be bounded or differentiable, and furthermore the upper right Dini derivatives of activation functions may obtain the maximum at more than one point. Firstly, by Lyapunov function and analysis methods, a weak condition of globally asymptotic stability is proposed. Then, example and numerical simulations are given to illustrate the theory developed in this paper. Our theory improves the existing results in the literature. Key words:neural networks; globally asymptotic stability; nonpositive definite; equilibrium 中圖分類號:O175.26 文獻標志碼:A 文章編號:1001-2443(2016)02-0115-05 作者簡介:宿娟(1980-),女,四川省崇州市人,講師,碩士,研究方向為微分方程與動力系統(tǒng). 基金項目:四川省教育廳項目(14ZB0329);成都師范學院校級科研項目(CS15ZB04). 收稿日期:2015-05-10 DOI:10.14182/J.cnki.1001-2443.2016.02.003 引用格式:宿娟.Hopfield神經(jīng)網(wǎng)絡模型全局穩(wěn)定的弱條件[J].安徽師范大學學報:自然科學版,2016,39(2):115-119.