湯皓 魏雪嬌
【摘 要】在高等數(shù)學中,常遇到求解有理函數(shù)(不)定積分、高階導數(shù)、冪級數(shù)展開式的問題。除個別特殊情況外,它們都需要將有理函數(shù)分解為部分分式之和來解決。本文針對現(xiàn)有有理分式分解法所求得部分分式形式不統(tǒng)一及不適于高次分式分析的問題,提出一種將有理分式分解為部分分式的通用方法。在復數(shù)域用 變換和留數(shù)定理對此法進行證明,并給出它在有理分式積分中的應用。
【關(guān)鍵詞】有理分式 部分分式 變換 留數(shù)定理
【Abstract】In higher mathematics, often encountered in solving rational function (not) integral, derivative, power series expansion problem. In addition to the particular circumstances, they all need to be decomposed into partial fraction of rational functions. To deal with the problem of disaccord in partial fractions and the limitation in higher degree fraction caused by the current method, an universal method of factoring rational fraction is proposed. Laplace transforms and residue theorem are used in its proof course, and its application in integration of rational fraction is put forward as an example.
【Key word】rational fraction; partial fractions; Laplace transforms; residue theorem
分解有理函數(shù)最常見的方法為待定系數(shù)法,但其步驟繁瑣,計算量大,其余方法如賦值法、求導法、極限法等作為待定系數(shù)法的補充確有較好的應用。但以上方法所得部分分式的形式并不統(tǒng)一,這往往會影響到后續(xù)的計算,且它們并不適于有理函數(shù)分母為較高次冪多項式時的分析。另一方面,由于一次分式在所有分式函數(shù)中形式最簡,且當分子為常數(shù)時,對其求導、求積、求冪級數(shù)展開式均相當容易。因此本文擬得到各項分子均為常數(shù),分母均為一次因式的部分分式,并用復變函數(shù)積分變換的方法確定各項常數(shù),此舉將引入虛數(shù),但部分分式的形式會變得統(tǒng)一,且不影響最終結(jié)果。